Conformational, Electrochemical, and Antioxidative Properties of Conjugates of Different Ferrocene Turn-Inducing Scaffolds with Hydrophobic Amino Acids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Infrared Spectroscopy (IR Spectroscopy)
2.2. Nuclear Magnetic Resonance Spectroscopy
2.2.1. Concentration-Dependent NMR
2.2.2. Temperature-Dependent NMR
2.2.3. Solvent-Dependence of NMR Chemical Shifts
2.3. Circular Dichroism (CD)
2.4. Antioxidant Activity
2.5. Electrochemical Study
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dias, C.L.; Karttunen, M.; Chan, H.S. Hydrophobic interactions in the formation of secondary structures in small peptides. Phys. Rev. E 2011, 84, 041931. [Google Scholar] [CrossRef]
- Xiong, H.; Buckwalter, B.L.; Shieh, H.-M.; Hecht, M.H. Periodicity of polar and nonpolar amino acids is the major determinant of secondary structure in self-assembling oligomeric peptides. Proc. Natl. Acad. Sci. USA 1995, 92, 6349–6353. [Google Scholar] [CrossRef] [PubMed]
- Dill, K.A. Dominant forces in protein folding. Biochemistry 1990, 29, 7133–7155. [Google Scholar] [CrossRef]
- Nowick, J.S. Exploring β-Sheet Structure and Interactions with Chemical Model Systems. Acc. Chem. Res. 2008, 41, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Kovačević, M.; Kodrin, I.; Cetina, M.; Kmetič, I.; Murati, T.; Čakić-Semenčić, M.; Roca, S.; Barišić, L. The conjugate of β-turn-nucleating ferrocene-1,1’-diamine and amino acids. A novel synthetic approach and conformational analysis. Dalton Trans. 2015, 44, 16405–16420. [Google Scholar] [CrossRef] [PubMed]
- Van Staveren, D.R.; Weyhermüller, T.; Metzler-Nolte, N. Organometallic β-turn mimetics. A structural and spectroscopic study of inter-strand hydrogen bonding in ferrocene and cobaltocenium conjugates of amino acids and dipeptides. Dalton Trans. 2003, 2, 210–220. [Google Scholar] [CrossRef]
- Čakić Semenčić, M.; Kodrin, I.; Molčanov, K.; Kovačević, M.; Rapić, V. Novel ferrocene imide derivatives: Synthesis, conformational analysis and X-ray structure. Heliyon 2022, 8, e09470. [Google Scholar] [CrossRef]
- Moriuchi, T.; Ohmura, S.D.; Moriuchi-Kawakami, T. Chirality Induction in Bioorganometallic Conjugates. Inorganics 2018, 6, 111. [Google Scholar] [CrossRef]
- Kirin, S.I.; Kraatz, H.B.; Metzler-Nolte, N. Systematizing structural motifs and nomenclature in 1,n′-disubstituted ferrocene peptides. Chem. Soc. Rew. 2006, 35, 348–354. [Google Scholar] [CrossRef]
- Herrick, R.S.; Jarret, R.M.; Curran, T.P.; Dragoli, D.R.; Flaherty, M.B.; Lindyberg, S.E.; Slate, R.A.; Thornton, L.C. Ordered conformations in bis(amino acid) derivatives of 1,1′-ferrocenedicarboxylic acid. Tetrahedron Lett. 1996, 37, 5289–5292. [Google Scholar] [CrossRef]
- Xu, Y.; Saweczko, P.; Kraatz, H.-B. 1,1′-Ferrocenoyl–oligoprolines. A synthetic, structural and electrochemical study. J. Organomet. Chem. 2001, 637, 335–342. [Google Scholar] [CrossRef]
- Moriuchi, T.; Hirao, T. Dipeptide-induced chirality organization. J. Incl. Phenom. Macrocycl. Chem. 2012, 74, 23–40. [Google Scholar] [CrossRef]
