The Homopolyatomic Sulfur Cation [S20]2+
Abstract
:1. Introduction
2. Results and Discussion
2.1. Generation of Na2[S20]2[B12Cl12]3 Single Crystals
2.2. Crystal Structure of Na2[S20]2[B12Cl12]3
2.3. Structure and Bonding in [S20]2+
2.3.1. The Preference for Seven-Membered Cycles in [S20]2+
2.3.2. Bonding and Structural Properties in [S7R]+ Moieties
2.3.3. The Preference for Conformation A over Conformation B
3. Experimental Section
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beck, J. Rings, cages and chains—The rich structural chemistry of the polycations of the chalcogens. Coord. Chem. Rev. 1997, 163, 55–70. [Google Scholar] [CrossRef]
- Brownridge, S.; Krossing, I.; Passmore, J.; Jenkins, H.D.B.; Roobottom, H.K. Recent advances in the understanding of the syntheses, structures, bonding and energetics of the homopolyatomic cations of Groups 16 and 17. Coord. Chem. Rev. 2000, 197, 397–481. [Google Scholar] [CrossRef]
- Ahmed, E.; Ruck, M. Homo- and heteroatomic polycations of groups 15 and 16. Recent advances in synthesis and isolation using room temperature ionic liquids. Coord. Chem. Rev. 2011, 255, 2892–2903. [Google Scholar] [CrossRef]
- Engesser, T.A.; Lichtenthaler, M.R.; Schleep, M.; Krossing, I. Reactive p-block cations stabilized by weakly coordinating anions. Chem. Soc. Rev. 2016, 45, 789–899. [Google Scholar] [CrossRef] [PubMed]
- Krossing, I. Homoatomic Cages and Clusters of the Heavier Group 15 Elements: Neutral Species and Cations. In Molecular Clusters of the Main Group Elements; Wiley-VCH: Weinheim/Bergstraße, Germany, 2004; pp. 209–229. [Google Scholar]
- Krossing, I. Structure and Bonding of the Neutral Chalcogens and their Polyatomic Cations. In Handbook of Chalcogen Chemistry; Royal Society of Chemistry: London, UK, 2007; pp. 381–416. [Google Scholar]
- Laitinen, R.S.; Oilunkaniemi, R.; McGeachie, L.; Kelly, P.F.; King, R.S.P. Polychalcogen molecules, ligands, and ions Part 1: Homo- and heteronuclear chalcogen rings. In Comprehensive Inorganic Chemistry III, 3rd ed.; Elsevier: Oxford, UK, 2023; pp. 934–969. [Google Scholar]
- Krossing, I. Homoatomic Sulfur Cations. In Elemental Sulfur and Sulfur-Rich Compounds I; Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 2003; Volume 230, pp. 79–92. [Google Scholar]
- Bucholz, C.F. Versuche über die Auflösung des Indigs in der Schwefelsäure, als Beytrag zur Ausmittelung des Vorgangs bey derselben. Neues Allg. J. Der Chem. 1804, 3, 3–29. [Google Scholar]
- Krossing, I.; Passmore, J. Evidence for the Blue 10π S62+ Dication in Solutions of S8(AsF6)2: A Computational Study Including Solvation Energies. Inorg. Chem. 2004, 43, 1000–1011. [Google Scholar] [CrossRef]
- Cameron, T.S.; Deeth, R.J.; Dionne, I.; Du, H.; Jenkins, H.D.B.; Krossing, I.; Passmore, J.; Roobottom, H.K. Bonding, Structure, and Energetics of Gaseous E82+ and of Solid E8(AsF6)2 (E = S, Se). Inorg. Chem. 2000, 39, 5614–5631. [Google Scholar] [CrossRef]
- Passmore, J.; Sutherland, G.; Whidden, T.K.; White, P.S.; Wong, C.-M. The preparation of S7BrMF6 (M = As, Sb), and the preparation and crystal structure of (S7Br)4S4(AsF6)6 containing the bromo-cycloheptasulphur (1+) cation. Can. J. Chem. 1985, 63, 1209–1214. [Google Scholar] [CrossRef]
