Electrochemical Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxaldehyde Using Mn(III)–Schiff Base Catalysts
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Manganese Complexes
2.2. Electrochemical and Catalytic Properties
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Synthesis of the Complexes
4.3. Peroxidase-Like Function of the Complexes
4.4. Electrochemical Oxidations of 5-Hydroxymethylfurfural
4.5. Crystallographic Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sousa, A.F.; Silvestre, A.J.D. Plastics from renewable sources as green and sustainable alternatives. Curr. Op. Green. Sustain. Chem. 2022, 33, 100557. [Google Scholar] [CrossRef]
- Poulopoulou, N.; Nikolaidis, G.N.; Efstathiadou, V.L.; Kapnisti, M.; Papageorgiou, G.Z. Blending as a process for controlling the properties of poly (ethylene 2,5-furandicarboxylate) (PEF): Fully biobased PEF/PBF blends. Polymer 2023, 266, 125615. [Google Scholar] [CrossRef]
- Xanthopoulou, E.; Zamboulis, A.; Terzopoulou, Z.; Bikiaris, D.N.; Kourtidou, D.; Tarani, E.; Chrissafis, K.; Papageorgiou, G.Z. Towards novel lignin-based aromatic polyesters: In-depth study of the thermal degradation and crystallization of poly (propylene vanillate). Thermochim. Acta 2022, 709, 179145. [Google Scholar] [CrossRef]
- Kammoun, M.; Margellou, A.; Toteva, V.B.; Aladjadjiyan, A.; Sousa, A.F.; Luis, S.V.; Garcia-Verdugo, E.; Triantafyllidis, K.S.; Richel, A. The key role of pretreatment for the one-step and multi-step conversions of European lignocellulosic materials into furan compounds. RSC Adv. 2023, 13, 21587. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Montes, M.L.; Soccio, M.; Siracusa, V.; Gazzano, M.; Lotti, N.; Cyras, V.P.; Manfredi, L.B. Chitin Nanocomposite Based on Plasticized Poly (lactic acid)/Poly (3-hydroxybutyrate) (PLA/PHB) Blends as Fully Biodegradable Packaging Materials. Polymers 2022, 14, 3177. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Tsetsou, I.; Ioannidis, R.O.; Nikolaidis, G.N.; Exarhopoulos, S.; Kasmi, N.; Bikiaris, D.N.; Achilias, D.S.; Papageorgiou, G.Z. A New Era in Engineering Plastics: Compatibility and Perspectives of Sustainable Alipharomatic Poly (ethylene terephthalate)/Poly (ethylene 2,5-furandicarboxylate) Blends. Polymers 2021, 13, 1070. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.F.; Patrício, R.; Terzopoulou, Z.; Bikiaris, D.N.; Stern, T.; Wenger, J.; Loos, K.; Lotti, N.; Siracusa, V.; Szymczyk, A.; et al. Recommendations for replacing PET on packaging, fiber, and film materials with biobased counterparts. Green Chem. 2021, 23, 8795. [Google Scholar] [CrossRef]
- Wu, X.; Galkin, M.V.; Stern, T.; Sun, Z.; Barta, K. Fully lignocellulose-based PET analogues for the circular economy. Nat. Commun. 2022, 13, 3376. [Google Scholar] [CrossRef]
- Kayishaer, A.; Annatelli, M.; Hansom, C.M.; Mouterde, L.M.M.; Peru, A.A.M.; Aricò, F.; Allais, F.; Fadlallah, S. Green Synthesis of UV-Reactive Polycarbonates from Levoglucosenone and 5-Hydroxymethyl Furfural. Macromol. Rapid Commun. 2024, 45, 2300483. [Google Scholar] [CrossRef]
- Trapasso, G.; Annatelli, M.; Dalla Torre, D.; Aricò, F. Synthesis of 2,5-furandicarboxylic acid dimethyl ester from galactaric acid via dimethyl carbonate chemistry. Green Chem. 2022, 24, 2766. [Google Scholar] [CrossRef]
