Investigation into the Incorporation of Phosphate into BaCe1−yAyO3−y/2 (A = Y, Yb, In)
Abstract
:1. Introduction
2. Results and Discussion
2.1. BaCe1−y−xYyPxO3−y/2+x/2 and BaCe1−y−xYbyPxO3−y/2+x/2
2.2. BaCe1−y−xInyPxO3−y/2+x/2
Sample (nominal composition) | Unit cell parameters (Å) | Unit cell volume (Å3) | ||
---|---|---|---|---|
a | b | c | ||
BaCe0.8Y0.2O2.9 | 8.9137(9) | 6.1815(6) | 6.1793(7) | 340.48(8) |
BaCe.75Y0.2P0.05O2.925 | 8.7431(3) | 6.1998(2) | 6.2186(2) | 337.09(2) |
BaCe0.7Y0.25P0.05O2.9 | 8.7363(3) | 6.1978(2) | 6.2188(2) | 336.73(2) |
BaCe0.65Y0.3P0.05O2.875 | 8.7302(4) | 6.1969(3) | 6.2191(2) | 336.46(3) |
BaCe0.6Y0.3P0.1O2.9 | 8.7240(5) | 6.1856(3) | 6.2061(3) | 334.90(3) |
BaCe.75Yb0.2P0.05O2.925 | 8.7267(6) | 6.1815(4) | 6.2113(4) | 335.06(5) |
BaCe0.7Yb0.25P0.05O2.9 | 8.718(1) | 6.174(1) | 6.213(1) | 334.4(1) |
BaCe0.65Yb0.3P0.05O2.875 | 8.6973(5) | 6.1714(4) | 6.1964(3) | 332.59(4) |
BaCe0.6Yb0.3P0.1O2.9 | 8.697(1) | 6.1578(6) | 6.1892(6) | 321.49(7) |
Conductivity (S cm−1) | |||||||
---|---|---|---|---|---|---|---|
500 °C | 800 °C | ||||||
Dry N2 | Wet N2 | Dry N2 | Wet N2 | ||||
BaCe0.8Y0.2O2.9 | 3.7 × 10‑3 | 3.7 × 10‑3 | 2.4 × 10−2 | 1.9 × 10−2 | |||
BaCe.75Y0.2P0.05O2.925 | 1.4 × 10−3 | 1.7 × 10−3 | 4.9 × 10−3 | 5.9 × 10−3 | |||
BaCe0.7Y0.25P0.05O2.9 | 1.4 × 10−3 | 2.1 × 10−3 | 6.0 × 10−3 | 7.3 × 10−3 | |||
BaCe0.65Y0.3P0.05O2.875 | 2.0 × 10−3 | 2.5 × 10−3 | 6.8 × 10−3 | 8.2 × 10−3 | |||
BaCe0.6Y0.3P0.1O2.9 | 1.2 × 10−3 | 1.4 × 10−3 | 3.3 × 10−3 | 4.1 × 10−3 | |||
BaCe.75Yb0.2P0.05O2.925 | 8.6 × 10−4 | 2.0 × 10−3 | 6.4 × 10−3 | 7.2 × 10−3 | |||
BaCe0.7Yb0.25P0.05O2.9 | 1.7 × 10−3 | 2.5 × 10−3 | 1.2 × 10−2 | 1.2 × 10−2 | |||
BaCe0.65Yb0.3P0.05O2.875 | 8.5 × 10−4 | 1.6 × 10−3 | 4.3 × 10−3 | 4.6 × 10−3 | |||
BaCe0.6Yb0.3P0.1O2.9 | 4.4 × 10−4 | 6.3 × 10−4 | 2.6 × 10−3 | 2.8 × 10−3 |
Sample (nominal composition) | Moles of water per formula unit | |
---|---|---|
BaCe0.8Y0.2O2.9 | 0.10(1) | |
BaCe.75Y0.2P0.05O2.925 | 0.03(1) | |
BaCe0.7Y0.25P0.05O2.9 | 0.11(1) | |
BaCe0.65Y0.3P0.05O2.875 | 0.09(1) | |
BaCe0.6Y0.3P0.1O2.9 | 0.05(1) |
Sample (nominal composition) | Unit cell parameters (Å) | Unit cell volume (Å3) | ||
---|---|---|---|---|
a | b | c | ||
BaCe0.8In0.2O2.9 | 6.2094(2) | 6.1898(2) | 8.7204(3) | 335.17(2) |
BaCe0.75In0.2P0.05O2.925 | 6.1940(1) | 6.1700(1) | 8.7135(2) | 333.01(2) |
BaCe0.7In0.25P0.05O2.9 | 6.1587(2) | 6.1796(1) | 8.6999(3) | 331.11(2) |
BaCe0.65In0.3P0.05O2.875 | 6.1445(2) | 6.1632(2) | 8.6892(3) | 329.06(1) |
BaCe0.6In0.3P0.1O2.9 | 6.1285(4) | 6.1496(3) | 8.6692(5) | 326.73(2) |
Conductivity (S cm−1) | ||||||
---|---|---|---|---|---|---|
500 °C | 800 °C | |||||
Dry N2 | Wet N2 | Dry N2 | Wet N2 | |||
BaCe0.8In0.2O2.9 | 7.4 × 10‑5 | 5.3 × 10‑4 | 1.6 × 10−3 | 2.4 × 10−3 | ||
BaCe0.75In0.2P0.05O2.925 | 1.8 × 10−5 | 2.5 × 10−4 | 2.8 × 10−4 | 8.7 × 10−4 | ||
BaCe0.7In0.25P0.05O2.9 | 1.4 × 10−4 | 2.4 × 10−4 | 1.3 × 10−3 | 1.3 × 10−3 | ||
