Synthesis of 1,3-Diols from Isobutene and HCHO via Prins Condensation-Hydrolysis Using CeO2 Catalysts: Effects of Crystal Plane and Oxygen Vacancy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Reaction Temperature
2.2. Time-On-Stream Profile
2.3. Effect of Crystalline Plane
3. Materials and Methods
3.1. Materials
3.2. Preparation of the CeO2 Catalysts
3.3. Prins Condensation-Hydrolysis Reaction
3.4. Acidity Characterization by NH3 Temperature-Programmed Desorption (NH3-TPD)
3.5. Acidity Characterization by Pyridine Adsorption IR Spectroscopy
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Isagulyants, V.I.; Khaimova, T.G.; Melikyan, V.R.; Pokrovskaya, S.V. Condensation of unsaturated compounds with formaldehyde (the Prins reaction). Russ. Chem. Rev. 1968, 37, 17–25. [Google Scholar] [CrossRef]
- Arundale, E.; Mikeska, L.A. The olefin-aldehyde condensation. The Prins reaction. Chem. Rev. 1952, 51, 505–555. [Google Scholar] [CrossRef]
- Ivanova, I.; Sushkevich, V.L.; Kolyagin, Y.G.; Ordomsky, V.V. Catalysis by coke deposits: Synthesis of isoprene over solid catalysts. Angew. Chem. Int. Ed. 2013, 52, 12961–12964. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, D.K.; Raju, K.V.S.N. Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. 2007, 32, 352–418. [Google Scholar] [CrossRef]
- Fenouillot, F.; Rousseau, A.; Colomines, G.; Saint-Loup, R.; Pascault, J.P. Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review. Prog. Polym. Sci. 2010, 35, 578–622. [Google Scholar] [CrossRef]
- Yashima, T.; Katoh, Y.; Komatsu, T. Synthesis of 3-methyl-3-butene-1-ol from isobutene and formaldehyde on FeMCM-22 zeolites. In Studies in Surface Science and Catalysis; Kiricsi, I., Pál-Borbély, G., Nagy, J.B., Karge, H.G., Eds.; Elsevier: Amsterdam, The Netherlands, 1999; Volume 125, pp. 507–514. [Google Scholar]
- Sun, J.; Zhu, K.; Gao, F.; Wang, C.; Liu, J.; Peden, C.H.; Wang, Y. Direct conversion of bio-ethanol to isobutene on nanosized ZnxZryOz mixed oxides with balanced acid-base sites. J. Am. Chem. Soc. 2011, 133, 11096–11099. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Sun, J.; Smith, C.; Wang, Y. A study of ZnxZryOz mixed oxides for direct conversion of ethanol to isobutene. Appl. Catal. A 2013, 467, 91–97. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y. Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal. 2014, 4, 1078–1090. [Google Scholar] [CrossRef]
- Deo, G.; Wachs, I.E. Reactivity of supported vanadium-oxide catalysts—The partial oxidation of methanol. J. Catal. 1994, 146, 323–334. [Google Scholar] [CrossRef]
- Routray, K.; Zhou, W.; Kiely, C.J.; Wachs, I.E. Catalysis science of methanol oxidation over iron vanadate catalysts: Nature of the catalytic active sites. ACS Catal. 2011, 1, 54–66. [Google Scholar] [CrossRef]
- Martín, M.; Grossmann, I.E. Optimal simultaneous production of i-butene and ethanol from switchgrass. Biomass Bioenergy 2014, 61, 93–103. [Google Scholar] [CrossRef]
- Crisci, A.J.; Dou, H.; Prasomsri, T.; Román-Leshkov, Y. Cascade reactions for the continuous and selective production of isobutene from bioderived acetic acid over zinc-zirconia catalysts. ACS Catal. 2014, 4, 4196–4200. [Google Scholar] [CrossRef]
