Reactivity of Mononuclear and Dinuclear Gold(I) Amidinate Complexes with CS2 and CsBr3
Abstract
:1. Introduction
2. Results and Discussion
Bond Distance/Angle | 4 |
---|---|
Au1–S1 | 2.31240(5) |
Au1–S3 | 2.30871(5) |
Au2–S2 | 2.2789(7) |
Au2–S4 | 2.2888(7) |
Au3–S5 | 2.3051(7) |
Au3–S7 | 2.2900(7) |
Au4–S6 | 2.2869(7) |
Au4–S8 | 2.2996(7) |
Au1–Au2 | 2.76154(5) |
Au2–Au3 | 3.00745(7) |
Au3–Au4 | 2.75717(19) |
S1–C18–S2 | 128.6153(11) |
S3–C38–S4 | 126.9985(11) |
S4–Au2–Au3 | 89.8335(15) |
S2–Au2–Au3 | 90.5685(15) |
3. Experimental Section
3.1. General Considerations
3.2. Synthesis of Ph3PAu[κ1-(2,6-Me2C6H3N)2C(H)], 1
3.3. Synthesis of Ph3PAu[κ1-CS2(2,6-Me2C6H3NC(H)=NC6H3Me2)], 2
3.4. Au2[(2,6-Me2C6H3N)2C(H)]2, 3, from 1 and CsBr3
3.5. Synthesis of Au2[CS2(2,6-Me2C6H3NC(H)=NC6H3Me2)]2, 4
3.6. Synthesis of Au2[(2,6-Me2C6H3N)2C(H)]2(Br)2, 5
3.7. X-ray Crystallography Details.
Compound | 1 | 2 | 4 |
---|---|---|---|
CCDC deposit number | 1013054 | 1013056 | 1008664 |
Empirical formula | C35H34N2PAu | C38H39N2S2PO0.50Au | C36H38N4S4Au2 |
Formula weight (g/mol) | 710.58 | 823.77 | 2097.75 |
Crystal habit, color | Colorless, plate | Yellow, plate | Red, prism |
Temperature (K) | 173(2) | 100(2) | 100(2) |
Space group | P-1 | C2/c | P-1 |
Crystal system | Triclinic | Monoclinic | Triclinic |
Volume (Å3) | 2993.8(11) | 7085.0(7) | 3629.30(16) |
a (Å) | 10.641(2) | 38.566(2) | 8.3937(2) |
b (Å) | 14.542(3) | 8.7877(5) | 15.4728(4) |
c (Å) | 20.465(4) | 27.0810(17) | 29.2585(8) |
α (˚) | 83.247(2) | 90 | 99.1330(10) |
β (˚) | 78.545(2) | 129.4690(10) | 96.0620(10) |
γ (˚) | 75.244(2) | 90 | 102.1610(10) |
Z | 4 | 8 | 2 |
Calculated density (Mg/m3) | 1.577 | 1.545 | 1.920 |
Absorption coefficient (mm−1) | 4.993 | 4.346 | 17.373 |
Final R indices [I > 2σ(I)] | R1 = 0.0236 | R1 = 0.0233 | R1 = 0.0183 |
wR2 = 0.0498 | wR2 = 0.0508 | wR2 = 0.0427 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Abdou, H.E.; Mohamed, A.A.; Fackler, J.P. Gold(I) Nitrogen Chemistry. In Gold Chemistry; Wiley-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2009; pp. 1–45. [Google Scholar]
- Mohamed, A.A. Advances in the coordination chemistry of nitrogen ligand complexes of coinage metals. Coord. Chem. Rev. 2010, 254, 1918–1947. [Google Scholar]
- Mohamed, A.A.; Abdou, H.E.; Fackler, J.P., Jr. Coordination chemistry of gold(II) with amidinate, thiolate and ylide ligands. Coord. Chem. Rev. 2010, 254, 1253–1259. [Google Scholar]
- Abdou, H.E.; Mohamed, A.A.; Fackler, J.P., Jr. Synthesis and X-ray Structures of Dinuclear and Trinuclear Gold(I) and Dinuclear Gold(II) Amidinate Complexes. Inorg. Chem. 2005, 44, 166–168. [Google Scholar] [PubMed]