BaCe0.65In0.3P0.05O2.875 | 2.1 × 10−5 | 2.4 × 10−4 | 6.2 × 10−4 | 1.2 × 10−3 | ||
BaCe0.6In0.3P0.1O2.9 | 8.5 × 10−6 | 1.1 × 10−4 | 2.3 × 10−4 | 4.7 × 10−4 |
Sample (nominal composition) | Moles of water per formula unit | Temperature of CO2 mass gain (°C) |
---|---|---|
BaCe0.8In0.2O2.9 | 0.04(1) | 450 |
BaCe0.75In0.2P0.05O2.925 | 0.03(1) | 525 |
BaCe0.7In0.25P0.05O2.9 | 0.03(1) | 550 |
BaCe0.65In0.3P0.05O2.875 | 0.02(1) | 550 |
BaCe0.6In0.3P0.1O2.9 | 0.04(1) | 575 |
3. Experimental Section
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Kreuer, K.D. Proton-conducting oxides. Annu. Rev. Mater. Res. 2003, 33, 333–359. [Google Scholar] [CrossRef]
- Goodenough, J.B. Oxide-ion electrolytes. Annu. Rev. Mater. Res. 2003, 33, 91–128. [Google Scholar] [CrossRef]
- Orera, A.; Slater, P.R. New Chemical Systems for Solid Oxide Fuel Cells. Chem. Mater. 2010, 22, 675–690. [Google Scholar] [CrossRef]
- Norby, T. Solid-state protonic conductors: Principles, properties, progress and prospects. Solid State Ionics 1999, 125, 1–11. [Google Scholar] [CrossRef]
- Iwahara, H.; Uchida, H.; Ono, K.; Ogaki, K. Proton conduction in sintered oxides based on BaCeO3. J. Electrochem. Soc. 1988, 135, 529–533. [Google Scholar] [CrossRef]
- Yajima, T.; Kazeoka, K.; Yogo, T.; Iwahara, H. Proton conduction in sintered oxides based on CaZrO3. Solid State Ionics 1991, 47, 271–275. [Google Scholar] [CrossRef]
- Iwahara, H.; Yajima, T.; Hibino, T.; Ozaki, K.; Suzuki, H. Protonic conduction in calcium, strontium and barium zirconates. Solid State Ionics 1993, 61, 65–69. [Google Scholar] [CrossRef]
- Scholten, M.J.; Schoonman, J.; van Miltenburg, J.C.; Oonk, H.A.J. Synthesis of strontium and barium cerate and their reaction with carbon dioxide. Solid State Ionics 1993, 61, 83–91. [Google Scholar] [CrossRef]
- Babilo, P.; Haile, S.M. Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO. J. Am. Ceram. Soc. 2005, 88, 2362–2368. [Google Scholar] [CrossRef]
- Tao, S.; Irvine, J.T.S. Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325 degrees C. J. Solid State Chem. 2007, 180, 3493–3503. [Google Scholar] [CrossRef]
- Ryu, K.H.; Haile, S.M. Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions. Solid State Ionics 1999, 125, 355–367. [Google Scholar] [CrossRef]
- Katahira, K.; Kohchi, Y.; Shimura, T.; Iwahara, H. Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics 2000, 138, 91–98. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Ruizdiaz, J.E.; Zhen, Y.S. Oxide-ion conduction in Ba2In2O5 and Ba3In2CeO8, Ba3In2HFO8, or Ba3In2ZrO8. Solid State Ionics 1990, 44, 21–31. [Google Scholar] [CrossRef]
- Rolle, A.; Vannier, R.N.; Giridharan, N.V.; Abraham, F. Structural and electrochemical characterisation of new oxide ion conductors for oxygen generating systems and fuel cells. Solid State Ionics 2005, 176, 2095–2103. [Google Scholar] [CrossRef]