- De la Cruz, V.; Hernández, S.; Martín, M.; Grossmann, I.E. Integrated synthesis of biodiesel, bioethanol, isobutene, and glycerol ethers from algae. Ind. Eng. Chem. Res. 2014, 53, 14397–14407. [Google Scholar] [CrossRef]
- Sushkevich, V.L.; Ordomsky, V.V.; Ivanova, I.I. Synthesis of isoprene from formaldehyde and isobutene over phosphate catalysts. Appl. Catal. A 2012, 441–442, 21–29. [Google Scholar] [CrossRef]
- Sreevardhan Reddy, S.; David Raju, B.; Siva Kumar, V.; Padmasri, A.H.; Narayanan, S.; Rama Rao, K.S. Sulfonic acid functionalized mesoporous SBA-15 for selective synthesis of 4-phenyl-1,3-dioxane. Catal. Commun. 2007, 8, 261–266. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Nishimichi, C. Olefin-aldehyde condensation reaction on solid acids. Catal. Today 1993, 16, 555–562. [Google Scholar] [CrossRef]
- Dumitriu, E.; Trong On, D.; Kaliaguine, S. Isoprene by Prins condensation over acidic molecular sieves. J. Catal. 1997, 170, 150–160. [Google Scholar] [CrossRef]
- Krzywicki, A.; Wilanowicz, T.; Malinowski, S. Catalytic and physicochemical properties of the Al2O3–H3PO4 system, I. Vapor phase condensation of isobutylene and formaldehyde—The Prins reaction. React. Kinet. Catal. Lett. 1979, 11, 399–403. [Google Scholar] [CrossRef]
- Ai, M. The formation of isoprene by means of a vapor-phase prins reaction between formaldehyde and isobutene. J. Catal. 1987, 106, 280–286. [Google Scholar] [CrossRef]
- Li, G.; Gu, Y.; Ding, Y.; Zhang, H.; Wang, J.; Gao, Q.; Yan, L.; Suo, J. Wells–Dawson type molybdovanadophosphoric heteropolyacids catalyzed Prins cyclization of alkenes with paraformaldehyde under mild conditions—a facile and efficient method to 1,3-dioxane derivatives. J. Mol. Catal. A Chem. 2004, 218, 147–152. [Google Scholar] [CrossRef]
- Songsiri, N.; Rempel, G.L.; Prasassarakich, P. Liquid-phase synthesis of isoprene from methyltert-butyl ether and formalin using Keggin-type heteropolyacids. Ind. Eng. Chem. Res. 2016, 55, 8933–8940. [Google Scholar] [CrossRef]
- Wang, Y.H.; Wang, F.; Zhang, C.F.; Zhang, J.; Li, M.R.; Xu, J. Transformylating amine with DMF to formamide over CeO2 catalyst. Chem. Commun. 2014, 50, 2438–2441. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Wang, F.; Song, Q.; Xin, Q.; Xu, S.T.; Xu, J. Heterogeneous ceria catalyst with water-tolerant Lewis acidic sites for one-pot synthesis of 1,3-diols via Prins condensation and hydrolysis reactions. J. Am. Chem. Soc. 2013, 135, 1506–1515. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Y.; Lu, J.; Zhang, C.; Wang, M.; Li, M.; Liu, X.; Wang, F. Conversion of isobutene and formaldehyde to diol using praseodymium-doped CeO2 catalyst. ACS Catal. 2016, 6, 8248–8254. [Google Scholar] [CrossRef]
- Tamura, M.; Siddiki, S.; Shimizu, K. CeO2 as a versatile and reusable catalyst for transesterification of esters with alcohols under solvent-free conditions. Green Chem. 2013, 15, 1641–1646. [Google Scholar] [CrossRef]
- Tamura, M.; Sawabe, K.; Tomishige, K.; Satsuma, A.; Shimizu, K.-I. Substrate-specific heterogeneous catalysis of CeO2 by entropic effects via multiple interactions. ACS Catal. 2015, 5, 20–26. [Google Scholar] [CrossRef]
- Tamura, M.; Noro, K.; Honda, M.; Nakagawa, Y.; Tomishige, K. Highly efficient synthesis of cyclic ureas from CO2 and diamines by a pure CeO2 catalyst using a 2-propanol solvent. Green Chem. 2013, 15, 1567–1577. [Google Scholar] [CrossRef]
