Synthesis of TiO2/SBA-15 Nanocomposites by Hydrolysis of Organometallic Ti Precursors for Photocatalytic NO Abatement
Abstract
:1. Introduction
2. Results and Discussion
2.1. SBA-15 Hydration Methods and Characterization
2.2. Bare TiO2 Powder Syntheses
2.3. Synthesis of TiO2/SBA-15 Nanocomposites
2.4. NO Abatement Tests
3. Materials and Methods
3.1. Synthesis of SBA-15 Powder
3.2. Synthesis of Titanium Tris-Amidinate Precursor
3.3. Synthesis of Bare TiO2 Powder
3.4. Synthesis of TiO2/SBA-15 Nanocomposites
3.5. Characterization Techniques
3.6. Evaluation of the Photocatalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lorente, A.; Boersma, K.F.; Eskes, H.J.; Veefkind, J.P.; van Geffen, J.H.G.M.; de Zeeuw, M.B.; Denier van der Gon, H.A.C.; Beirle, S.; Krol, M.C. Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPOMI. Sci. Rep. 2019, 9, 20033. [Google Scholar] [CrossRef] [PubMed]
- WHO Global Air Quality Guidelines. Available online: https://www.who.int/news-room/questions-and-answers/item/who-global-air-quality-guidelines (accessed on 29 March 2024).
- Ângelo, J.; Andrade, L.; Madeira, L.M.; Mendes, A. An overview of photocatalysis phenomena applied to NOx abatement. J. Environ. Manag. 2013, 129, 522–539. [Google Scholar] [CrossRef]
- Castelló Lux, K.; Hot, J.; Fau, P.; Bertron, A.; Kahn, M.L.; Ringot, E.; Fajerwerg, K. Nano-gold decorated ZnO: An alternative photocatalyst promising for NOx degradation. Chem. Eng. Sci. 2023, 267, 118377. [Google Scholar] [CrossRef]
- Seiss, V.; Thiel, S.; Eichelbaum, M. Preparation and Real World Applications of Titania Composite Materials for Photocatalytic Surface, Air, and Water Purification: State of the Art. Inorganics 2022, 10, 139. [Google Scholar] [CrossRef]
- Uddin, M.J.; Cesano, F.; Chowdhury, A.R.; Trad, T.; Cravanzola, S.; Martra, G.; Mino, L.; Zecchina, A.; Scarano, D. Surface Structure and Phase Composition of TiO2 P25 Particles After Thermal Treatments and HF Etching. Front. Mater. 2020, 7, 192. [Google Scholar] [CrossRef]
- Qian, R.; Zong, H.; Schneider, J.; Zhou, G.; Zhao, T.; Li, Y.; Yang, J.; Bahnemann, D.W.; Pan, J.H. Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview. Catal. Today 2019, 335, 78–90. [Google Scholar] [CrossRef]
- Noureen, L.; Wang, Q.; Humayun, M.; Shah, W.A.; Xu, Q.; Wang, X. Recent advances in structural engineering of photocatalysts for environmental remediation. Environ. Res. 2023, 219, 115084. [Google Scholar] [CrossRef]
- Toma, F.L.; Bertrand, G.; Klein, D.; Coddet, C. Photocatalytic removal of nitrogen oxides via titanium dioxide. Environ. Chem. Lett. 2004, 2, 117–121. [Google Scholar] [CrossRef]
- Du, L.; Furube, A.; Yamamoto, K.; Hara, K.; Katoh, R.; Tachiya, M. Plasmon-Induced Charge Separation and Recombination Dynamics in Gold−TiO2 Nanoparticle Systems: Dependence on TiO2 Particle Size. J. Phys. Chem. C 2009, 113, 6454–6462. [Google Scholar] [CrossRef]
- Sun, S.; Song, P.; Cui, J.; Liang, S. Amorphous TiO2 nanostructures: Synthesis, fundamental properties and photocatalytic applications. Catal. Sci. Technol. 2019, 9, 4198–4215. [Google Scholar] [CrossRef]
- MiarAlipour, S.; Friedmann, D.; Scott, J.; Amal, R. TiO2/porous adsorbents: Recent advances and novel applications. J. Hazard. Mater. 2018, 341, 404–423. [Google Scholar] [CrossRef]
