Structural and Magnetic Properties of Biogenic Nanomaterials Synthesized by Desulfovibrio sp. Strain A2
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Details
3.1. Microbial Cultures and Mineral Formation Processes
3.2. Measurement Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wadhawan, S.; Jain, A.; Nayyar, J.; Mehta, S.K. Role of nanomaterials as adsorbents in heavy metal ion removal from wastewater: A review. J. Water Process Eng. 2020, 33, 101038. [Google Scholar] [CrossRef]
- Pandey, P. Role of nanotechnology in electronics: A review of recent developments and patents. Recent Pat. Nanotechnol. 2022, 16, 45–66. [Google Scholar] [CrossRef]
- Pandit, C.; Roy, A.; Ghotekar, S.; Khusro, A.; Islam, M.N.; Emran, T.B.; Lam, S.E.; Khandaker, M.U.; Bradley, D.A. Biological agents for synthesis of nanoparticles and their applications against plant pathogens. J. King Saud Univ.-Sci. 2024, 34, 101869. [Google Scholar] [CrossRef]
- Huston, M.; DeBella, M.; DiBella, M.; Gupta, A. Green synthesis of nanomaterials. Nanomaterials 2021, 11, 2130. [Google Scholar] [CrossRef] [PubMed]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Abid, N.; Khan, A.M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv. Colloid Interface Sci. 2022, 300, 102597. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, L.; Huang, H.; He, W.; Ming, W. Progress in laser ablation and biological synthesis processes: “Top-Down” and “Bottom-Up” approaches for the green synthesis of Au/Ag nanoparticles. Int. J. Mol. Sci. 2022, 23, 14658. [Google Scholar] [CrossRef]
- Vijayaram, S.; Razafindralambo, H.; Sun, Y.-Z.; Vasantharaj, S.; Ghafarifarsani, H.; Hoseinifar, S.H.; Raeeszadeh, M. Applications of green synthesized metal nanoparticles—A review. Biol. Trace Elem. Res. 2024, 202, 360–386. [Google Scholar] [CrossRef]
- Diallo, A.; Manikandan, E.; Rajendran, V.; Maaza, M. Physical & enhanced photocatalytic properties of green synthesized SnO2 nanoparticles via Aspalathus linearis. J. Alloys Compd. 2016, 681, 561–570. [Google Scholar] [CrossRef]
- Dwivedi, A.D.; Gopal, K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A Physicochem. Eng. Asp. 2010, 369, 27–33. [Google Scholar] [CrossRef]
- Ghidan, A.Y.; Al-Antary, T.M.; Awwad, A.M. Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: Effect on green peach aphid. Environ. Nanotechnol. Monit. Manag. 2016, 6, 95–98. [Google Scholar] [CrossRef]
- Geetha, M.S.; Nagabhushana, H.; Shivananjaiah, H.N. Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent. J. Sci. Adv. Mater. Devices 2016, 1, 301–310. [Google Scholar] [CrossRef]
- Hussain, I.; Singh, N.B.; Singh, A.; Singh, H.; Singh, S.C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 2016, 38, 545–560. [Google Scholar] [CrossRef]
- Faivre, D.; Schuler, D. Magnetotactic bacteria and magnetosomes. Chem. Rev. 2008, 108, 4875–4898. [Google Scholar] [CrossRef]
- Knyazev, Y.V.; Platunov, M.S.; Ikkert, O.P.; Semenov, S.V.; Bayukov, O.A.; Nikolenko, A.D.; Nazmov, V.P.; Volochaev, M.N.; Dubrovskiy, A.A.; Molokeev, M.S.; et al. Microbially mediated synthesis of vivianite by Desulfosporosinus on the way to phosphorus recovery. Environ. Sci. Adv. 2024, 3, 897–911. [Google Scholar] [CrossRef]
- Stolyar, S.V.; Bayukov, O.A.; Balaev, D.A.; Ladygina, V.P.; Yaroslavtsev, R.N.; Knyazev, Y.V.; Balasoiu, M.; Kolenchukova, O.A.; Iskhakov, R.S. Ferrihydrite nanoparticles produced by Klebsiella oxytoca: Structure and properties dependence on the cultivation time. Adv. Powder Technol. 2022, 33, 103692. [Google Scholar] [CrossRef]