- Moriuchi, T.; Hirao, T. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures. Acc. Chem. Res. 2010, 43, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- Barišić, L.; Čakić, M.; Mahmoud, K.A.; Liu, Y.-N.; Kraatz, H.-B.; Pritzkow, H.; Kirin, S.I.; Metzler-Nolte, N.; Rapić, V. Helically Chiral Ferrocene Peptides Containing 1′-Aminoferrocene-1-Carboxylic Acid Subunits as Turn Inducers. Chem. Eur. J. 2006, 12, 4965–4980. [Google Scholar] [CrossRef] [PubMed]
- Čakić Semenčić, M.; Siebler, D.; Heinze, K.; Rapić, V. Bis- and Trisamides Derived From 1′-Aminoferrocene-1-carboxylic Acid and α-Amino Acids: Synthesis and Conformational Analysis. Organometallics 2009, 28, 2028–2037. [Google Scholar] [CrossRef]
- Kovačević, M.; Molčanov, K.; Radošević, K.; Srček Gaurina, V.; Roca, S.; Čače, A.; Barišić, L. Conjugates of 1′-aminoferrocene-1-carboxylic acid and proline: Synthesis, conformational analysis and biological evaluation. Molecules 2014, 21, 12852–12880. [Google Scholar] [CrossRef] [PubMed]
- Kovačević, M.; Čakić Semenčić, M.; Radošević, K.; Molčanov, K.; Roca, S.; Šimunović, L.; Kodrin, I.; Barišić, L. Conformational Preferences and Antiproliferative Activity of Peptidomimetics Containing Methyl 1′-Aminoferrocene-1-carboxylate and Turn-Forming Homo- and Heterochiral Pro-Ala Motifs. Int. J. Mol. Sci. 2021, 22, 13532. [Google Scholar] [CrossRef] [PubMed]
- Kovačević, M.; Kodrin, I.; Roca, S.; Molčanov, K.; Shen, Y.; Adhikari, B.; Kraatz, H.B.; Barišić, L. Helically Chiral Peptides That Contain Ferrocene-1,1′-diamine Scaffolds as a Turn Inducer. Chem. Eur. J. 2017, 23, 10372–10395. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Mahmoud, K.A.; Schatte, G.; Kraatz, H.-B. Amino acid conjugates of 1,1′-diaminoferrocene. Synthesis and chiral organization. Org. Biomol. Chem. 2005, 3, 3018–3023. [Google Scholar] [CrossRef]
- Kovačević, M.; Markulin, D.; Zelenika, M.; Marjanović, M.; Lovrić, M.; Polančec, D.; Ivančić, M.; Mrvčić, J.; Molčanov, K.; Milašinović, V.; et al. Hydrogen Bonding Drives Helical Chirality via 10-Membered Rings in Dipeptide Conjugates of Ferrocene-1,1′-Diamine. Int. J. Mol. Sci. 2022, 23, 12233. [Google Scholar] [CrossRef]
- Astruc, D. Why is Ferrocene so Exceptional? Eur. J. Inorg. Chem. 2017, 2017, 6–29. [Google Scholar] [CrossRef]
- Patra, M.; Gasser, G. The medicinal chemistry of ferrocene and its derivatives. Nat. Rev. Chem. 2017, 1, 0066. [Google Scholar] [CrossRef]
- Ludwig, B.S.; Correia, J.D.G.; Kühn, F.E. Ferrocene derivatives as anti-infective agents. Coord. Chem. Rev. 2019, 396, 22–48. [Google Scholar] [CrossRef]
- Sharma, B.; Kumar, V. Has Ferrocene Really Delivered Its Role in Accentuating the Bioactivity of Organic Scaffolds? J. Med. Chem. 2021, 64, 16865–16921. [Google Scholar] [CrossRef]
- Mueller, L.K.; Baumruck, A.C.; Zhdanova, H.; Tietze, A.A. Challenges and Perspectives in Chemical Synthesis of Highly Hydrophobic Peptides. Front. Bioeng. Biotechnol. 2020, 8, 162. [Google Scholar] [CrossRef]