- Guidotti, G.; Soccio, M.; Gazzano, M.; Siracusa, V.; Lotti, N. New Random Aromatic/Aliphatic Copolymers of 2,5-Furandicarboxylic and Camphoric Acids with Tunable Mechanical Properties and Exceptional Gas Barrier Capability for Sustainable Mono-Layered Food Packaging. Molecules 2023, 28, 4056. [Google Scholar] [CrossRef]
- Fredi, G.; Dorigato, A.; Dussin, A.; Xanthopoulou, E.; Bikiaris, D.N.; Botta, L.; Fiore, V.; Pegoretti, A. Compatibilization of Polylactide/Poly (ethylene 2,5-furanoate) (PLA/PEF) Blends for Sustainable and Bioderived Packaging. Molecules 2022, 27, 6371. [Google Scholar] [CrossRef]
- Guidotti, G.; Soccio, M.; García-Gutiérrez, M.C.; Ezquerra, T.; Siracusa, V.; Gutiérrez-Fernández, E.; Munari, A.; Lotti, N. Fully Biobased Superpolymers of 2,5-Furandicarboxylic Acid with Different Functional Properties: From Rigid to Flexible, High Performant Packaging Materials. ACS Sustain. Chem. Eng. 2020, 8, 9558. [Google Scholar] [CrossRef]
- Bianchi, E.; Guidotti, G.; Soccio, M.; Siracusa, V.; Gazzano, M.; Salatelli, E.; Lotti, N. Biobased and Compostable Multiblock Copolymer of Poly (l-lactic acid) Containing 2,5-Furandicarboxylic Acid for Sustainable Food Packaging: The Role of Parent Homopolymers in the Composting Kinetics and Mechanism. Biomacromolecules 2023, 24, 2356. [Google Scholar] [CrossRef]
- Terzopoulou, Z.; Papadopoulos, L.; Zamboulis, A.; Papageorgiou, D.G.; Papageorgiou, G.Z.; Bikiaris, D.N. Tuning the Properties of Furandicarboxylic Acid-Based Polyesters with Copolymerization: A Review. Polymers 2020, 12, 1209. [Google Scholar] [CrossRef]
- Papadopoulos, L.; Klonos, P.A.; Kluge, M.; Zamboulis, A.; Terzopoulou, Z.; Kourtidou, D.; Magaziotis, A.; Chrissafis, K.; Kyritsis, A.; Bikiaris, D.N.; et al. Unlocking the potential of furan-based poly (ester amide)s: An investigation of crystallization, molecular dynamics and degradation kinetics of novel poly (ester amide)s based on renewable poly(propylene furanoate). Polym. Chem. 2021, 12, 5518. [Google Scholar] [CrossRef]
- Bouyahya, C.; Patrício, R.; Paço, A.; Lima, M.S.; Fonseca, A.C.; Rocha-Santos, T.; Majdoub, M.; Silvestre, A.J.D.; Sousa, A.F. Isosorbide and 2,5-Furandicarboxylic Acid Based (Co)Polyesters: Synthesis, Characterization, and Environmental Degradation. Polymers 2022, 14, 3868. [Google Scholar] [CrossRef]
- Giannakoudakis, D.A.; Colmenares, J.C.; Tsiplakides, D.; Triantafyllidis, K.S. Nanoengineered Electrodes for Biomass-Derived 5-Hydroxymethylfurfural Electrocatalytic Oxidation to 2,5-Furandicarboxylic Acid. ACS Sustain. Chem. Eng. 2021, 9, 1970. [Google Scholar] [CrossRef]
- Papageorgiou, G.Z.; Nikolaidis, G.N.; Ionannidis, R.O.; Rinis, K.; Papageorgiou, D.G.; Klonos, P.A.; Achilias, D.S.; Kapnisti, M.; Terzopoulou, Z.; Bikiaris, D.N. A Step Forward in Thermoplastic Polyesters: Understanding the Crystallization and Melting of Biobased Poly (ethylene 2,5-furandicarboxylate) (PEF). ACS Sustain. Chem. Eng. 2022, 10, 7050. [Google Scholar] [CrossRef]
- Demet, A.E.; Gimello, O.; Arletti, R.; Tanchoux, N.; Sougrati, M.T.; Stievano, L.; Quignard, F.; Centi, G.; Perathoner, S.; Di Renzo, F. 5-Hydroxymethylfurfural Oxidation to 2,5-Furandicarboxylic Acid on Noble Metal-Free Nanocrystalline Mixed Oxide Catalysts. Catalysts 2022, 12, 814. [Google Scholar] [CrossRef]