- Jiang, W.; Ji, W.; Au, C.-T. Surface/Interfacial Catalysis of (Metal)/Oxide System: Structure and Performance Control. ChemCatChem 2018, 10, 2125–2163. [Google Scholar] [CrossRef]
- Kumar, S.G.; Rao, K.S.R.K. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Appl. Surf. Sci. 2017, 391, 124–148. [Google Scholar] [CrossRef]
- Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.F.; Stucky, G.D. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 1998, 120, 6024–6036. [Google Scholar] [CrossRef]
- Yamada, T.; Zhou, H.; Uchida, H.; Honma, I.; Katsube, T. Experimental and Theoretical NOx Physisorption Analyses of Mesoporous Film (SBA-15 and SBA-16) Constructed Surface Photo Voltage (SPV) Sensor. J. Phys. Chem. B 2004, 108, 13341–13346. [Google Scholar] [CrossRef]
- Boutros, M.; Onfroy, T.; Da Costa, P. Mesostructured or Alumina-mesostructured Silica SBA-16 as Potential Support for NOx Reduction and Ethanol Oxidation. Catal. Lett. 2010, 139, 50–55. [Google Scholar] [CrossRef]
- Bin, F.; Song, C.; Lv, G.; Song, J.; Cao, X.; Pang, H.; Wang, K. Structural Characterization and Selective Catalytic Reduction of Nitrogen Oxides with Ammonia: A Comparison between Co/ZSM-5 and Co/SBA-15. J. Phys. Chem. C 2012, 116, 26262–26274. [Google Scholar] [CrossRef]
- Sharma, M.V.P.; Kumari, V.D.; Subrahmanyam, M. TiO2 supported over SBA-15: An efficient photocatalyst for the pesticide degradation using solar light. Chemosphere 2008, 73, 1562–1569. [Google Scholar] [CrossRef]
- Acosta-Silva, Y.J.; Nava, R.; Hernandez-Morales, V.; Macias-Sanchez, S.A.; Gomez-Herrera, M.L.; Pawelec, B. Methylene Blue photodegradation over titania-decorated SBA-15. Appl. Catal. B 2011, 110, 108–117. [Google Scholar] [CrossRef]
- Wang, X.-j.; Li, F.-t.; Hao, Y.-j.; Liu, S.-j.; Yang, M.-l. TiO2/SBA-15 composites prepared using H2TiO3 by hydrothermal method and its photocatalytic activity. Mater. Lett. 2013, 99, 38–41. [Google Scholar] [CrossRef]
- Besancon, M.; Michelin, L.; Josien, L.; Vidal, L.; Assaker, K.; Bonne, M.; Lebeau, B.; Blin, J.-L. Influence of the porous texture of SBA-15 mesoporous silica on the anatase formation in TiO2-SiO2 nanocomposites. New J. Chem. 2016, 40, 4386–4397. [Google Scholar] [CrossRef]
- Conceicao, D.S.; Graca, C.A.L.; Ferreira, D.P.; Ferraria, A.M.; Fonseca, I.M.; Botelho do Rego, A.M.; Teixeira, A.C.S.C.; Vieira Ferreira, L.F. Photochemical insights of TiO2 decorated mesoporous SBA-15 materials and their influence on the photodegradation of organic contaminants. Microporous Mesoporous Mater. 2017, 253, 203–214. [Google Scholar] [CrossRef]
- Araujo, M.M.; Silva, L.K.R.; Sczancoski, J.C.; Orlandi, M.O.; Longo, E.; Santos, A.G.D.; Sa, J.L.S.; Santos, R.S.; Luz, G.E.; Cavalcante, L.S. Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior. Appl. Surf. Sci. 2016, 389, 1137–1147. [Google Scholar] [CrossRef]
- Vradman, L.; Peer, Y.; Mann-Kiperman, A.; Landau, M.V. Thermal decomposition-precipitation inside the nanoreactors. High loading of W-oxide nanoparticles into the nanotubes of SBA-15. In Studies in Surface Science and Catalysis; Park, S.-E., Ryoo, R., Ahn, W.-S., Lee, C.W., Chang, J.-S., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 146, pp. 121–124. [Google Scholar]
- Landau, M.V.; Vradman, L.; Wang, X.; Titelman, L. High loading TiO2 and ZrO2 nanocrystals ensembles inside the mesopores of SBA-15: Preparation, texture and stability. Microporous Mesoporous Mater. 2005, 78, 117–129. [Google Scholar] [CrossRef]