- Abdou, H.E.; Mohamed, A.A.; Fackler, J.P. Oxidative Addition of Small Molecules to a Dinuclear Au(I) Amidinate Complex, Au2[(2,6-Me2Ph)2N2CH]2. Syntheses and Characterization of Au(II) Amidinate Complexes Including One Which Possesses Au(II)-Oxygen Bonds. Inorg. Chem. 2007, 46, 9692–9699. [Google Scholar] [PubMed]
- Melgarejo, D.Y.; Chiarella, G.M.; Fackler, J.P.; Perez, L.M.; Rodrigue-Witchel, A.; Reber, C. Synthesis and Structure of a Dinuclear Gold(II) Complex with Terminal Fluoride Ligands. Inorg. Chem. 2011, 50, 4238–4240. [Google Scholar] [PubMed]
- Mohamed, A.A.; Abdou, H.E.; Irwin, M.D.; Lopez-de-Luzuriaga, J.M.; Fackler, J.P., Jr. Gold(I) Formamidinate Clusters: The Structure, Luminescence, and Electrochemistry of the Tetranuclear, Base-Free [Au4(ArNC(H)NAr)4]. J. Clust. Sci. 2003, 14, 253–266. [Google Scholar]
- Abdou, H.E.; Mohamed, A.A.; Lopez-de-Luzuriaga, J.M.; Fackler, J.P., Jr. Tetranuclear Gold(I) Clusters with Nitrogen Donor Ligands: Luminescence and X-ray Structure of Gold(I) Naphthylamidinate Complex. J. Clust. Sci. 2004, 15, 397–411. [Google Scholar]
- Abdou, H.; Mohamed, A.; Fackler, J., Jr. Synthesis, Characterization, Luminescence, and Electrochemistry of New Tetranuclear Gold(I) Amidinate Clusters: Au4[PhNC(Ph)NPh]4, Au4[PhNC(CH3)NPh]4, and Au4[ArNC(H)NAr]4. J. Clust. Sci. 2007, 18, 630–641. [Google Scholar]
- Abdou, H.E.; Mohamed, A.A.; López-de-Luzuriaga, J.M.; Monge, M.; Fackler, J.P. Fine-Tuning the Luminescence and HOMO–LUMO Energy Levels in Tetranuclear Gold(I) Fluorinated Amidinate Complexes. Inorg. Chem. 2012, 51, 2010–2015. [Google Scholar] [PubMed]
- Melgarejo, D.Y.; Chiarella, G.M.; Fackler, J.P. Novel Mixed Coordination of N and C Donors to Gold-Gold Centers. Organometallics 2011, 30, 5374–5380. [Google Scholar]
- Vicente, J.; Teresa Chicote, M.; Gonzalez-Herrero, P.; Jones, P.G. CS2 insertion into a gold-carbon bond. First syntheses and characterization of 2,2-diacetylethylene-1,1-dithiolato complexes. Crystal structure of [N(PPh3)2][Au{η2-S2C=C(COMe)2}2]. Chem. Commun. 1997, 2047–2048. [Google Scholar]
- Otto, H.; Werner, H. Synthese, Reaktivität und Struktur von Kupfer-, Silber- und Gold-Komplexen des Typs (C5Me5CS2)M(PR3)n mit einzähnig und zweizähnig gebundenem Dithiocarboxylat-Ligand. Chem. Ber. 1987, 120, 97–104. [Google Scholar]
- Jentsch, D.; Jones, P.G.; Thone, C.; Schwarzmann, E. Insertion of carbon disulphide into a metal-chlorine bond; X-ray structure of AuCl2(η2-S2CCl). J. Chem. Soc. Chem. Commun. 1989, 1495–1496. [Google Scholar]
- Vicente, J.; Chicote, M.-T.; Gonzalez-Herrero, P.; Jones, P.G. Synthesis of the first trithiocarbonatogold complex: [N(PPh3)2]2[Au2(µ2-η2-CS3)2]. First crystal structure of a µ2-η2-bridging trithiocarbonato complex. J Chem. Soc. Chem. Commun. 1995, 745–746. [Google Scholar]
- Pyykko, P. Theoretical chemistry of gold(III). Chem. Soc. Rev. 2008, 37, 1967–1997. [Google Scholar] [PubMed]