- Jung, S.; Kim, K.S.; Park, G.H.; Cha, H.G.; Jeong, H.; Kang, M.J. Strategies on utilizing biomass derived 5-hydroxymethylfurfural by catalytic reactions: Pathways and mechanisms. Mat. Today Sustain. 2025, 29, 101058. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, L.; Yu, X.; Zhang, S.; Chen, G. Co-Immobilization of Tri-Enzymes for the Conversion of Hydroxymethylfurfural to 2,5-Diformylfuran. Molecules 2019, 24, 3648. [Google Scholar] [CrossRef] [PubMed]
- Le, D.D.; Nguyen, T.H.; Phan, H.; Tran, P.H. A highly efficient, green, and straightforward approach for 2,5-diformyl-furan synthesis from carbohydrates using carbonized sugarcane bagasse and KBr. Appl. Catal. A Gen. 2023, 662, 119265. [Google Scholar] [CrossRef]
- Tjallins, G.; Boverio, A.; Jager, A.W.; Kaya, S.G.; Mattevi, A.; Fraaije, M.W. Efficient Oxidation of 5-Hydroxymethylfurfural Using a Flavoprotein Oxidase from the Honeybee Apis mellifera. ChemBioChem 2023, 24, e202300588. [Google Scholar] [CrossRef]
- Pal, P.; Saravanamurugan, S. Heterostructured manganese catalysts for the selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. ChemCatChem 2020, 12, 2324. [Google Scholar] [CrossRef]
- Lai, J.H.; Zhou, S.L.; Cheng, F.; Guo, D.W.; Liu, X.X.; Xu, Q.; Yin, D.L. Efficient and Selective Oxidation of 5-Hydroxymethylfurfural into 2,5-Diformylfuran Catalyzed by Magnetic Vanadium-Based Catalysts with Air as Oxidant. Catal. Lett. 2020, 150, 1301. [Google Scholar] [CrossRef]
- Raut, A.B.; Shende, V.S.; Bhanage, B.M. The one-step transformation of fructose to 2,5-diformylfuran over Ru metal supported on montmorillonite. New J. Chem. 2020, 44, 13659. [Google Scholar] [CrossRef]
- Mahendran, S.; Srinivasan, W.; Karthikeyan, G.; Pachamuthu, M.P. Selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over niobium incorporated MCM-41 catalyst. Mol. Catal. 2021, 510, 111682. [Google Scholar] [CrossRef]
- Li, Y.T.; Chen, B.J.; Wang, S.P.; Li, M.C.; Li, C.M.; Shen, Z.L. Selective oxidation of biomass-based 5-hydroxymethylfurfural to 2,5-diformylfuran catalyzed by multicomponent molybdenum-based catalyst. J. Chem. Tech. Biotech. 2022, 97, 2487. [Google Scholar] [CrossRef]
- Ding, S.P.; Gabriel, J.B.; Peppel, T.; Haida, S.; Rabeah, J.; Steinfeldt, N.; Strunk, J. Selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran with ZnIn2S4 2D nanosheets and atmospheric O2 under visible light. Sustain. Energy Fuels 2023, 7, 4396. [Google Scholar] [CrossRef]
- Pang, Y.J.; Chen, N.; Zhao, Z.Z.; Zhang, L.; Broekman, J.O.P.; Wei, J.N.; Li, X.J.; Lin, L.; Huang, H. A unique air-assisted DMSO oxidation pathway for the highly efficient synthesis of 2,5-diformylfuran from 5-hydroxymethylfurfural/fructose. Green Chem. 2023, 25, 9680. [Google Scholar] [CrossRef]
- Xu, X.W.; Shi, J.H.; Sun, Q.; Cao, Q.; She, Y.B.; Li, M.C.; Shen, Z.L. High-efficiency synthesis of 2,5-diformylfuran from 5-hydroxymethylfurfural using iron-bismuth-molybdenum oxides. Mol. Catal. 2025, 570, 114681. [Google Scholar] [CrossRef]
- Qu, D.; He, S.; Chen, L.; Ye, Y.; Ge, Q.; Cong, H.; Jiang, N.; Ha, Y. Paired electrocatalysis in 5-hydroxymethylfurfural valorization. Front. Chem. 2022, 10, 1055865. [Google Scholar] [CrossRef]
- You, B.; Liu, X.; Jiang, N.; Sun, Y. A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization. J. Am. Chem. Soc. 2016, 138, 13639. [Google Scholar] [CrossRef]