- Paier, J.; Penschke, C.; Sauer, J. Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment. Chem. Rev. 2013, 113, 3949–3985. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Huang, Z.Q.; Ma, Y.; Gao, W.; Li, J.; Cao, F.; Li, L.; Chang, C.R.; Qu, Y. Solid frustrated-Lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO2. Nat. Commun. 2017, 8, 15266. [Google Scholar] [CrossRef] [PubMed]
- Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 2016, 116, 5987–6041. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.W.; Li, H.; Chen, L.Q. Nanostructured ceria-based materials: Synthesis, properties, and applications. Energy Environ. Sci. 2012, 5, 8475–8505. [Google Scholar] [CrossRef]
- Si, R.; Flytzani-Stephanopoulos, M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew. Chem. Int. Ed. 2008, 47, 2884–2887. [Google Scholar] [CrossRef] [PubMed]
- Dumitriu, E.; Hulea, V.; Fechete, I.; Catrinescu, C.; Auroux, A.; Lacaze, J.-F.; Guimon, C. Prins condensation of isobutylene and formaldehyde over Fe-silicates of MFI structure. Appl. Catal. A 1999, 181, 15–28. [Google Scholar] [CrossRef]
- Qiao, Z.A.; Wu, Z.L.; Dai, S. Shape-controlled ceria-based nanostructures for catalysis applications. ChemSusChem 2013, 6, 1821–1833. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, F.; Ma, J.P.; Li, M.R.; Zhang, Z.; Wang, Y.H.; Zhang, X.C.; Xu, J. Investigations on the crystal plane effect of ceria on gold catalysis in the oxidative dehydrogenation of alcohols and amines in the liquid phase. Chem. Commun. 2014, 50, 292–294. [Google Scholar] [CrossRef] [PubMed]
- Mai, H.X.; Sun, L.D.; Zhang, Y.W.; Si, R.; Feng, W.; Zhang, H.P.; Liu, H.C.; Yan, C.H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 2005, 109, 24380–24385. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Y.; Wang, M.; Lu, J.; Zhang, C.; Li, L.; Jiang, J.; Wang, F. The cascade synthesis of α,β-unsaturated ketones via oxidative C–C coupling of ketones and primary alcohols over a ceria catalyst. Catal. Sci. Technol. 2016, 6, 1693–1700. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Wang, M.; Lü, J.; Li, L.; Zhang, Z.; Li, M.; Jiang, J.; Wang, F. An investigation of the effects of CeO2 crystal planes on the aerobic oxidative synthesis of imines from alcohols and amines. Chin. J. Catal. 2015, 36, 1623–1630. [Google Scholar] [CrossRef]
- Huang, X.S.; Sun, H.; Wang, L.C.; Liu, Y.M.; Fan, K.N.; Cao, Y. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation. Appl. Catal. B 2009, 90, 224–232. [Google Scholar] [CrossRef]
- Parry, E.P. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. J. Catal. 1963, 2, 371–379. [Google Scholar] [CrossRef]
- Chakraborty, B.; Viswanathan, B. Surface acidity of MCM-41 by in situ IR studies of pyridine adsorption. Catal. Today 1999, 49, 253–260. [Google Scholar] [CrossRef]
- Tamura, M.; Shimizu, K.-I.; Satsuma, A. Comprehensive IR study on acid/base properties of metal oxides. Appl. Catal. A 2012, 433–434, 135–145. [Google Scholar] [CrossRef]
- Emeis, C.A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 1993, 141, 347–354. [Google Scholar] [CrossRef]