- Borrelli, A.; Tornesello, A.L.; Tornesello, M.L.; Buonaguro, F.M. Cell Penetrating Peptides as Molecular Carriers for Anti-Cancer Agents. Molecules 2018, 23, 295. [Google Scholar] [CrossRef]
- Blaber, M.; Zhang, X.J.; Matthews, B.W. Structural Basis of Amino Acid α Helix Propensity. Science 1993, 260, 1637–1640. [Google Scholar] [CrossRef]
- Saravanan, R.; Li, X.; Lim, K.; Mohanram, H.; Peng, L.; Mishra, B.; Basu, A.; Lee, J.M.; Bhattacharjya, S.; Leong, S.S. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility. Biotechnol. Bioeng. 2014, 111, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Saint Jean, K.D.; Henderson, K.D.; Chrom, C.L.; Abiuso, L.E.; Renn, L.M.; Caputo, G.A. Effects of Hydrophobic Amino Acid Substitutions on Antimicrobial Peptide Behavior. Probiotics Antimicrob. Prot. 2018, 10, 408–419. [Google Scholar] [CrossRef]
- Zou, T.-B.; He, T.-P.; Li, H.-B.; Tang, H.-W.; Xia, E.-Q. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef]
- Wang, B.; Gong, Y.D.; Li, Z.R.; Yu, D.; Chi, C.F.; Ma, J.Y. Isolation and characterisation of five novel antioxidant peptides from ethanol-soluble proteins hydrolysate of spotless smoothhound (Mustelus griseus) muscle. J. Funct. Foods 2014, 6, 176–185. [Google Scholar] [CrossRef]
- Ren, Y.; Wu, H.; Li, X.; Lai, F.; Xiao, X. Purification and characterization of high antioxidant peptides from duck egg white protein hydrolysates. Biochem. Biophys. Res. Commun. 2014, 452, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Chanput, W.; Nakai, S.; Theerakulkait, C. Introduction of new computer softwares for classification and prediction purposes of bioactive peptides: Case study in antioxidative tripeptides. Int. J. Food Prop. 2010, 13, 947–959. [Google Scholar] [CrossRef]
- Li, Y.-W.; Li, B.; He, J.; Qian, P. Structure-activity relationship study of antioxidative peptides by QSAR modeling: The amino acid next to C-terminus affects the activity. J. Pept. Sci. 2011, 17, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-W.; Li, B.; He, J.; Qian, P. Quantitative structureactivity relationship study of antioxidative peptide by using different sets of amino acids descriptors. J. Mol. Struct. 2011, 998, 53–61. [Google Scholar] [CrossRef]
- Ohashi, Y.; Onuma, R.; Naganuma, T.; Ogawa, T.; Naude, R.; Nokihara, K.; Muramoto, K. Antioxidant properties of tripeptides revealed by a comparison of six different assays. Food Sci. Technol. Res. 2015, 21, 695–704. [Google Scholar] [CrossRef]
- Saidi, S.; Deratani, A.; Belleville, M.P.; Amar, R.B. Antioxidant properties of peptide fractions from tuna dark muscle protein by-product hydrolysate produced by membrane fractionation process. Food Res. Int. 2014, 65, 329–336. [Google Scholar] [CrossRef]
- Kovačević, M.; Čakić Semenčić, M.; Kodrin, I.; Roca, S.; Perica, J.; Mrvčić, J.; Stanzer, D.; Molčanov, K.; Milašinović, V.; Brkljačić, L. Biological Evaluation and Conformational Preferences of Ferrocene Dipeptides with Hydrophobic Amino Acids. Inorganics 2023, 11, 29. [Google Scholar] [CrossRef]
- Galka, M.M.; Kraatz, H.-B. Electron Transfer Studies on Self-Assembled Monolayers of Helical Ferrocenoyl-Oligoproline-Cystamine Bound to Gold. Chem. Phys. Chem. 2002, 3, 356–359. [Google Scholar] [CrossRef]