- Oksel, C.; Ma, C.Y.; Liu, J.J.; Wilkins, T.; Wang, X.Z. (Q)SAR modelling of nanomaterial toxicity: A critical review. Particuology 2015, 21, 1–19. [Google Scholar] [CrossRef]
- Mirkin, L.I. Powder X-Ray Analysis: Handbook of X-Ray Analysis of Polycrystalline Material; Translated from the Russian Edition (Moscow, 1961) by J. E. S. Bradley; Consultants Bureau: New York, NY, USA, 1964; p. 731. [Google Scholar]
- Knyazev, Y.V.; Ikkert, O.P.; Semenov, S.V.; Volochaev, M.N.; Molokeev, M.S.; Platunov, M.S.; Khramov, E.V.; Dubrovskiy, A.A.; Shestakov, N.P.; Smorodina, E.D.; et al. Superparamagnetic blocking and magnetic interactions in nanoferrihydrite adsorbed on biomineralized nanorod-shaped Fe3S4 crystallites. J. Alloys Compd. 2022, 923, 166346. [Google Scholar] [CrossRef]
- Mørup, S.; Madsen, D.E.; Frandsen, C.; Bahl, C.R.H.; Hansen, M.F. Experimental and theoretical studies of nanoparticles of antiferromagnetic materials. J. Phys. Condens. Matter 2007, 19, 213202. [Google Scholar] [CrossRef]
- Almkvist, G.; Boye, K.; Persson, I. K-edge XANES analysis of sulfur compounds: An investigation of the relative intensities using internal calibration. J. Synchrotron Radiat. 2010, 17, 683–688. [Google Scholar] [CrossRef]
- Pin, S.; Huthwelker, T.; Brown, M.A.; Vogel, F. Combined sulfur K-edge XANES–EXAFS study of the effect of protonation on the sulfate tetrahedron in solids and solutions. J. Phys. Chem. A 2013, 117, 8368–8376. [Google Scholar] [CrossRef] [PubMed]
- Prietzel, J.; Klysubun, W. Phosphorus K-edge XANES spectroscopy has probably often underestimated iron oxyhydroxide-bound P in soils. J. Synchrotron Radiat. 2018, 25, 1736–1744. [Google Scholar] [CrossRef] [PubMed]
- Franke, R.; Hormes, J. The P K-near edge absorption spectra of phosphates. Phys. B Condens. Matter 1995, 216, 85–95. [Google Scholar] [CrossRef]
- Yoshida, M.; Mineo, T.; Mitsutomi, Y.; Yamamoto, F.; Kurosu, H.; Takakusagi, S.; Asakura, K.; Kondoh, H. Structural relationship between CoO6 cluster and phosphate species in a cobalt-phosphate water oxidation catalyst investigated by Co and P K-edge XAFS. Chem. Lett. 2016, 45, 277–279. [Google Scholar] [CrossRef]
- Franke, R. X-ray absorption and photoelectron spectroscopy investigation of binary nickelphosphides. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1997, 53, 933–941. [Google Scholar] [CrossRef]
- Yin, Z.; Kasrai, M.; Bancroft, G.M.; Tan, K.H.; Feng, X. X-ray-absorption spectroscopic studies of sodium polyphosphate glasses. Phys. Rev. B 1995, 51, 742. [Google Scholar] [CrossRef]
- Prietzel, J.; Dümig, A.; Wu, Y.; Zhou, J.; Klysubun, W. Synchrotron-based P K-edge XANES spectroscopy reveals rapid changes of phosphorus speciation in the topsoil of two glacier foreland chronosequences. Geochim. Cosmochim. Acta 2013, 108, 154–171. [Google Scholar] [CrossRef]
- Werner, F.; Prietzel, J. Standard protocol and quality assessment of soil phosphorus speciation by P K-edge XANES spectroscopy. Environ. Sci. Technol. 2015, 49, 10521–10528. [Google Scholar] [CrossRef]
- Vogel, C.; Rivard, C.; Wilken, V.; Muskolus, A.; Adam, C. Performance of secondary P-fertilizers in pot experiments analyzed by phosphorus X-ray absorption near-edge structure (XANES) spectroscopy. Ambio 2018, 47, 62–72. [Google Scholar] [CrossRef]
- Beauchemin, S.; Hesterberg, D.; Chou, J.; Beauchemin, M.; Simard, R.R.; Sayers, D.E. Speciation of phosphorus in phosphorus-enriched agricultural soils using X-ray absorption near-edge structure spectroscopy and chemical fractionation. J. Environ. Qual. 2003, 32, 1809–1819. [Google Scholar] [CrossRef]