- Schmidbaur, H.; Schier, A. A briefing on aurophilicity. Chem. Soc. Rev. 2008, 37, 1931–1951. [Google Scholar] [PubMed]
- Merz, K.M.; Hoffmann, R. d10–d10 Interactions: Multinuclear copper(I) complexes. Inorg. Chem. 1988, 27, 2120–2127. [Google Scholar]
- Lim, S.H.; Olmstead, M.M.; Balch, A.L. Molecular Accordion: Vapoluminescence and Molecular Flexibility in the Orange and Green Luminescent Crystals of the Dimer, Au2(μ-bis-(diphenylphosphino)ethane)2Br2. J. Am. Chem. Soc. 2011, 133, 10229–10238. [Google Scholar] [PubMed]
- Ni, W.-X.; Qiu, Y.-M.; Li, M.; Zheng, J.; Sun, R.W.-Y.; Zhan, S.-Z.; Ng, S.W.; Li, D. Metallophilicity-Driven Dynamic Aggregation of a Phosphorescent Gold(I)–Silver(I) Cluster Prepared by Solution-Based and Mechanochemical Approaches. J. Am. Chem. Soc. 2014, 136, 9532–9535. [Google Scholar] [PubMed]
- Ni, W.-X.; Li, M.; Zheng, J.; Zhan, S.-Z.; Qiu, Y.-M.; Ng, S.W.; Li, D. Approaching White-Light Emission from a Phosphorescent Trinuclear Gold(I) Cluster by Modulating Its Aggregation Behavior. Angew. Chem. Int. Ed. 2013, 52, 13472–13476. [Google Scholar]
- Elian, M.; Chen, M.M.L.; Mingos, D.M.P.; Hoffmann, R. Comparative bonding study of conical fragments. Inorg. Chem. 1976, 15, 1148–1155. [Google Scholar]
- Lauher, J.W.; Wald, K. Synthesis and structure of triphenylphosphinegold-dodecacarbonyltricobaltiron ([FeCo3(CO)12AuPPh3]): A trimetallic trigonal-bipyramidal cluster. Gold derivatives as structural analogs of hydrides. J. Am. Chem. Soc. 1981, 103, 7648–7650. [Google Scholar]
- Raubenheimer, H.G.; Schmidbaur, H. Gold Chemistry Guided by the Isolobality Concept. Organometallics 2011, 31, 2507–2522. [Google Scholar]
- Wegner, G. L.; Jockisch, A.; Schier, A.; Schmidbaur, H. Crystal and Molecular Structures of the Sulfurization and Selenation Products of Bis[bis(trimethylsilyl)amino]germanium(II). Crystal Structure of (Triphenylphosphine)gold(I) Bis(trimethylsilyl)amide. Verl. Z. Naturforsch. 2000, 55b, 347–351. [Google Scholar]
- Johnson, M.W.; Shevick, S.L.; Toste, F.D.; Bergman, R.G. Preparation and reactivity of terminal gold(I) amides and phosphides. Chem. Sci. 2013, 4, 1023–1027. [Google Scholar]
- Altaf, M.; Monim-ul-Mehboob, M.; Seliman, A.A.A.; Isab, A.A.; Dhuna, V.; Bhatia, G.; Dhuna, K. Synthesis, X-ray structures, spectroscopic analysis and anticancer activity of novel gold(I) carbene complexes. J. Organomet. Chem. 2014, 765, 68–79. [Google Scholar]
- Keter, F.K.; Guzei, I.A.; Nell, M.; van Zyl, W.E.; Darkwa, J. Phosphinogold(I) Dithiocarbamate Complexes: Effect of the Nature of Phosphine Ligand on Anticancer Properties. Inorg. Chem. 2014, 53, 2058–2067. [Google Scholar] [PubMed]
- Kriechbaum, M.; Otte, D.; List, M.; Monkowius, U. Facile oxidation of NHC-Au(I) to NHC-Au(III) complexes by CsBr3. Dalton Trans. 2014, 43, 8781–8791. [Google Scholar] [PubMed]