- Tamura, M.; Wakasugi, H.; Shimizu, K.; Satsuma, A. Efficient and substrate-specific hydration of nitriles to amides in water by using a CeO2 catalyst. Chem. Eur. J. 2011, 17, 11428–11431. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Mann, A.K.P.; Li, M.; Overbury, S.H. Spectroscopic investigation of surface-dependent acid–base property of ceria nanoshapes. J. Phys. Chem. C 2015, 119, 7340–7350. [Google Scholar] [CrossRef]
- Zaki, M.I.; Hussein, G.A.M.; Mansour, S.A.A.; El-Ammawy, H.A. Adsorption and surface reactions of pyridine on pure and doped ceria catalysts as studied by infrared spectroscopy. J. Mol. Catal. 1989, 51, 209–220. [Google Scholar] [CrossRef]
- Binet, C.; Daturi, M.; Lavalley, J.-C. IR study of polycrystalline ceria properties in oxidised and reduced states. Catal. Today 1999, 50, 207–225. [Google Scholar] [CrossRef]
- Flego, C.; Kiricsi, I.; Perego, C.; Bellussi, G. The Origin of the Band at 1462 cm−1 Generally Appearing Upon Desorption of Pyridine from Acidic Solids-Steps Towards a More Comprehensive Understanding. Catal. Lett. 1995, 35, 125–133. [Google Scholar] [CrossRef]
- Shyu, J.Z.; Weber, W.H.; Gandhi, H.S. Surface characterization of alumina-supported ceria. J. Phys. Chem. 1988, 92, 4964–4970. [Google Scholar] [CrossRef]
- Wu, Z.; Li, M.; Howe, J.; Meyer, H.M.; Overbury, S.H. Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 2010, 26, 16595–16606. [Google Scholar] [CrossRef] [PubMed]
- Popovic, Z.V.; Dohcevic-Mitrovic, Z.; Konstantinovic, M.J.; Scepanovic, M. Raman scattering characterization of nanopowders and nanowires (rods). J. Raman Spectrosc. 2007, 38, 750–755. [Google Scholar] [CrossRef]
- Li, L.; Chen, F.; Lu, J.Q.; Luo, M.F. Study of defect sites in Ce1-xMxO2-δ (x = 0.2) solid solutions using Raman spectroscopy. J. Phys. Chem. A 2011, 115, 7972–7977. [Google Scholar] [CrossRef] [PubMed]
Entry | Catalyst | Exposed Crystalline Planes | Co A595/A462 2 | S 4 | Conv. (%) | Sel. (%) | |
---|---|---|---|---|---|---|---|
3 | 4 | ||||||
1 | CeO2-rod | (110)/(100) = 2/1 | 0.077 | 86 | 32 | 13 | 87 |
2 | CeO2-cube | (100) | 0.001 | 21 | 8 | 14 | 86 |
3 | CeO2-octahedron | (111) | 0.003 | 9 | 1 | 12 | 88 |
4 | Pristine CeO2 | (111), (110), (100) | 0.009 3 | 67 | 13 | 9 | 91 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wang, Y.; Lu, J.; Wang, M.; Zhang, J.; Liu, X.; Wang, F. Synthesis of 1,3-Diols from Isobutene and HCHO via Prins Condensation-Hydrolysis Using CeO2 Catalysts: Effects of Crystal Plane and Oxygen Vacancy. Inorganics 2017, 5, 75. https://doi.org/10.3390/inorganics5040075
Zhang Z, Wang Y, Lu J, Wang M, Zhang J, Liu X, Wang F. Synthesis of 1,3-Diols from Isobutene and HCHO via Prins Condensation-Hydrolysis Using CeO2 Catalysts: Effects of Crystal Plane and Oxygen Vacancy. Inorganics. 2017; 5(4):75. https://doi.org/10.3390/inorganics5040075
Chicago/Turabian StyleZhang, Zhixin, Yehong Wang, Jianmin Lu, Min Wang, Jian Zhang, Xuebin Liu, and Feng Wang. 2017. "Synthesis of 1,3-Diols from Isobutene and HCHO via Prins Condensation-Hydrolysis Using CeO2 Catalysts: Effects of Crystal Plane and Oxygen Vacancy" Inorganics 5, no. 4: 75. https://doi.org/10.3390/inorganics5040075
APA StyleZhang, Z., Wang, Y., Lu, J., Wang, M., Zhang, J., Liu, X., & Wang, F. (2017). Synthesis of 1,3-Diols from Isobutene and HCHO via Prins Condensation-Hydrolysis Using CeO2 Catalysts: Effects of Crystal Plane and Oxygen Vacancy. Inorganics, 5(4), 75. https://doi.org/10.3390/inorganics5040075