- Huang, H.; Mu, L.; He, J.; Cheng, J.-P. Ferrocenyl-Bearing Cyclopseudopeptides as Redox-Switchable Cation Receptors. J. Org. Chem. 2003, 68, 7605–7611. [Google Scholar] [CrossRef]
- Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, S.; Jayakumar, R. Role of N-t-Boc group in helix initiation in a novel tetrapeptide. J. Peptide Res. 2002, 59, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Pardi, A.; Wagner, G.; Wuthrich, K. Protein conformation and proton nuclear-magnetic-resonance chemical shifts. Eur. J. Biochem. 1983, 137, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Gellman, S.H.; Dado, G.P.; Liang, G.-B.; Adams, B.R. Conformation-directing effects of a single intramolecular amide-amide hydrogen bond: Variable-temperature NMR and IR studies on a homologous diamide series. J. Am. Chem. Soc. 1991, 113, 1164–1173. [Google Scholar] [CrossRef]
- Baxter, N.J.; Williamson, M.P. Temperature dependence of 1H chemical shifts in proteins. J. Biomol. NMR 1997, 9, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-Y.; Sun, X.-Y.; Tang, Q.; Song, J.-J.; Li, X.-Q.; Gong, B.; Liu, R.; Lu, Z.-L. An unnatural tripeptide structure containing intramolecular double H-bond mimics a turn-hairpin conformation. Org. Biomol. Chem. 2021, 19, 4359–4363. [Google Scholar] [CrossRef] [PubMed]
- Berger, N.; Wollny, L.J.B.; Sokkar, P.; Mittal, S.; Mieres-Perez, J.; Stoll, R.; Sander, W.; Sanchez-Garcia, E. Solvent-Enhanced Conformational Flexibility of Cyclic Tetrapeptides. ChemPhysChem 2019, 20, 1664–1670. [Google Scholar] [CrossRef] [PubMed]
- Stevens, E.S.; Sugawara, N.; Bonora, G.M.; Toniolo, C. Conformational analysis of linear peptides. 3. Temperature dependence of NH chemical shifts in chloroform. J. Am. Chem. Soc. 1980, 102, 7048–7050. [Google Scholar] [CrossRef]
- Sladojevich, F.; Guarna, A.; Trabocchi, A. Evaluation of stereochemically dense morpholine-based scaffolds as proline surrogates in β-turn peptides. Org. Biomol. Chem. 2010, 8, 916–924. [Google Scholar] [CrossRef]
- Curran, T.P.; Marques, K.A.; Silva, M.V. Bis(amino acid) derivatives of 1,4-diamino2-butyne that adopt a C2-symmetric turn conformation. Org. Biomol. Chem. 2005, 3, 4134–4138. [Google Scholar] [CrossRef]
- Kovač, V.; Čakić Semenčić, M.; Kodrin, I.; Roca, S.; Rapić, V. Ferrocene-dipeptide conjugates derived from aminoferrocene and 1-acetyl-1’-aminoferrocene: Synthesis and conformational studies. Tetrahedron 2013, 69, 10497–10506. [Google Scholar] [CrossRef]
- Pignataro, M.F.; Herrera, M.G.; Dodero, V.I. Evaluation of Peptide/Protein Self-Assembly and Aggregation by Spectroscopic Methods. Molecules 2020, 25, 4854. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.M.; Jasim, S.B.; Dyer, N.T.; Auvray, F.; Réfrégiers, M.; Hirst, J.D. Electronic Circular Dichroism Spectroscopy of Proteins. Chem 2019, 5, 2751–2774. [Google Scholar] [CrossRef]
- Moriuchi, T. Helical Chirality of Ferrocene Moieties in Cyclic Ferrocene-Peptide Conjugates. Chem. Eur. J. 2022, 2022, e202100902. [Google Scholar] [CrossRef]