- Cha, H.G.; Choi, K.-S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat. Chem. 2015, 7, 328. [Google Scholar] [CrossRef]
- Jiang, X.; Ma, X.; Yang, Y.; Liu, Y.; Liu, Y.; Zhao, L.; Wang, P.; Zhang, Y.; Lin, Y.; Wei, Y. Enhancing the Electrocatalytic Oxidation of 5-Hydroxymethylfurfural Through Cascade Structure Tuning for Highly Stable Biomass Upgrading. Nano-Micro Lett. 2024, 16, 275. [Google Scholar] [CrossRef]
- Yang, Z.; Hui, J.; Fan, W.; Liu, P.; Zhang, C.; Dong, S.; Yang, Z. Selenate-based heterojunction with cobalt–nickel paired site for electrocatalytic oxidation of 5-hydroxymethylfurfural coupling water splitting to produce hydrogen. J. Energy Chem. 2025, 101, 156. [Google Scholar] [CrossRef]
- Wu, Y.; Hou, Z.; Wang, C. Construction of an Sc-NiFe-LDH electrocatalyst for highly efficient electrooxidation of 5-hydroxymethylfurfural at industrial current density. Nanoscale 2025, in press. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Wang, F.; Wang, G.; Li, T.-T.; Liu, Z.; Wang, Y. Low-Crystalline Cobalt Iron Oxide-Supported Single Ru Atoms and Ru Clusters for 2,5-Hydroxymethylfurfural Electro-Oxidation Coupled with Hydrogen Evolution. ACS Sustain. Chem. Eng. 2024, 12, 11767. [Google Scholar] [CrossRef]
- Rouco, L.; González-Noya, A.M.; Pedrido, R.; Maneiro, M. Pursuing the Elixir of Life: In vivo antioxidative effects of manganosalen complexes. Antioxidants 2020, 9, 727. [Google Scholar] [CrossRef]
- Liu, W.; Groves, J.T. Manganese porphyrins catalyze selective C−H bond halogenations. J. Am. Chem Soc. 2010, 132, 12847. [Google Scholar] [CrossRef]
- Palopoli, C.; Duhayon, C.; Tuchagues, J.P.; Signorella, S. Synthesis, characterization, and reactivity studies of a water-soluble bis (alkoxo)(carboxylato)-bridged diMn III complex modeling the active site in catalase. Dalton Trans. 2014, 43, 17145. [Google Scholar] [CrossRef] [PubMed]
- González-Riopedre, G.; Fernández-García, M.I.; Gómez-Fórneas, E.; Maneiro, M. Biomimetic catalysts for oxidation of veratryl alcohol, a lignin model compound. Catalysts 2013, 3, 232. [Google Scholar] [CrossRef]
- Rouco, L.; Fernández-García, M.I.; González-Noya, A.M.; González-Riopedre, G.; Tyryshkin, A.M.; Maneiro, M. Electrochemical Conversion of the Lignin Model Veratryl Alcohol to Veratryl Aldehyde Using Manganese (III)-Schiff Base Homogeneous Catalysts. Appl. Sci. 2019, 9, 3430. [Google Scholar] [CrossRef]
- Rouco, L.; Liberato, A.; Fernández-Trujillo, M.J.; Máñez, A.; Basallote, M.G.; Alvariño, R.; Alfonso, A.; Botana, L.M.; Maneiro, M. Salen-manganese complexes for controlling ROS damage: Neuroprotective effects, antioxidant activity and kinetic studies. J. Inorg. Biochem. 2020, 203, 110918. [Google Scholar] [CrossRef]
- Rouco, L.; Alvariño, R.; Alfonso, A.; Fernández-Fariña, S.; González-Noya, A.M.; Martínez-Calvo, M.; Pedrido, R.; Rodríguez-Silva, L.; Maneiro, M. Understanding the Factors That Influence the Antioxidant Activity of Manganosalen Complexes with Neuroprotective Effects. Antioxidants 2024, 13, 265. [Google Scholar] [CrossRef] [PubMed]
- Stoll, C.; Atanasov, M.; Bandemehr, J.; Neese, F.; Pietzonka, C.; Kraus, F.; Karttunen, A.J.; Seibald, M.; Heymann, G.; Huppertz, H. Coexistence of two different distorted octahedral [MnF6]3- sites in K3[MnF6]: Manifestation in spectroscopy and magnetism. Chem. Eur. J. 2021, 27, 9801. [Google Scholar] [CrossRef]
