Thiazole- and Thiadiazole-Based Metal–Organic Frameworks and Coordination Polymers for Luminescent Applications
Abstract
:1. Introduction
2. Thiazole-Based MOFs and CPs as Luminescent Materials
3. Thiadiazole-Based MOFs and CPs as Luminescent Sensors
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Blasse, G.; Grabmaier, B. Luminescent Materials; Springer: Berlin, Germany, 1994. [Google Scholar]
- Bünzli, J.-C.G. Lanthanide Luminescence for Biomedical Analyses and Imaging. Chem. Rev. 2010, 110, 2729–2755. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Zha, D.; Anslyn, E.V. Recent Advances in Supramolecular Analytical Chemistry Using Optical Sensing. Chem. Rev. 2015, 115, 7840–7892. [Google Scholar] [CrossRef] [PubMed]
- Batten, S.R.; Champness, N.R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M.P.; Reedijk, J. Terminology of Metal–Organic Frameworks and Coordination Polymers (Iupac Recommendations 2013). Pure Appl. Chem. 2013, 85, 1715–1724. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent Functional Metal–Organic Frameworks. Chem. Rev. 2012, 112, 1126–1162. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.-W.; Zhou, H.-L.; Liu, S.-Y.; Cheng, X.-N.; Lin, R.-B.; Qi, X.-L.; Zhang, J.-P.; Chen, X.-M. Encapsulating Pyrene in a Metal–Organic Zeolite for Optical Sensing of Molecular Oxygen. Chem. Mater. 2015, 27, 8255–8260. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, S.; Day, G.; Wang, X.; Yang, X.; Zhou, H.-C. Luminescent Sensors Based on Metal–Organic Frameworks. Coord. Chem. Rev. 2018, 354, 28–45. [Google Scholar] [CrossRef]
- Lustig, W.P.; Mukherjee, S.; Rudd, N.D.; Desai, A.V.; Li, J.; Ghosh, S.K. Metal–Organic Frameworks: Functional Luminescent and Photonic Materials for Sensing Applications. Chem. Soc. Rev. 2017, 46, 3242–3285. [Google Scholar] [CrossRef]
- Yi, F.; Chen, D.; Wu, M.; Han, L.; Jiang, H.-L. Chemical Sensors Based on Metal–Organic Frameworks. ChemPlusChem 2016, 81, 675–690. [Google Scholar] [CrossRef]
- Allendorf, M.D.; Bauer, C.A.; Bhakta, R.K.; Houk, R.J.T. Luminescent Metal–Organic Frameworks. Chem. Rev. 2009, 38, 1330–1352. [Google Scholar] [CrossRef]
- Cepeda, J.; Rodríguez-Diéguez, A. Tuning the Luminescence Performance of Metal–Organic Frameworks Based on d10 Metal Ions: From an Inherent Versatile Behaviour to their Response to External Stimuli. CrystEngComm 2016, 18, 8556–8573. [Google Scholar] [CrossRef]
- Barbieri, A.; Accorsi, G.; Armaroli, N. Luminescent Complexes Beyond the Platinum Group: The d10 Avenue. Chem. Commun. 2008, 2185–2193. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Chen, B.; Qian, G. Lanthanide Metal-Organic Frameworks for Luminescent Sensing and Light-Emitting Applications. Coord. Chem. Rev. 2014, 273–274, 76–86. [Google Scholar] [CrossRef]
- San Sebastian, E.; Rodríguez-Diéguez, A.; Seco, J.M.; Cepeda, J. Coordination Polymers with Intriguing Photoluminescence Behavior: The Promising Avenue for Greatest Long-Lasting Phosphors. Eur. J. Inorg. Chem. 2018, 2155–2174. [Google Scholar] [CrossRef]
- Jiao, J.; Gong, W.; Wu, X.; Yang, S.; Cui, Y. Multivariate Crystalline Porous Materials: Synthesis, Property and Potential Application. Coord. Chem. Rev. 2019, 385, 174–190. [Google Scholar] [CrossRef]
- Du, M.; Li, C.-P.; Liu, C.-S.; Fang, S.-M. Design and Construction of Coordination Polymers with Mixed-Ligand Synthetic Strategy. Coord. Chem. Rev. 2013, 257, 1282–1305. [Google Scholar] [CrossRef]