- Quarez, E.; Noirault, S.; Caldes, M.T.; Joubert, O. Water incorporation and proton conductivity in titanium substituted barium indate. J. Power Sources 2010, 195, 1136–1141. [Google Scholar]
- Karlsson, M.; Matic, A.; Knee, C.S.; Ahmed, I.; Eriksson, S.G.; Borjesson, L. Short-range structure of proton-conducting perovskite BaInxZr1−xO3−x/2 (x = 0–0.75). Chem. Mater. 2008, 20, 3480–3486. [Google Scholar] [CrossRef]
- Shin, J.F.; Hussey, L.; Orera, A.; Slater, P.R. Enhancement of the conductivity of Ba2In2O5 through phosphate doping. Chem. Commun. 2010, 46, 4613–4615. [Google Scholar] [CrossRef]
- Shin, J.F.; Apperley, D.C.; Slater, P.R. Silicon Doping in Ba2In2O5: Example of a Beneficial Effect of Silicon Incorporation on Oxide Ion/Proton Conductivity. Chem. Mater. 2010, 22, 5945–5948. [Google Scholar] [CrossRef]
- Shin, J.F.; Orera, A.; Apperley, D.C.; Slater, P.R. Oxyanion doping strategies to enhance the ionic conductivity in Ba2In2O5. J. Mater. Chem. 2011, 21, 874–879. [Google Scholar] [CrossRef]
- Shin, J.F.; Slater, P.R. Enhanced CO2 stability of oxyanion doped Ba2In2O5 systems co-doped with La, Zr. J. Power Sources 2011, 196, 8539–8543. [Google Scholar] [CrossRef]
- Shin, J.F.; Joubel, K.; Apperley, D.C.; Slater, P.R. Synthesis and characterization of proton conducting oxyanion doped Ba2Sc2O5. Dalton Trans. 2012, 41, 261–266. [Google Scholar] [CrossRef]
- Smith, A.D.; Shin, J.F.; Slater, P.R. Synthesis and characterization of oxyanion (phosphate, sulphate) doped Ba2Sc2−yGayO5. J. Solid State Chem. 2013, 198, 247–252. [Google Scholar] [CrossRef]
- Soares, H.S.; Zhang, X.; Antunes, I.; Frade, J.R.; Mather, G.C.; Fagg, D.P. Effect of phosphorus additions on the sintering and transport properties of proton conducting BaZr0.85Y0.15O3−delta. J. Solid State Chem. 2012, 191, 27–32. [Google Scholar] [CrossRef]
- Wu, J.; Li, L.P.; Espinosa, W.T.P.; Haile, S.T. Defect chemistry and transport properties of BaxCe0.85M0.15O3−delta. J. Mater. Res. 2004, 19, 2366–2376. [Google Scholar] [CrossRef]
- Larson, A.C.; von Dreele, R.B. General Structure Analysis System (GSAS); Report. No LAUR 86–748; Los Alamos National Laboratory: Los Alamos, NM, USA, 2004. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Smith, A.D.; Slater, P.R. Investigation into the Incorporation of Phosphate into BaCe1−yAyO3−y/2 (A = Y, Yb, In). Inorganics 2014, 2, 16-28. https://doi.org/10.3390/inorganics2010016
Smith AD, Slater PR. Investigation into the Incorporation of Phosphate into BaCe1−yAyO3−y/2 (A = Y, Yb, In). Inorganics. 2014; 2(1):16-28. https://doi.org/10.3390/inorganics2010016
Chicago/Turabian StyleSmith, Alaric D., and Peter R. Slater. 2014. "Investigation into the Incorporation of Phosphate into BaCe1−yAyO3−y/2 (A = Y, Yb, In)" Inorganics 2, no. 1: 16-28. https://doi.org/10.3390/inorganics2010016
APA StyleSmith, A. D., & Slater, P. R. (2014). Investigation into the Incorporation of Phosphate into BaCe1−yAyO3−y/2 (A = Y, Yb, In). Inorganics, 2(1), 16-28. https://doi.org/10.3390/inorganics2010016