- Passmore, J.; Sutherland, G.; White, P.S. Preparation and X-ray Crystal Structure of m-Iodo-bis(4-iodo-cyclo-heptasulfur) Tris(hexafluoroantimonate)-Bis(arsenic trifluoride), [(S7I)2I](SbF6)3·2AsF3, and (S7I)4S4(AsF6)6 Containing the Iodo-cyclo-heptasulfur(1+) and the Tetrasulfur(2+) Cations. Inorg. Chem. 1982, 21, 2717–2723. [Google Scholar] [CrossRef]
- Faggiani, R.; Gillespie, R.J.; Sawyer, J.F.; Vekris, J.E. Structures of nonadecasulfur(2+) bis[hexafluoroantimonate(1-)] S19(SbF6)2, octasulfur(2+) di-μ-fluoro-dodecafluorotriantimonate(1-) hexafluoroantimonate(1-) S8(Sb3F14)(SbF6), and tetrasulfur(2+) di-μ-fluoro-difluorodiantimony(2+) μ-fluoro-tetrafluorodiantimony(1+) pentakis[hexafluoroantimonate(1-)] S4(Sb2F4)(Sb2F5)(SbF6)5. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1989, 45, 1847–1853. [Google Scholar]
- Gillespie, R.J.; Passmore, J.; Ummat, P.K.; Vaidya, O.C. Polyatomic cations of sulfur. I. Preparation and properties of S162+, S82+, and S42+. Inorg. Chem. 1971, 10, 1327–1332. [Google Scholar] [CrossRef]
- Davies, C.G.; Gillespie, R.J.; Park, J.J.; Passmore, J. Polyatomic cations of sulfur. II. Crystal structure of octasulfur bis(hexafluoroarsenate), S8(AsF6)2. Inorg. Chem. 1971, 10, 2781–2784. [Google Scholar] [CrossRef]
- Burns, R.C.; Gillespie, R.J.; Sawyer, J.F. Preparation and crystal structure of nonadecasulfur bis(hexafluoroarsenate) and an ESR and absorption spectral study of solutions containing the nonadecasulfur(2+) cation and related systems. Inorg. Chem. 1980, 19, 1423–1432. [Google Scholar] [CrossRef]
- Derendorf, J.; Jenne, C.; Keßler, M. The First Step of the Oxidation of Elemental Sulfur: Crystal Structure of the Homopolyatomic Sulfur Radical Cation [S8].+. Angew. Chem. Int. Ed. 2017, 56, 8281–8284. [Google Scholar] [CrossRef] [PubMed]
- Fehrmann, R.; Bjerrum, N.J.; Pedersen, E. Lower oxidation states of sulfur. 2. Spectrophotometric, potentiometric and ESR study of the sulfur-chlorine system in molten sodium chloride-aluminum chloride (37:63 mol %) at 150 °C. Inorg. Chem. 1982, 21, 1497–1504. [Google Scholar] [CrossRef]
- Symons, M.C.R.; Wilkinson, J.G. Nature of the Paramagnetic Cation in Solutions of Sulphur in Oleum. Nat. Phys. Sci. 1972, 236, 126–127. [Google Scholar] [CrossRef]
- Low, H.S.; Beaudet, R.A. The identification of S5+ as a paramagnetic species in sulfur-oleum solutions by electron spin resonance. J. Am. Chem. Soc. 1976, 98, 3849–3852. [Google Scholar] [CrossRef]
- Passmore, J.; Sutherland, G.; Taylor, P.; Whidden, T.K.; White, P.S. Preparations and X-ray crystal structures of iodo-cyclo-heptasulfur hexafluoroantimonate(V) and hexafluoroarsenate(V), S7ISbF6 and S7IAsF6. Inorg. Chem. 1981, 20, 3839–3845. [Google Scholar] [CrossRef]
- Knapp, C. Weakly Coordinating Anions: Halogenated Borates and Dodecaborates. In Comprehensive Inorganic Chemistry II; Reedijk, J., Poeppelmeier, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 1, pp. 651–679. [Google Scholar]