- Zhu, L.N.; Jin, Y.W.; Li, X.Z.; Wang, J.; Kong, D.M.; Mi, H.F.; Liao, D.Z.; Shen, H.X. Synthesis, structure and DNA cleavage activity of two 4,4′-dimethyl-2,2′-bipyridyl manganese (II) complexes. Inorg. Chim. Acta 2008, 361, 29. [Google Scholar] [CrossRef]
- Paul, P.; Bhowmik, K.R.N.; Roy, S.; Deb, D.; Das, N.; Bhattacharjee, M.; Purkayastha, R.N.D.; Male, L.; Mckee, V.; Pallepogu, R.; et al. Synthesis, structural features, antibacterial behaviour and theoretical investigation of two new manganese (III) Schiff base complexes. Polyhedron 2018, 151, 407. [Google Scholar] [CrossRef]
- Palopoli, C.; Gómez, G.; Foi, A.; Doctorovich, F.; Mallet-Ladeira, S.; Hureau, C.; Signorella, S. Dimerization, redox properties and antioxidant activity of two manganese (III) complexes of difluoro- and dichloro-substituted Schiff-base ligands. J. Inorg. Biochem. 2017, 167, 49. [Google Scholar] [CrossRef]
- Ortabay, S.; Karakurt, T.; Kaya, B.; Sahin, O.; Ülküseven, B. Manganese (III) complexes with a tetradentate thiosemicarbazone. Structural characterization, electrochemistry, antioxidant capability, molecular docking and dynamics simulation on the potential inhibitory activity of cyclin-dependent kinase 2. Polyhedron 2024, 261, 117128. [Google Scholar] [CrossRef]
- Talebi, A.; Salehi, M.; Jesus, A.J.L.; Kubicki, M.; Fausto, R.; Golbedaghi, R. A New Azide-Bridged Polymeric Manganese (III) Schiff Base Complex with an Allylamine-Derived Ligand: Structural Characterization and Activity Spectra. Inorganics 2024, 12, 234. [Google Scholar] [CrossRef]
- Childs, R.E.; Bardsley, W.G. The steady-state kinetics of peroxidase with 2,2′-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem. J. 1975, 145, 93. [Google Scholar] [CrossRef]
- Liu, S.W.; Xu, N.H.; Tan, C.Y.; Fang, W.; Tan, Y.; Jiang, Y.Y. A sensitive colorimetric aptasensor based on trivalent peroxidase-mimic DNAzyme and magnetic nanoparticles. Anal. Chim. Acta 2018, 1018, 86. [Google Scholar] [CrossRef]
- Liberato, A.; Fernández-Trujillo, M.J.; Máñez, A.; Maneiro, M.; Rodríguez-Silva, L.; Basallote, M.G. Pitfalls in the ABTS Peroxidase Activity Test: Interference of Photochemical. Inorg. Chem. 2018, 57, 14471. [Google Scholar] [CrossRef]
- Mukimin, A.; Wijaya, K.; Kuncaka, A. Oxidation of remazol brilliant blue r (RB. 19) with in situ electro-generated active chlorine using Ti/PbO2 electrode. Sep. Purif. Technol. 2012, 95, 1–9. [Google Scholar] [CrossRef]
- Chen, Z.; Concepcion, J.J.; Song, N.; Meyer, T.J. Chloride-assisted catalytic water oxidation. Chem. Commun. 2014, 50, 8053. [Google Scholar] [CrossRef]
- Szpyrkowicz, L.; Juzzolino, C.; Kaul, S.N.; Daniele, S.; de Faveri, M.D. Electrochemical oxidation of dyeing baths bearing disperse dyes. Indus. Eng. Chem. Res. 2000, 39, 3241. [Google Scholar] [CrossRef]
- Amarasekara, A.S.; Green, D.; McMillan, E. Efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using Mn(III)-salen catalysts. Catal. Commun. 2008, 9, 286. [Google Scholar] [CrossRef]
- Chellmami, A.; Harikengaram, S. Mechanism of oxidation of aryl methyl sulfoxides with sodium hypochlorite catalyzed by (salen)MnIII complexes. J. Mol. Catal. A. Chem. 2006, 247, 260. [Google Scholar] [CrossRef]
- Procner, M.; Orzel, Ł.; Stochel, G.; van Eldik, R. A Kinetic Study on the Efficient Formation of High-Valent Mn(TPPS)-oxo Complexes by Various Oxidants. Catalysts 2020, 10, 610. [Google Scholar] [CrossRef]