- Ternansky, R.J.; Draheim, S.E.; Pike, A.J.; Counter, F.T.; Eudaly, J.A.; Kasher, J.S. Structure-activity relationship within a series of pyrazolidinone antibacterial agents. 2. Effect of side-chain modification on in vitro activity and pharmacokinetic parameters. J. Med. Chem. 1993, 36, 3224–3229. [Google Scholar] [CrossRef] [PubMed]
- Bugarinović, J.; Pešić, M.; Minić, A.; Katanić Stanković, J.; Ilic Komatina, D.; Pejovic, A.; Mihailovic, V.; Stevanović, D.; Nastasijevic, B.; Damljanović, I. Ferrocene-containing tetrahydropyrazolopyrazolones: Antioxidant and antimicrobial activity. J. Inorg. Biochem. 2018, 189, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Milaeva, E.R.; Filimonova, S.I.; Meleshonkova, N.N.; Dubova, L.G.; Shevtsova, E.F.; Bachurin, S.O.; Zefirov, N.S. Antioxidative Activity of Ferrocenes Bearing 2,6-Di-Tert-Butylphenol Moieties. Bioinorg. Chem. Appl. 2010, 2010, 165482. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Q. Enhancing Antioxidant Effect against Peroxyl Radical-induced Oxidation of DNA: Linking with Ferrocene Moiety! Chem. Rec. 2019, 19, 2385–2396. [Google Scholar] [CrossRef]
- Minić Jančić, A.; Katanić Stanković, J.S.; Srećković, N.; Mihailović, V.; Ilić Komatina, D.; Stevanović, D. Ferrocene-containing tetrahydropyrimidin-2(1H)-ones: Antioxidant and antimicrobial activity. J. Organomet. Chem. 2022, 967, 122335. [Google Scholar] [CrossRef]
- Tabrizi, L.; Nguyen, T.L.A.; Tran, H.D.T.; Pham, M.K.; Dao, D.Q. Antioxidant and Anticancer Properties of Functionalized Ferrocene with Hydroxycinnamate Derivatives-An Integrated Experimental and Theoretical Study. J. Chem. Inf. Model. 2020, 60, 6185–6203. [Google Scholar] [CrossRef]
- Santi, S.; Biondi, B.; Cardena, R.; Bisello, A.; Schiesari, R.; Tomelleri, S.; Crisma, M.; Formaggio, F. Helical versus Flat Bis-Ferrocenyl End-Capped Peptides: The Influence of the Molecular Skeleton on Redox Properties. Molecules 2022, 27, 6128. [Google Scholar] [CrossRef]
- Biondi, B.; Bisello, A.; Cardena, R.; Schiesari, R.; Facci, M.; Cerveson, L.; Rancan, M.; Formaggio, F.; Santi, S. Conformational Analysis and Through-Chain Charge Propagation in Ferrocenyl-Conjugated Homopeptides of 2,3-Diaminopropionic acid (Dap). Eur. J. Inorg. Chem. 2022, 2022, e202100. [Google Scholar] [CrossRef]
- Rodrigues Pontiha, A.D.; Alves Jorge, S.M.; Chiorcea-Paquim, A.M.; Diculescu, V.C.; Oliveira-Brett, A.M. In situ evaluation of anticancer drug methotrexate-DNA interaction using a DNA-electrochemical biosensor and AFM characterization. Phys. Chem. Chem. Phys. 2011, 13, 5227–5234. [Google Scholar] [CrossRef]
- Chiorcea-Paquim, A.M.; Rodrigues Pontiha, A.D.; Oliveira-Brett, A.M. Quadruplex-targeting anticancer drug BRACO-19 voltammetric and AFM characterization. Electrochim. Acta 2015, 174, 155–163. [Google Scholar] [CrossRef]
- Diculescu, V.C.; Oliveira-Brett, A.M. In situ electrochemical evaluation of dsDNA interaction with the anticancer drug danusertib nitrenium radical product using the DNA-electrochemical biosensor. Bioelectrochemistry 2016, 107, 50–57. [Google Scholar] [CrossRef]