- Peza-Ledesma, C.L.; Escamilla-Perea, L.; Nava, R.; Pawelec, B.; Fierro, J.L.G. Supported gold catalysts in SBA-15 modified with TiO2 for oxidation of carbon monoxide. Appl. Catal. A Gen. 2010, 375, 37–48. [Google Scholar] [CrossRef]
- Ke, W.; Liu, Y.; Wang, X.; Qin, X.; Chen, L.; Palomino, R.M.; Simonovis, J.P.; Lee, I.; Waluyo, I.; Rodriguez, J.A.; et al. Nucleation and Initial Stages of Growth during the Atomic Layer Deposition of Titanium Oxide on Mesoporous Silica. Nano Lett. 2020, 20, 6884–6890. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Shen, K.; Gorte, R.J.; Vohs, J.M. Preparation of SBA-15-Supported Metals by Vapor-Phase Infiltration. Inorganics 2022, 10, 215. [Google Scholar] [CrossRef]
- Garden, J.A.; Pike, S.D. Hydrolysis of organometallic and metal–amide precursors: Synthesis routes to oxo-bridged heterometallic complexes, metal-oxo clusters and metal oxide nanoparticles. Dalton Trans. 2018, 47, 3638–3662. [Google Scholar] [CrossRef]
- Lim, B.S.; Rahtu, A.; Park, J.-S.; Gordon, R.G. Synthesis and Characterization of Volatile, Thermally Stable, Reactive Transition Metal Amidinates. Inorg. Chem. 2003, 42, 7951–7958. [Google Scholar] [CrossRef]
- Cure, J.; Piettre, K.; Coppel, Y.; Beche, E.; Esvan, J.; Colliere, V.; Chaudret, B.; Fau, P. Solution Layer Deposition: A Technique for the Growth of Ultra-Pure Manganese Oxides on Silica at Room Temperature. Angew. Chem. Int. Ed. 2016, 55, 3027–3030. [Google Scholar] [CrossRef]
- Castello Lux, K.; Fajerwerg, K.; Hot, J.; Ringot, E.; Bertron, A.; Collière, V.; Kahn, M.L.; Loridant, S.; Coppel, Y.; Fau, P. Nano-Structuration of WO3 Nanoleaves by Localized Hydrolysis of an Organometallic Zn Precursor: Application to Photocatalytic NO2 Abatement. Nanomaterials 2022, 12, 4360. [Google Scholar] [CrossRef] [PubMed]
- Jonca, J.; Castello-Lux, K.; Fajerwerg, K.; Kahn, M.L.; Colliere, V.; Menini, P.; Sowka, I.; Fau, P. Gas Sensing Properties of CuWO4@WO3 n-n Heterojunction Prepared by Direct Hydrolysis of Mesitylcopper (I) on WO3·2H2O Nanoleaves. Chemosensors 2023, 11, 495. [Google Scholar] [CrossRef]
- Belmoujahid, Y.; Bonne, M.; Scudeller, Y.; Schleich, D.; Grohens, Y.; Lebeau, B. SBA-15 mesoporous silica as a super insulating material. Eur. Phys. J. Spec. Top. 2015, 224, 1775–1785. [Google Scholar] [CrossRef]
- Wang, W.; Song, M. Photocatalytic activity of titania-containing mesoporous SBA-15 silica. Microporous Mesoporous Mater. 2006, 96, 255–261. [Google Scholar] [CrossRef]
- Thommes, M. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Chem. Int. 2016, 38, 25. [Google Scholar] [CrossRef]
- Galarneau, A.; Cambon, H.; Di Renzo, F.; Ryoo, R.; Choi, M.; Fajula, F. Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis. New J. Chem. 2003, 27, 73–79. [Google Scholar] [CrossRef]
- Galarneau, A.; Nader, M.; Guenneau, F.; Di Renzo, F.; Gedeon, A. Understanding the Stability in Water of Mesoporous SBA-15 and MCM-41. J. Phys. Chem. C 2007, 111, 8268–8277. [Google Scholar] [CrossRef]
- Amiens, C.; Chaudret, B.; Ciuculescu-Pradines, D.; Collière, V.; Fajerwerg, K.; Fau, P.; Kahn, M.; Maisonnat, A.; Soulantica, K.; Philippot, K. Organometallic approach for the synthesis of nanostructures. New J. Chem. 2013, 37, 3374–3401. [Google Scholar] [CrossRef]