- Lescouet, T.; Kockrick, E.; Bergeret, G.; Pera-Titus, M.; Aguado, S.; Farrusseng, D. Homogeneity of Flexible Metal–Organic Frameworks Containing Mixed Linkers. J. Mater. Chem. 2012, 22, 10287–10293. [Google Scholar] [CrossRef]
- Travlou, N.L.A.; Singh, K.; Rodriguez-Castellon, E.; Bandosz, T.J. Cu–BTC MOF–Graphene-Based Hybrid Materials as Low Concentration Ammonia Sensors. J. Mater. Chem. A 2015, 3, 11417–11429. [Google Scholar] [CrossRef]
- Desai, A.V.; Samanta, P.; Manna, B.; Ghoh, S.K. Aqueous Phase Nitric Oxide Detection by an Amine-Decorated Metal–Organic Framework. Chem. Commun. 2015, 51, 6111–6114. [Google Scholar] [CrossRef] [Green Version]
- Gassensmith, J.J.; Kim, J.Y.; Holcroft, J.M.; Farha, O.K.; Stoddart, J.F.; Hupp, J.T.; Jeong, N.C. A Metal–Organic Framework-Based Material for Electrochemical Sensing of Carbon Dioxide. J. Am. Chem. Soc. 2014, 136, 8277–8282. [Google Scholar] [CrossRef]
- Cui, J.; Wong, Y.-L.; Zeller, M.; Hunter, A.D.; Xu, Z. Pd Uptake and H2S Sensing by an Amphoteric Metal–Organic Framework with a Soft Core and Rigid Side Arms. Angew. Chem. Int. Ed. 2014, 53, 14438–14442. [Google Scholar] [CrossRef]
- Barrett, S.M.; Wang, C.; Lin, W. Oxygen Sensing via Phosphorescence Quenching of Doped Metal–Organic Frameworks. J. Mater. Chem. 2012, 22, 10329–10334. [Google Scholar] [CrossRef]
- Xie, Z.; Ma, L.; deKrafft, K.E.; Jin, A.; Lin, W. Porous Phosphorescent Coordination Polymers for Oxygen Sensing. J. Am. Chem. Soc. 2010, 132, 922–923. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Feng, G.; Song, Z.; Zhou, Y.P.; Chao, H.Y.; Yuan, D.; Tan, T.T.; Guo, Z.; Hu, Z.; Tang, B.Z.; et al. Two-Dimensional Metal–Organic Framework with Wide Channels and Responsive Turn-On Fluorescence for the Chemical Sensing of Volatile Organic Compounds. J. Am. Chem. Soc. 2014, 136, 7241–7244. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, S.; Song, D. A Luminescent Metal–Organic Framework as a Turn-On Sensor for DMF Vapor. Angew. Chem. Int. Ed. 2013, 52, 710–713. [Google Scholar] [CrossRef]
- Shustova, N.B.; McCarthy, B.D.; Dinca, M. Metal–Organic Frameworks: An Alternative to Aggregation-Induced Emission. J. Am. Chem. Soc. 2011, 133, 20126–20129. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-Induced Emission. Chem. Soc. Rev. 2011, 40, 5361–5388. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.S.; Yang, J.; Liu, Y.Y.; Ma, J.F. Fluorescent Aromatic Tag-Functionalized MOFs for Highly Selective Sensing of Metal Ions and Small Organic Molecules. Inorg. Chem. 2016, 55, 2261–2273. [Google Scholar] [CrossRef]
- Shustova, N.B.; Cozzolino, A.F.; Reineke, S.; Baldo, M.; Dinca, M. Selective Turn-On Ammonia Sensing Enabled by High-Temperature Fluorescence in Metal–Organic Frameworks with Open Metal Sites. J. Am. Chem. Soc. 2013, 135, 13326–13329. [Google Scholar] [CrossRef]
- Mallick, A.; Garai, B.; Addicoat, M.A.; Petkov, P.S.; Heine, T.; Banerjee, R. Solid State Organic Amine Detection in a Photochromic Porous Metal Organic Framework. Chem. Sci. 2015, 6, 1420–1425. [Google Scholar] [CrossRef] [Green Version]
- Takashima, Y.; Martinez, V.M.; Furukawa, S.; Kondo, M.; Shimomura, S.; Uehara, H.; Nakahama, M.; Sugimoto, K.; Kitagawa, S. Molecular Decoding Using Luminescence from an Entangled Porous Framework. Nat. Commun. 2011, 2, 168. [Google Scholar] [CrossRef] [Green Version]