- Dormoy, J.-R.; Castro, B. Triphenylphosphine Dibromide. In Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons, Ltd.: New York, NY, USA, 2001. [Google Scholar]
- Hesse, R.; Per, J. The Crystal and Molecular Structure of the Gold(I) Dipropyldithiocarbamate Dimer. Acta Chem. Scand. 1972, 26, 3855–3864. [Google Scholar]
- Calabro, D.C.; Harrison, B.A.; Palmer, G.T.; Moguel, M.K.; Rebbert, R.L.; Burmeister, J.L. Thiocyanation, selenocyanation, and halogenation reactions of dithiocarbamate complexes of gold(I) and silver(I). Generation of gold(II) and silver(II) complexes. Inorg. Chem. 1981, 20, 4311–4316. [Google Scholar]
- Heinrich, D.D.; Wang, J.C.; Fackler, J.P. Structure of Au2[S2CN(C2H5)2]2, bis(diethyldithiocarbamato)digold(I). Acta. Crystallogr. 1990, 46, 1444–1447. [Google Scholar]
- Jamaludin, N.S.; Goh, Z.-J.; Cheah, Y.K.; Ang, K.-P.; Sim, J.H.; Khoo, C.H.; Fairuz, Z.A.; Binti Abdul Halim, S.N.; Ng, S.W.; Seng, H.-L.; et al. Phosphanegold(I) dithiocarbamates, R3PAu[SC(S)N(iPr)CH2CH2OH] for R = Ph, Cy and Et: Role of phosphane-bound R substituents upon in vitro cytotoxicity against MCF-7R breast cancer cells and cell death pathways. Eur. J. Med. Chem. 2013, 67, 127–141. [Google Scholar] [PubMed]
- Roberts, R.J.; Belanger-Desmarais, N.; Reber, C.; Leznoff, D.B. The luminescence properties of linear vs. kinked aurophilic 1-D chains of bis(dithiocarbamato)gold(I) dimers. Chem. Commun. 2014, 50, 3148–3150. [Google Scholar]
- Roberts, R.M. The Reaction of Diarylformamidines with Ethyl Malonate1. J. Org. Chem. 1949, 14, 277–284. [Google Scholar] [PubMed]
- Apex II Suite; Bruker-Nonius AXS: Madison, WI, USA, 2006.
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A: Found. Crystallogr. 2008, 64, 112–122. [Google Scholar]
- Barbour, L.J. X-seed—A software tool for supramolecular crystallography. J. Supramol. Chem. 2003, 1, 189–191. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lane, A.C.; Barnes, C.L.; Vollmer, M.V.; Walensky, J.R. Reactivity of Mononuclear and Dinuclear Gold(I) Amidinate Complexes with CS2 and CsBr3. Inorganics 2014, 2, 540-551. https://doi.org/10.3390/inorganics2040540
Lane AC, Barnes CL, Vollmer MV, Walensky JR. Reactivity of Mononuclear and Dinuclear Gold(I) Amidinate Complexes with CS2 and CsBr3. Inorganics. 2014; 2(4):540-551. https://doi.org/10.3390/inorganics2040540
Chicago/Turabian StyleLane, Andrew C., Charles L. Barnes, Matthew V. Vollmer, and Justin R. Walensky. 2014. "Reactivity of Mononuclear and Dinuclear Gold(I) Amidinate Complexes with CS2 and CsBr3" Inorganics 2, no. 4: 540-551. https://doi.org/10.3390/inorganics2040540
APA StyleLane, A. C., Barnes, C. L., Vollmer, M. V., & Walensky, J. R. (2014). Reactivity of Mononuclear and Dinuclear Gold(I) Amidinate Complexes with CS2 and CsBr3. Inorganics, 2(4), 540-551. https://doi.org/10.3390/inorganics2040540