- Boeré, R.T.; Kacprzak, S.; Keßler, M.; Knapp, C.; Riebau, R.; Riedel, S.; Roemmele, T.L.; Rühle, M.; Scherer, H.; Weber, S. Oxidation of closo-[B12Cl12]2− to the Radical Anion [B12Cl12].− and to Neutral B12Cl12. Angew. Chem. Int. Ed. 2011, 50, 549–552. [Google Scholar] [CrossRef]
- Kessler, M.; Knapp, C.; Zogaj, A. Cationic Dialkyl Metal Compounds of Group 13 Elements (E = Al, Ga, In) Stabilized by the Weakly Coordinating Dianion [B12Cl12]2−. Organometallics 2011, 30, 3786–3792. [Google Scholar] [CrossRef]
- Bolli, C.; Derendorf, J.; Keßler, M.; Knapp, C.; Scherer, H.; Schulz, C.; Warneke, J. Synthesis, Crystal Structure, and Reactivity of the Strong Methylating Agent Me2B12Cl12. Angew. Chem. Int. Ed. 2010, 49, 3536–3538. [Google Scholar] [CrossRef] [PubMed]
- Derendorf, J.; Keßler, M.; Knapp, C.; Rühle, M.; Schulz, C. Alkali metal-sulfur dioxide complexes stabilized by halogenated closo-dodecaborate anions. Dalton Trans. 2010, 39, 8671–8678. [Google Scholar] [CrossRef] [PubMed]
- Kessler, M.; Knapp, C.; Sagawe, V.; Scherer, H.; Uzun, R. Synthesis, Characterization, and Crystal Structures of Silylium Compounds of the Weakly Coordinating Dianion [B12Cl12]2−. Inorg. Chem. 2010, 49, 5223–5230. [Google Scholar] [CrossRef]
- Knapp, C.; Schulz, C. How to overcome Coulomb explosions in labile dications by using the [B12Cl12]2− dianion. Chem. Commun. 2009, 4991–4993. [Google Scholar] [CrossRef] [PubMed]
- Geis, V.; Guttsche, K.; Knapp, C.; Scherer, H.; Uzun, R. Synthesis and characterization of synthetically useful salts of the weakly-coordinating dianion [B12Cl12]2−. Dalton Trans. 2009, 2687–2694. [Google Scholar] [CrossRef] [PubMed]
- Boeré, R.T.; Derendorf, J.; Jenne, C.; Kacprzak, S.; Keßler, M.; Riebau, R.; Riedel, S.; Roemmele, T.L.; Rühle, M.; Scherer, H.; et al. On the Oxidation of the Three-Dimensional Aromatics [B12X12]2− (X = F, Cl, Br, I). Chem. Eur. J. 2014, 20, 4447–4459. [Google Scholar] [CrossRef] [PubMed]
- Cameron, T.S.; Decken, A.; Fang, M.; Passmore, J.; Wood, D.J.; Parsons, S. Oxidation of methyl groups in the reaction of sulfur homopolyatomic cations with acetonitrile: Formation and crystal structure of the novel trithietanylium ring. Chem. Commun. 1999, 1801–1802. [Google Scholar] [CrossRef]
- Shuvaev, K.V.; Passmore, J. RCNSSS+: A novel class of stable sulfur rich radical cations. Coord. Chem. Rev. 2013, 257, 1067–1091. [Google Scholar] [CrossRef]
- Breitinger, D.K.; Bogner, A.; Lauter, M.; Loos, R. Supercritical SO2 for preparation of sulfur dioxide complexes and for recovery of precious metals from used catalysts. In Supercritical Fluids as Solvents and Reaction Media; Elsevier: Amsterdam, The Netherlands, 2004; pp. 523–530. [Google Scholar]
- Cabrera, C.R.; Garcia, E.; Bard, A.J. Electrochemistry in near-critical and supercritical fluids. J. Electroanal. Chem. Interfacial Electrochem. 1989, 260, 457–460. [Google Scholar] [CrossRef]
- Beck, J.; Fischer, A. Se17[NbCl6]2 und Se17[TaBr6]2—Zwei neue Vertreter des Strukturtyps Se17[MX6]2. Z. Anorg. Allg. Chem. 1997, 623, 780–784. [Google Scholar] [CrossRef]