- Mahía, J.; Maestro, M.A.; Vázquez, M.; Bermejo, M.R.; González, A.M.; Maneiro, M. N,N’-Bis (2-tosylaminobenzylidene)-1,2-ethanediamine. Acta Cryst. 2000, 56, 492. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELX-97 (shelxs 97 and shelxl 97), Programs for Crystal Structure Analyses; University of Göttingen: Göttingen, Germany, 1998. [Google Scholar]
- Sheldrick, G.M. SADABS, Program for Scaling and Correction of Area Detector Data; University of Göttingen: Göttingen, Germany, 1996. [Google Scholar]
- Spek, A.L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 2003, 36, 7. [Google Scholar] [CrossRef]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. MERCURY CSD 2.0—New features for the visualization and investigation of crystal structures. J. Appl. Cryst. 2008, 41, 466. [Google Scholar] [CrossRef]
Compound | HMF to DFF a | Peroxidase Activity b | E1/2 (mV) c | ΔE (mV) d |
---|---|---|---|---|
1 | 78 ± 4 | 65 ± 4 | −74 | 202 |
2 | 70 ± 3 | 49 ± 3 | −128 | 237 |
3 | 10 ± 1 | 3 ± 0.5 | −183 | 193 |
4 | 11 ± 1 | 2 ± 0.5 | −300 | 347 |
1a | 2 | |
---|---|---|
Empirical formula | C21H24MnN3O6·H2O | C21H24MnN3O6 |
Formula weight | 487.39 | 469.37 |
Temperature [K] | 100(2) | 100(2) |
Wavelength [Å] | 0.71073 | 0.71073 |
Crystal system | Monoclinic | Triclinic |
Space group | P 21/c | P-1 |
a [Å] | 12.2376(4) | 12.5606(5) |
b [Å] | 14.3006(6) | 13.3548(5) |
c [Å] | 13.6772(5) | 13.7492(5) |
α [°] | 90 | 88.901(2) |
β [°] | 116.362(2) | 86.201(2) |
γ [°] | 90 | 63.478(2) |
Volume [Å3] | 2144.66(14) | 2058.96(14) |
Z | 4 | 4 |
Density (calculated) [g cm−3] | 1.509 | 1.514 |
Absorption coefficient [mm−1] | 0.665 | 0.686 |
Theta range for data collection [°] | 1.86 to 26.47 | 1.48 to 26.42 |
Reflections collected | 21229 | 50020 |
Independent reflections | 4414 | 8413 |
Final R indices [I > 2sigma(I)] | R1 = 0.0582; wR2 = 0.1403 | R1 = 0.0319; wR2 = 0.068 |
R indices (all data) | R1 = 0.127; wR2 = 0.1721 | R1 = 0.0456; wR2 = 0.0735 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreiro-Sisto, U.; Fernández-Fariña, S.; Fernández-García, M.I.; González-Noya, A.M.; Velo-Heleno, I.; Maneiro, M. Electrochemical Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxaldehyde Using Mn(III)–Schiff Base Catalysts. Inorganics 2025, 13, 30. https://doi.org/10.3390/inorganics13020030
Barreiro-Sisto U, Fernández-Fariña S, Fernández-García MI, González-Noya AM, Velo-Heleno I, Maneiro M. Electrochemical Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxaldehyde Using Mn(III)–Schiff Base Catalysts. Inorganics. 2025; 13(2):30. https://doi.org/10.3390/inorganics13020030
Chicago/Turabian StyleBarreiro-Sisto, Uxía, Sandra Fernández-Fariña, María Isabel Fernández-García, Ana M. González-Noya, Isabel Velo-Heleno, and Marcelino Maneiro. 2025. "Electrochemical Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxaldehyde Using Mn(III)–Schiff Base Catalysts" Inorganics 13, no. 2: 30. https://doi.org/10.3390/inorganics13020030
APA StyleBarreiro-Sisto, U., Fernández-Fariña, S., Fernández-García, M. I., González-Noya, A. M., Velo-Heleno, I., & Maneiro, M. (2025). Electrochemical Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxaldehyde Using Mn(III)–Schiff Base Catalysts. Inorganics, 13(2), 30. https://doi.org/10.3390/inorganics13020030