- Rouff, A.A.; Rabe, S.; Nachtegaal, M.; Vogel, F. X-ray absorption fine structure study of the effect of protonation on disorder and multiple scattering in phosphate solutions and solids. J. Phys. Chem. A 2009, 113, 6895–6903. [Google Scholar] [CrossRef] [PubMed]
- Donahue, C.M.; Daly, S.R. Ligand K-edge XAS studies of metal-phosphorus bonds: Applications, limitations, and opportunities. Comments Inorg. Chem. 2018, 38, 54–78. [Google Scholar] [CrossRef]
- Kuzmin, A.; Chaboy, J. EXAFS and XANES analysis of oxides at the nanoscale. IUCrJ 2014, 1, 571–589. [Google Scholar] [CrossRef]
- Rehr, J.J.; Albers, R.C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 2000, 72, 621. [Google Scholar] [CrossRef]
- Lee, P.A.; Citrin, P.H.; Eisenberger, P.T.; Kincaid, B.M. Extended X-ray absorption fine structure—Its strengths and limitations as a structural tool. Rev. Mod. Phys. 1981, 53, 769. [Google Scholar] [CrossRef]
- Frederichs, T.; von Dobeneck, T.; Bleil, U.; Dekkers, M.J. Towards the identification of siderite, rhodochrosite, and vivianite in sediments by their low-temperature magnetic properties. Phys. Chem. Earth Parts A/B/C 2003, 28, 669–679. [Google Scholar] [CrossRef]
- Karnachuk, O.V.; Sasaki, K.; Gerasimchuk, A.L.; Sukhanova, O.; Ivasenko, D.A.; Kaksonen, A.H.; Puhakka, J.A.; Tuovinen, O.H. Precipitation of Cu-sulfides by copper-tolerant Desulfovibrio isolates. Geomicrobiol. J. 2008, 25, 219–227. [Google Scholar] [CrossRef]
- Widdel, F.; Bak, F. Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications; Springer: New York, NY, USA, 1992; pp. 3352–3378. [Google Scholar] [CrossRef]
- Karnachuk, O.V.; Pimenov, N.V.; Yusupov, S.K.; Frank, Y.A.; Puhakka, Y.A.; Ivanov, M.V. Distribution, diversity, and activity of sulfate-reducing bacteria in the water column in Gek-Gel Lake, Azerbaijan. Microbiology 2006, 75, 82–89. [Google Scholar] [CrossRef]
- Svetogorov, R.D.; Dorovatovskii, P.V.; Lazarenko, V.A. Belok/XSA diffraction beamline for studying crystalline samples at Kurchatov Synchrotron Radiation Source. Cryst. Res. Technol. 2020, 55, 1900184. [Google Scholar] [CrossRef]
- Svetogorov, R.D. Dionis—Diffraction Open Integration Software; State Registration Certificate of Computer Program No. 2018660965; LC Scientific Electronic Library: Moscow, Russia, 2018. [Google Scholar]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Chernyshov, A.A.; Veligzhanin, A.A.; Zubavichus, Y.V. Structural Materials Science end-station at the Kurchatov Synchrotron Radiation Source: Recent instrumentation upgrades and experimental results. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 603, 95–98. [Google Scholar] [CrossRef]
- Klementev, K.V. Package “VIPER (visual processing in EXAFS researches) for windows”. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip. 2000, 448, 299–301. [Google Scholar] [CrossRef]
- Klementev, K.V. Extraction of the fine structure from X-ray absorption spectra. J. Phys. D Appl. Phys. 2001, 34, 209. [Google Scholar] [CrossRef]
- Newville, M. IFEFFIT: Interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 2001, 8, 322–324. [Google Scholar] [CrossRef]
- Zabinsky, S.I.; Rehr, J.J.; Ankudinov, A.; Albers, R.C.; Eller, M.J. Multiple-scattering calculations of X-ray absorption spectra. Phys. Rev. B 1995, 52, 2995. [Google Scholar] [CrossRef]
- Zavertkin, P.S.; Ivlyushkin, D.V.; Mashkovtsev, M.R.; Nikolenko, A.D.; Sutormina, S.A.; Chkhalo, N.I. Vacuum Ultraviolet and Soft X-ray Broadband Monochromator for a Synchrotron Radiation Metrological Station. Optoelectron. Instrum. Data Process. 2019, 55, 107–114. [Google Scholar] [CrossRef]