- Beck, J.; Wetterau, J. Chalcogen Polycations by Oxidation of Elemental Chalcogens with Transition Metal Halides: Synthesis and Crystal Structure of [Se17][WCl6]2. Inorg. Chem. 1995, 34, 6202–6204. [Google Scholar] [CrossRef]
- Steudel, R. Homocyclic sulfur molecules. In Inorganic Ring Systems; Springer: Berlin/Heidelberg, Germany, 1982; Volume 102, pp. 149–176. [Google Scholar]
- Batsanov, S.S. Van der Waals Radii of Elements. Inorg. Mater. 2001, 37, 871–885. [Google Scholar] [CrossRef]
- Steudel, R.; Eckert, B. Solid Sulfur Allotropes. In Elemental Sulfur and Sulfur-Rich Compounds I; Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 2003; Volume 230, pp. 1–79. [Google Scholar]
- Steudel, R.; Reinhardt, R.; Schuster, F. Crystal and Molecular Structure of cyclo-Heptasulfur (δ-S7). Angew. Chem. Int. Ed. Engl. 1977, 16, 715. [Google Scholar] [CrossRef]
- Steudel, R.; Reinhardt, R.; Sandow, T. Bond Interaction in Sulfur Rings: Crystal and Molecular Structure of cyclo-Heptasulfur Oxide, S7O. Angew. Chem. Int. Ed. Engl. 1977, 16, 716. [Google Scholar] [CrossRef]
- Minkwitz, R.; Nowicki, J. Preparation of Pseudohalidoheptasulfur(+1) Hexafluorometallates S7X+MF6− (X = CN, OCN, SeCN; M = As, Sb). Z. Anorg. Allg. Chem. 1992, 607, 96–100. [Google Scholar] [CrossRef]
- Minkwitz, R.; Nowicki, J. Chemistry of sulfur halides. 36. Preparation of S7X+MF6− (X = F, Cl; M = As, Sb) and vibrational spectra of the series S7X+ (X = F, Cl, Br, I). Inorg. Chem. 1990, 29, 2361–2364. [Google Scholar] [CrossRef]
- Wong, M.W.; Chwee, T.S.; Steudel, R. Electrophilic Attack on Sulfur−Sulfur Bonds. 1. Protonation of Various Isomers of the Homoatomic Sulfur Molecules Sn(n = 2−8). J. Phys. Chem. A 2004, 108, 7091–7098. [Google Scholar] [CrossRef]
- Wong, M.W.; Steudel, Y.; Steudel, R. Isomers of cyclo-Heptasulfur and Their Coordination to Li+: an Ab Initio Molecular Orbital Study. Inorg. Chem. 2005, 44, 8908–8915. [Google Scholar] [CrossRef]
- Jenne, C.; Nierstenhöfer, M.C. Homopolyatomic Chalcogen Radical Cations of Selenium and Tellurium. Eur. J. Inorg. Chem. 2020, 2020, 200–207. [Google Scholar] [CrossRef]
- Brownridge, S.; Crawford, M.J.; Du, H.B.; Harcourt, R.D.; Knapp, C.; Laitinen, R.S.; Passmore, J.; Rautiainen, J.M.; Suontamo, R.J.; Valkonen, J. Accounting for the differences in the structures and relative energies of the highly homoatomic npπ-npπ (n ≥ 3)-bonded S2I42+, the Se-I π-bonded Se2I42+, and their higher-energy isomers by AIM, MO, NBO, and VB methodologies. Inorg. Chem. 2007, 46, 681–699. [Google Scholar] [CrossRef]
- Brownridge, S.; Cameron, T.S.; Du, H.B.; Knapp, C.; Köppe, R.; Passmore, J.; Rautiainen, J.M.; Schnöckel, H. The highest bond order between heavier main-group elements in an isolated compound? Energetics and vibrational spectroscopy of S2I4(MF6)2 (M = As, Sb). Inorg. Chem. 2005, 44, 1660–1671. [Google Scholar] [CrossRef] [PubMed]
- Dunitz, J. The structure of sodium dithionite and the nature of the dithionite ion. Acta Crystallogr. 1956, 9, 579–586. [Google Scholar] [CrossRef]