- Novak Jovanović, I.; Komorsky-Lovrić, Š.; Lucić Vrdoljak, A.; Popović, A.R.; Neuberg, M. Voltammetric characterisation of anticancer drug irinotecan. Electroanalysis 2018, 30, 336–344. [Google Scholar] [CrossRef]
- Bond, A.M.; McLennan, E.A.; Stojanovic, R.S.; Thomas, F.G. Assessment of conditions under which the oxidation of ferrocene can be used as a standard voltammetric reference process in aqueous media. Anal. Chem. 1987, 59, 2853–2860. [Google Scholar] [CrossRef]
- Neghmouche, N.S.; Khelef, A.; Lanez, T. Electrochemistry characterization of ferrocene/ferricenium redox couple at glassy carbon electrode. J. Fundam. Appl. Sci. 2009, 1, 23–30. [Google Scholar] [CrossRef]
- Batterjee, S.M.; Marzouk, M.I.; Aazab, M.E.; El-Hashash, M.A. The Electrochemistry of Some Ferrocene Derivatives: Redox Potential and Substituent Effects. Appl. Organomet. Chem. 2003, 17, 291–297. [Google Scholar] [CrossRef]
- Rep, V.; Piškor, M.; Šimek, H.; Mišetić, P.; Grbčić, P.; Padovan, J.; Gabelica Marković, V.; Jadreško, D.; Pavelić, K.; Kraljević Pavelić, S.; et al. Purine and Purine Isostere Derivatives of Ferrocene: An Evaluation of ADME, Antitumor and Electrochemical Properties. Molecules 2020, 25, 1570. [Google Scholar] [CrossRef]
- Adenier, A.; Chehimi, M.M.; Gallardo, I.; Pinson, J.; Vila, N. Electrochemical Oxidation of Aliphatic Amines and Their Attachment to Carbon and Metal Surfaces. Langmuir 2004, 20, 8243–8253. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
Compound | νNH (Free) | νNH (Associated) | νCO (Ester) |
---|---|---|---|
MeO−Val−CO−Fn *−CO−Val−OMe (1) | 3430 | 3389 | 1729 |
MeO−Leu−CO−Fn−CO−Leu−OMe (2) | 3429 | 3372 | 1729 |
MeO−Phe−CO−Fn−CO−Phe−OMe (3) | 3434 | 3378 | 1730 |
MeO−Val−CO−Fn−NH−Val−Boc (4) | 3433 | 3369, 3326 | 1720 |
MeO−Leu−CO−Fn−NH−Leu−Boc (5) | 3434 | 3372, 3322 | 1724 |
MeO−Phe−CO−Fn−NH−Phe−Boc (6) | 3430 | 3375, 3326 | 1725 |
Ac−Val−NH−Fn−NH−Val−Boc (7) | 3422 | 3324 | 1710 |
Ac−Leu−NH−Fn−NH−Leu−Boc (8) | 3425 | 3320 | 1708 |
Ac−Phe−NH−Fn−NH−Phe−Boc (9) | 3416 | 3324 | 1709 |
Compound | δ (ppm) | ||||
---|---|---|---|---|---|
(NHCO) | (NHFn a) | (NHFn b) | (NHAc) | (NHBoc) | |
MeO−Val−CO−Fn−CO−Val−OMe (1) | 7.49 | ||||
MeO−Leu−CO−Fn−CO−Leu−OMe (2) | 7.76 | ||||
MeO−Phe−CO−Fn−CO−Phe−OMe (3) | 7.72 | ||||
MeO−Val−CO−Fn−NH−Val−Boc (4) | 7.5 | 9.01 | 5.11 | ||
MeO−Leu−CO−Fn−NH−Leu−Boc (5) | 7.62 | 9.33 | 5.01 | ||
MeO−Phe−CO−Fn−NH−Phe−Boc (6) | 7.5 | 8.98 | 5.20 | ||
Ac−Val−NH−Fn−NH−Val−Boc (7) | 9.21 | 9.04 | 6.75 | 5.21 | |
Ac−Leu−NH−Fn−NH−Leu−Boc (8) | 9.38 | 9.16 | 7.3 | 5.16 | |
Ac−Phe−NH−Fn−NH−Phe−Boc (9) | 9.16 | 9.1 | 6.9 | 5.34 |
Compound | Δδ/ΔT (ppb K−1) | ||||
---|---|---|---|---|---|
(NHCO) | (NHFn a) | (NHFn b) | (NHAc) | (NHBoc) | |
MeO−Val−CO−Fn−CO−Val−OMe (1) | −7 | ||||
MeO−Leu−CO−Fn−CO−Leu−OMe (2) | −4.22 | ||||
MeO−Phe−CO−Fn−CO−Phe−OMe (3) | −6.11 | ||||
MeO−Val−CO−Fn−NH−Val−Boc (4) | −7.14 | −8 | −1.28 | ||
MeO−Leu−CO−Fn−NH−Leu−Boc (5) | −3.85 | −5.28 | −1.42 | ||