- Zabrodsky, V.V.; Aruev, P.N.; Sukhanov, V.L.; Zabrodskaya, N.V.; Ber, B.J.; Kasantsev, D.Y.; Alekseyev, A.G. Silicon Precision Detectors for Near IR, Visible, UV, XUV and Soft X-ray Spectral Range. In Proceedings of the 9th International Symposium on Measurement Technology and Intelligent Instruments, Saint-Petersburg, Russia, 29 June–2 July 2009; pp. 243–247. [Google Scholar]
- Nazmov, V.P.; Varand, A.V.; Mikhailenko, M.A.; Goldenberg, B.G.; Prosanov, I.Y.; Gerasimov, K.B. Polymethyl Methacrylate with a Molecular Weight of 107 g/mol for X-ray Lithography. J. Surf. Investig. X-Ray Synchrotron Neutron Tech. 2023, 17, 652–655. [Google Scholar] [CrossRef]
- Balaev, A.D.; Boyarshinov, Y.V.; Karpenko, M.M.; Khrustalev, B.P. Automated magnetometer with superconducting solenoid. Prib. Tekh. Eksp. 1985, 3, 167. [Google Scholar]
Phase | α-Sulfur | Vivianite (Fe3(PO4)2·8H2O) |
---|---|---|
Space group | Fddd (70) | I2/m (12) |
a, Å | 10.4674(10) | 9.980(16) |
b, Å | 12.8720(11) | 13.413(4) |
c, Å | 24.4990(22) | 4.689(4) |
β, deg | 90 | 101.94(3) |
Volume, Å3 | 3300.9(7) | 614.13(30) |
Phase volume fraction, % | 56.0 | 44.0 |
Microstrains, % | 0.24 | 0.50 |
Scherrer size, nm | >10 µm | >10 µm |
Rw, % | 1.04 |
δ, mm/s ±0.005 | Hhf, kOe ±3 | Δ, mm/s ±0.01 | W, mm/s ±0.01 | dW, mm/s ±0.01 | A, a.u. ±0.03 | Origin | |
---|---|---|---|---|---|---|---|
300 K | |||||||
1 | 0.321 | -- | 0.70 | 0.458 | -- | 0.78 | Ferrihydrite |
2 | 0.506 | -- | 0.71 | 0.312 | -- | 0.16 | |
3 | 1.341 | -- | 2.46 | 0.093 | -- | 0.06 | Vivianite |
150 K | |||||||
1 | 0.449 | -- | 0.60 | 0.408 | -- | 0.62 | Ferrihydrite |
2 | 0.446 | -- | 1.08 | 0.477 | -- | 0.32 | |
3 | 1.458 | -- | 3.33 | 0.666 | -- | 0.06 | Vivianite |
50 K | |||||||
1 | 0.522 | 456 | 0 | 1.814 | 0.00 | 0.28 | Blocked state |
2 | 0.374 | 258 | 0 | 0.429 | 2.99 | 0.40 | Relax |
3 | 0.463 | -- | 0.67 | 0.717 | -- | 0.16 | SPM state |
4 | 0.546 | -- | 1.95 | 1.111 | -- | 0.12 | |
5 | 1.487 | -- | 3.04 | 0.423 | -- | 0.04 | Vivianite |
4 K | |||||||
1 | 0.512 | 510 | −0.10 | 0.567 | 0.00 | 0.22 | Ferrihydrite |
2 | 0.483 | 452 | 0 | 0.4 | 0.68 | 0.54 | |
3 | 0.464 | 486 | 0.00 | 0.573 | 0.00 | 0.18 | |
4 | 1.269 | 91 | 3.60 | 0.879 | 0.00 | 0.06 | Vivianite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Platunov, M.S.; Knyazev, Y.V.; Ikkert, O.P.; Karnachuk, O.V.; Nikolenko, A.D.; Svetogorov, R.D.; Khramov, E.V.; Volochaev, M.N.; Dubrovskiy, A.A. Structural and Magnetic Properties of Biogenic Nanomaterials Synthesized by Desulfovibrio sp. Strain A2. Inorganics 2025, 13, 34. https://doi.org/10.3390/inorganics13020034
Platunov MS, Knyazev YV, Ikkert OP, Karnachuk OV, Nikolenko AD, Svetogorov RD, Khramov EV, Volochaev MN, Dubrovskiy AA. Structural and Magnetic Properties of Biogenic Nanomaterials Synthesized by Desulfovibrio sp. Strain A2. Inorganics. 2025; 13(2):34. https://doi.org/10.3390/inorganics13020034
Chicago/Turabian StylePlatunov, Mikhail S., Yuriy V. Knyazev, Olga P. Ikkert, Olga V. Karnachuk, Anton D. Nikolenko, Roman D. Svetogorov, Evgeny V. Khramov, Mikhail N. Volochaev, and Andrey A. Dubrovskiy. 2025. "Structural and Magnetic Properties of Biogenic Nanomaterials Synthesized by Desulfovibrio sp. Strain A2" Inorganics 13, no. 2: 34. https://doi.org/10.3390/inorganics13020034
APA StylePlatunov, M. S., Knyazev, Y. V., Ikkert, O. P., Karnachuk, O. V., Nikolenko, A. D., Svetogorov, R. D., Khramov, E. V., Volochaev, M. N., & Dubrovskiy, A. A. (2025). Structural and Magnetic Properties of Biogenic Nanomaterials Synthesized by Desulfovibrio sp. Strain A2. Inorganics, 13(2), 34. https://doi.org/10.3390/inorganics13020034