- Kajiwara, Y.; Miyata, S.; Nakai, H. Unusual motion of the n-methoxypropyl moiety observed in the photochromic crystals of an organorhodium dithionite complex with n-methoxypropyltetramethylcyclopentadienyl ligands. Dalton Trans. 2022, 51, 48–52. [Google Scholar] [CrossRef]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Alabugin, I.V.; Kuhn, L.; Krivoshchapov, N.V.; Mehaffy, P.; Medvedev, M.G. Anomeric effect, hyperconjugation and electrostatics: Lessons from complexity in a classic stereoelectronic phenomenon. Chem. Soc. Rev. 2021, 50, 10212–10252. [Google Scholar] [CrossRef]
- von Ragué Schleyer, P.; Kos, A.J. The importance of negative (anionic) hyperconjugation. Tetrahedron 1983, 39, 1141–1150. [Google Scholar] [CrossRef]
- Faggiani, R.; Gillespie, R.J.; Kolis, J.W.; Malhotra, K.C. Preparation and X-ray structure of (Se9Cl)(SbCl6): A seven-membered selenium ring. J. Chem. Soc. Chem. Commun. 1987, 255, 591–592. [Google Scholar] [CrossRef]
- Steudel, R.; Papavassiliou, M.; Jensen, D.; Seppelt, K. Spectroscopic Evidence for Pseudorotation of Seven-Membered Chalcogen Rings in Solution. Z. Naturforsch. B Chem. Sci. 1988, 43, 245–248. [Google Scholar] [CrossRef]
- Steudel, R. Properties of Sulfur-Sulfur Bonds. Angew. Chem. Int. Ed. Engl. 1975, 14, 655–664. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Cioslowski, J.; Szarecka, A.; Moncrieff, D. Conformations and thermodynamic properties of sulphur homocycles. II. The fluxional S8+ radical cation. Mol. Phys. 2002, 100, 1559–1566. [Google Scholar] [CrossRef]
- Cioslowski, J.; Szarecka, A.; Moncrieff, D. Conformations and Thermodynamic Properties of Sulfur Homocycles. 1. The S5, S6, S7, and S8 Molecules. J. Phys. Chem. A 2001, 105, 501–505. [Google Scholar] [CrossRef]
- Brandenburg, K. Diamond v.3.2f; Crystal Impact GbR: Bonn, Germany, 2001. [Google Scholar]
- Woon, D.E.; Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371. [Google Scholar] [CrossRef]
- Kendall, R.A.; Dunning, T.H., Jr.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef]
- Halkier, A.; Helgaker, T.; Jørgensen, P.; Klopper, W.; Olsen, J. Basis-set convergence of the energy in molecular Hartree–Fock calculations. Chem. Phys. Lett. 1999, 302, 437–446. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.L.; et al. Gaussian 16 Rev. C.02; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, 6.0.16; Semichem. Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
- Chemcraft—Graphical Software for Visualization of Quantum Chemistry Computations. Available online: https://www.chemcraftprog.com (accessed on 9 January 2025).
- Glendening, E.D.; Reed, A.E.; Carpenter, J.E.; Weinhold, F. NBO Version 3.1; Gaussian Inc.: Pittsburgh, PA, USA, 2001. [Google Scholar]
- Cameron, T.S.; Dionne, I.; Jenkins, H.D.B.; Parsons, S.; Passmore, J.; Roobottom, H.K. Preparation, X-ray Crystal Structure Determination, Lattice Potential Energy, and Energetics of Formation of the Salt S4(AsF6)2·AsF3 Containing the Lattice-Stabilized Tetrasulfur [2+] Cation. Implications for the Understanding of the Stability of M42+ and M2+ (M = S, Se, and Te) Crystalline Salts. Inorg. Chem. 2000, 39, 2042–2052. [Google Scholar]