- Niemelä, J.-P.; Marin, G.; Karppinen, M. Titanium dioxide thin films by atomic layer deposition: A review. Semicond. Sci. Technol. 2017, 32, 093005. [Google Scholar] [CrossRef]
- Mamaghani, A.H.; Haghighat, F.; Lee, C.-S. Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Appl. Catal. B Environ. 2017, 203, 247–269. [Google Scholar] [CrossRef]
- Bickley, R.I.; Gonzalez-Carreno, T.; Lees, J.S.; Palmisano, L.; Tilley, R.J.D. A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem. 1991, 92, 178–190. [Google Scholar] [CrossRef]
- Hendrix, A.L.Y.; Yu, Q.; Brouwers, J. Titania-Silica Composites: A Review on the Photocatalytic Activity and Synthesis Methods. World J. Nano Sci. Eng. 2015, 5, 161–177. [Google Scholar] [CrossRef]
- Russell, H.S.; Frederickson, L.B.; Hertel, O.; Ellermann, T.; Jensen, S.S. A Review of Photocatalytic Materials for Urban NOx Remediation. Catalysts 2021, 11, 675. [Google Scholar] [CrossRef]
- Inada, M.; Enomoto, N.; Hojo, J. Fabrication and structural analysis of mesoporous silica–titania for environmental purification. Microporous Mesoporous Mater. 2013, 182, 173–177. [Google Scholar] [CrossRef]
- Li, Y.; Kim, S.-J. Synthesis and Characterization of Nano titania Particles Embedded in Mesoporous Silica with Both High Photocatalytic Activity and Adsorption Capability. J. Phys. Chem. B 2005, 109, 12309–12315. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zheng, W.; Liu, W. Enhanced photocatalytic activity of supported TiO2: Dispersing effect of SiO2. J. Photochem. Photobiol. A Chem. 1999, 122, 57–60. [Google Scholar] [CrossRef]
- Alonso-Tellez, A.; Masson, R.; Robert, D.; Keller, N.; Keller, V. Comparison of Hombikat UV100 and P25 TiO2 performance in gas-phase photocatalytic oxidation reactions. J. Photochem. Photobiol. A Chem. 2012, 250, 58–65. [Google Scholar] [CrossRef]
- Duong, N.T.; Trébosc, J.; Lafon, O.; Amoureux, J.-P. Improved sensitivity and quantification for 29Si NMR experiments on solids using UDEFT (Uniform Driven Equilibrium Fourier Transform). Solid State Nucl. Magn. Reson. 2019, 100, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Ratel-Ramond, N. Nicoratel/WAXS_toolbox: PDF-for-nano (v1.0.0-alpha). Zenodo, 2024. [Google Scholar] [CrossRef]
- Juhás, P.; Farrow, C.L.; Yang, X.; Knox, K.R.; Billinge, S.J. Complex modeling: A strategy and software program for combining multiple information sources to solve ill posed structure and nanostructure inverse problems. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 562–568. [Google Scholar] [CrossRef]
- Gražulis, S.; Chateigner, D.; Downs, R.T.; Yokochi, A.F.T.; Quirós, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A. Crystallography Open Database—An open-access collection of crystal structures. J. Appl. Crystallogr. 2009, 42, 726–729. [Google Scholar] [CrossRef]
- Hot, J.; Topalov, J.; Ringot, E.; Bertron, A. Investigation on Parameters Affecting the Effectiveness of Photocatalytic Functional Coatings to Degrade NO: TiO2 Amount on Surface, Illumination, and Substrate Roughness. Int. J. Photoenergy 2017, 2017, 6241615. [Google Scholar] [CrossRef]
- ISO 22197-1:2016; Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Air-Purification Performance of Semiconducting Photocatalytic Materials—Part 1: Removal of Nitric Oxide. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/65416.html (accessed on 20 November 2023).