MeO−Phe−CO−Fn−NH−Phe−Boc (6) | −6.28 | −9.28 | −1.28 | ||
Ac−Val−NH−Fn−NH−Val−Boc (7) | −7.28 | −6.14 | −11.57 | −1.57 | |
Ac−Leu−NH−Fn−NH−Leu−Boc (8) | −6.57 | −6.57 | −17.71 | −1.57 | |
Ac−Phe−NH−Fn−NH−Phe−Boc (9) | −8.71 | −9.14 | −15.14 | −2.42 |
Compound | [θ]/deg cm2 dmol−1 | |
---|---|---|
CH2Cl2 | CH2Cl2+DMSO | |
MeO−Val−CO−Fn−CO−Val−OMe (1) | 4449 | 3779 |
MeO−Leu−CO−Fn−CO−Leu−OMe (2) | 5595 | 5032 |
MeO−Phe−CO−Fn−CO−Phe−OMe (3) | 2683 | 2577 |
MeO−Val−CO−Fn−NH−Val−Boc (4) | 9923 | 5364 |
MeO−Leu−CO−Fn−NH−Leu−Boc (5) | 10515 | 8530 |
MeO−Phe−CO−Fn−NH−Phe−Boc (6) | 6663 | 3284 |
Ac−Val−NH−Fn−NH−Val−Boc (7) | 25,958 | 21,125 |
Ac−Leu−NH−Fn−NH−Leu−Boc (8) | 21,828 | 18,709 |
Ac−Phe−NH−Fn−NH−Phe−Boc (9) | 15,001 | 10,994 |
Compound | mM Trolx | |
---|---|---|
DPPH | ABTS | |
MeO−Val−CO−Fn−CO−Val−OMe (1) | 0.047 ± 0.012 | 0.248 ± 0.093 |
MeO−Leu−CO−Fn−CO−Leu−OMe (2) | 0.034 ± 0.019 | 0.137 ± 0.017 |
MeO−Phe−CO−Fn−CO−Phe−OMe (3) | 0.050 ± 0.010 | 0.114 ± 0.017 |
MeO−Val−CO−Fn−NH−Val−Boc (4) | 0.009 ± 0.001 | 1.651 ± 0.090 |
MeO−Leu−CO−Fn−NH−Leu−Boc (5) | 0.008 ± 0.008 | 0.813 ± 0.036 |
MeO−Phe−CO−Fn−NH−Phe−Boc (6) | 0.007 ± 0.000 | 1.147 ± 0.067 |
Ac−Val−NH−Fn−NH−Val−Boc (7) | 0.026 ± 0.001 | 0.492 ± 0.024 |
Ac−Leu−NH−Fn−NH−Leu−Boc (8) | 0.043 ± 0.021 | 0.878 ± 0.000 |
Ac−Phe−NH−Fn−NH−Phe−Boc (9) | 0.028 ± 0.005 | 1.4617 ± 0.064 |
Compound | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Ep, A1/V | 0.45 | 0.47 | 0.47 | 0.20 | 0.20 | 0.21 | −0.07 | −0.04 | −0.02 |
Ep, C1/V | 0.39 | 0.40 | 0.40 | 0.14 | 0.14 | 0.15 | −0.13 | −0.10 | −0.08 |
Ep, A2/V | - | - | - | - | - | - | 0.93 | 0.95 | 0.86 |
Ep, A3/V | - | - | - | - | - | - | 1.13 | 1.16 | 1.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovačević, M.; Roca, S.; Jadreško, D.; Mrvčić, J.; Hanousek Čiča, K.; Čakić Semenčić, M.; Barišić, L. Conformational, Electrochemical, and Antioxidative Properties of Conjugates of Different Ferrocene Turn-Inducing Scaffolds with Hydrophobic Amino Acids. Inorganics 2024, 12, 195. https://doi.org/10.3390/inorganics12070195
Kovačević M, Roca S, Jadreško D, Mrvčić J, Hanousek Čiča K, Čakić Semenčić M, Barišić L. Conformational, Electrochemical, and Antioxidative Properties of Conjugates of Different Ferrocene Turn-Inducing Scaffolds with Hydrophobic Amino Acids. Inorganics. 2024; 12(7):195. https://doi.org/10.3390/inorganics12070195
Chicago/Turabian StyleKovačević, Monika, Sunčica Roca, Dijana Jadreško, Jasna Mrvčić, Karla Hanousek Čiča, Mojca Čakić Semenčić, and Lidija Barišić. 2024. "Conformational, Electrochemical, and Antioxidative Properties of Conjugates of Different Ferrocene Turn-Inducing Scaffolds with Hydrophobic Amino Acids" Inorganics 12, no. 7: 195. https://doi.org/10.3390/inorganics12070195
APA StyleKovačević, M., Roca, S., Jadreško, D., Mrvčić, J., Hanousek Čiča, K., Čakić Semenčić, M., & Barišić, L. (2024). Conformational, Electrochemical, and Antioxidative Properties of Conjugates of Different Ferrocene Turn-Inducing Scaffolds with Hydrophobic Amino Acids. Inorganics, 12(7), 195. https://doi.org/10.3390/inorganics12070195