- Tiritiris, I.; Schleid, T. Die Kristallstrukturen der Dicaesium-Dodekahalogeno-closo-Dodekaborate Cs2[B12X12] (X = Cl, Br, I) und ihrer Hydrate. Z. Anorg. Allg. Chem. 2004, 630, 1555–1563. [Google Scholar] [CrossRef]
Bond | Bond Length [pm] | Bond | Bond Length [pm] |
---|---|---|---|
S1–S2 | 209.9(2) | S10–S11 | 204.34(10) |
S2–S3 | 199.7(2) | S11–S12 | 208.7(2) |
S3–S4 | 212.7(2) | S12–S13 | 202.9(2) |
S4–S5 | 196.7(2) | S13–S14 | 210.0(2) |
S5–S6 | 217.6(2) | S14–S15 | 219.9(3) |
S6–S7 | 191.4(2) | S15–S16 | 201.0(3) |
S1–S7 | 239.0(2) | S16–S17 | 207.3(2) |
S1–S8 | 203.8(2) | S17–S18 | 202.8(3) |
S8–S9 | 204.9(2) | S18–S19 | 207.3(3) |
S9–S10 | 205.3(2) | S19–S20 | 202.7(2) |
Compound | S1–S2 | S2–S3 | S3–S4 | S4–S5 | S5–S6 | S6–S7 | S7–S1 |
---|---|---|---|---|---|---|---|
[S7I][SbF6] [22] a | 210.4(4) 207.4 | 200.4(4) 200.0 | 211.4(4) 210.7 | 196.3(4) 197.2 | 218.4(4) 216.9 | 190.6(4) 190.7 | 238.9(4) 235.2 |
S7O [42] a | 216.3(2) 214.8 | 201.4(2) 200.7 | 212.1(2) 209.9 | 198.7(2) 197.6 | 219.6(2) 217.4 | 195.7(2) 194.4 | 228.3(2) 227.4 |
[(S7I)2I][SbF6]3 [13] a | 211(1) 207.4 | 200(1) 200.0 | 208(1) 210.7 | 199(2) 197.2 | 221(1) 216.9 | 190(1) 190.7 | 231(1) 235.2 |
[(S7I)4S4][AsF6]6 [13] a | 208(1) 207.4 | 199(2) 200.0 | 211(2) 210.7 | 200(2) 197.2 | 219(2) 216.9 | 189(2) 190.7 | 234(1) 235.2 |
[S7Br][SbF6] [12] a | 211(2) 206.7 | 200(2) 200.1 | 211(2) 210.7 | 196(2) 197.2 | 218(2) 216.7 | 193(2) 190.5 | 234(2) 235.7 |
[S7Cl][SbF6] | N/A 206.7 | N/A 200.3 | N/A 210.7 | N/A 197.3 | N/A 216.6 | N/A 190.7 | N/A 235.4 |
[S7F][SbF6] | N/A 201.8 | N/A 202.8 | N/A 209.9 | N/A 197.4 | N/A 216.3 | N/A 192.0 | N/A 228.7 |
[S7SH][SbF6] | N/A 208.5 | N/A 200.0 | N/A 211.2 | N/A 197.1 | N/A 217.2 | N/A 190.8 | N/A 235.6 |
[S7SSH][SbF6] | N/A 207.2 | N/A 201.2 | N/A 210.4 | N/A 197.3 | N/A 216.8 | N/A 191.9 | N/A 231.1 |
Na2[S20]2[B12Cl12]3 | 209.9(2) 207.8 | 199.7(2) 200.8 | 212.7(2) 210.7 | 196.7(2) 197.3 | 217.6(2) 216.5 | 191.4(2) 191.4 | 239.0(2) 234.4 |
Avg. Oxidation State of Sulfur | +1/2 | +1/3 | +1/4 | +1/5 | +1/8 | +1/9.5 | +1/10 |
---|---|---|---|---|---|---|---|
Monocation | [S5]+ | [S8]+ | |||||
Dication | [S4]2+ | [S6]2+ | [S8]2+ | [S19]2+ | [S20]2+ | ||
Reference | [11,12,13,14] | [10] | [11,14,15,16] | [21] | [18] | [14,17] | b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derendorf, J.; Heiderich, L.; Jenne, C.; Nierstenhöfer, M.C. The Homopolyatomic Sulfur Cation [S20]2+. Inorganics 2025, 13, 23. https://doi.org/10.3390/inorganics13010023
Derendorf J, Heiderich L, Jenne C, Nierstenhöfer MC. The Homopolyatomic Sulfur Cation [S20]2+. Inorganics. 2025; 13(1):23. https://doi.org/10.3390/inorganics13010023
Chicago/Turabian StyleDerendorf, Janis, Lara Heiderich, Carsten Jenne, and Marc C. Nierstenhöfer. 2025. "The Homopolyatomic Sulfur Cation [S20]2+" Inorganics 13, no. 1: 23. https://doi.org/10.3390/inorganics13010023
APA StyleDerendorf, J., Heiderich, L., Jenne, C., & Nierstenhöfer, M. C. (2025). The Homopolyatomic Sulfur Cation [S20]2+. Inorganics, 13(1), 23. https://doi.org/10.3390/inorganics13010023