SBA-15 Sample | SBET (m2/g) | Vmicro (cm3/g) | Vmeso (cm3/g) | Dp (nm) |
---|---|---|---|---|
As-received SBA-15 | 1041 | 0.16 | 0.99 | 6.2 |
(SBA-15)/A | 721 | 0.08 | 0.77 | 6.2 |
(SBA-15)/B | 470 | 0.04 | 0.81 | 7.2 |
Precursor | Theoretical Ti Content (wt.%) | ICP Measured Ti Content (wt.%) |
---|---|---|
TEMAT (1) | 30.09 | |
32 | 30.27 | |
Mean: 30.18 | ||
Ti-Amd (2) | 31.94 | |
32 | 31.17 | |
Mean: 31.55 |
Sample | TiO2 Content (wt.%) | SBET (m2/g) | TiO2 Crystal Size (nm) | |
---|---|---|---|---|
TEM | XRD | |||
TiO2 P-25 | 100 | 50 | 21.0 | 31.0 |
TiO2 TEMAT | 100 | 51 | 13.5 | 18.4 |
TiO2 Ti-Amd | 100 | 21 | 13.1 | 21 |
As-received SBA-15 | - | 1041 | - | - |
SBA-15 hydrated B | - | 470 | - | - |
TiO2 TEMAT/SBA-15 | 50.4 | 297 | 9.8 | 11.7 |
TiO2 Ti-Amd/SBA-15 | 52.6 | 251 | 9.3 | 11.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Atti, O.; Hot, J.; Fajerwerg, K.; Lorber, C.; Lebeau, B.; Ryzhikov, A.; Kahn, M.; Collière, V.; Coppel, Y.; Ratel-Ramond, N.; et al. Synthesis of TiO2/SBA-15 Nanocomposites by Hydrolysis of Organometallic Ti Precursors for Photocatalytic NO Abatement. Inorganics 2024, 12, 183. https://doi.org/10.3390/inorganics12070183
El Atti O, Hot J, Fajerwerg K, Lorber C, Lebeau B, Ryzhikov A, Kahn M, Collière V, Coppel Y, Ratel-Ramond N, et al. Synthesis of TiO2/SBA-15 Nanocomposites by Hydrolysis of Organometallic Ti Precursors for Photocatalytic NO Abatement. Inorganics. 2024; 12(7):183. https://doi.org/10.3390/inorganics12070183
Chicago/Turabian StyleEl Atti, Ons, Julie Hot, Katia Fajerwerg, Christian Lorber, Bénédicte Lebeau, Andrey Ryzhikov, Myrtil Kahn, Vincent Collière, Yannick Coppel, Nicolas Ratel-Ramond, and et al. 2024. "Synthesis of TiO2/SBA-15 Nanocomposites by Hydrolysis of Organometallic Ti Precursors for Photocatalytic NO Abatement" Inorganics 12, no. 7: 183. https://doi.org/10.3390/inorganics12070183
APA StyleEl Atti, O., Hot, J., Fajerwerg, K., Lorber, C., Lebeau, B., Ryzhikov, A., Kahn, M., Collière, V., Coppel, Y., Ratel-Ramond, N., Ménini, P., & Fau, P. (2024). Synthesis of TiO2/SBA-15 Nanocomposites by Hydrolysis of Organometallic Ti Precursors for Photocatalytic NO Abatement. Inorganics, 12(7), 183. https://doi.org/10.3390/inorganics12070183