- Stylianou, K.C.; Heck, R.; Chong, S.Y.; James, J.B.; Jones, T.A.; Khimyak, Y.Z.; Bradshaw, D.; Rosseinsky, M.J. A Guest-Responsive Fluorescent 3D Microporous Metal−Organic Framework Derived from a Long-Lifetime Pyrene Core. J. Am. Chem. Soc. 2010, 132, 4119–4130. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Desai, A.V.; Manna, B.; Inamdar, A.I.; Ghosh, S.K. Exploitation of Guest Accessible Aliphatic Amine Functionality of a Metal–Organic Framework for Selective Detection of 2,4,6-Trinitrophenol (TNP) in Water. Cryst. Growth Des. 2015, 15, 4627–4634. [Google Scholar] [CrossRef]
- Nagarkar, S.S.; Desai, A.V.; Samanta, P.; Ghosh, S.K. Aqueous Phase Selective Detection of 2,4,6-Trinitrophenol Using a Fluorescent Metal–Organic Framework with a Pendant Recognition Site. Dalton Trans. 2015, 44, 15175–15180. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Feng, X.; Han, T.; Wang, S.; Lin, Z.; Dong, Y.; Wang, B. Tuning the Luminescence of Metal–Organic Frameworks for Detection of Energetic Heterocyclic Compounds. J. Am. Chem. Soc. 2014, 136, 15485–15488. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Lin, L.-X.; Fang, Z.-P.; Yang, S.-P.; Qiu, G.-H.; Chen, J.-X.; Chen, W.-H. A Water-Stable Metal–Organic Framework of a Zwitterionic Carboxylate with Dysprosium: A Sensing Platform for Ebolavirus RNA Sequences. Chem. Commun. 2016, 52, 132–135. [Google Scholar] [CrossRef]
- Zhang, H.T.; Zhang, J.W.; Huang, G.; Du, Z.Y.; Jiang, H.L. An Amine-Functionalized Metal–Organic Framework as a Sensing Platform for DNA Detection. Chem. Commun. 2014, 50, 12069–12072. [Google Scholar] [CrossRef]
- Zhang, S.-R.; Li, J.; Du, D.-Y.; Qin, J.-S.; Li, S.-L.; He, W.-W.; Su, Z.-M.; Lan, Y.-Q. A Multifunctional Microporous Anionic Metal–Organic Framework for Column-Chromatographic Dye Separation and Selective Detection and Adsorption of Cr3+. J. Mater. Chem. A 2015, 3, 23426–23434. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, L.; Liu, Z.-Y.; Wang, X.-G.; Ding, B.; Yin, L.; Zhou, B.-B.; Li, M.-S.; Wang, J.-X.; Zhao, X.-J. An Ideal Detector Composed of Two-Dimensional Cd(II)-Triazole Frameworks for Nitro-Compound Explosives and Potassium Dichromate. Chem. Eur. J. 2015, 21, 14171–14178. [Google Scholar] [CrossRef]
- Wu, P.; Liu, Y.; Liu, Y.; Wang, J.; Li, Y.; Liu, W.; Wang, J. Cadmium-Based Metal–Organic Framework as a Highly Selective and Sensitive Ratiometric Luminescent Sensor for Mercury(II). Inorg. Chem. 2015, 54, 11046–11048. [Google Scholar] [CrossRef]
- Hao, J.-N.; Yan, B. A Water-Stable Lanthanide-Functionalized MOF as a Highly Selective and Sensitive Fluorescent Probe for Cd2+. Chem. Commun. 2015, 51, 7737–7740. [Google Scholar] [CrossRef]
- Cui, L.; Wu, J.; Li, J.; Ju, H. Electrochemical Sensor for Lead Cation Sensitized with a DNA Functionalized Porphyrinic Metal–Organic Framework. Anal. Chem. 2015, 87, 10635–10641. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, Y.; Xie, J.; Hu, X. Metal–Organic Framework Modified Carbon Paste Electrode for Lead Sensor. Sens. Actuators B 2013, 177, 1161–1166. [Google Scholar] [CrossRef]
- Tan, H.; Liu, B.; Chen, Y. Lanthanide Coordination Polymer Nanoparticles for Sensing of Mercury(II) by Photoinduced Electron Transfer. ACS Nano 2012, 6, 10505–10511. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.-P.; Yu, Y.; Dong, Y.-B. Fluorene-Based Cu(II)-MOF: A Visual Colorimetric Anion Sensor and Separator Based on an Anion-Exchange Approach. Chem. Commun. 2012, 48, 2946–2948. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.-F.; Lam, M.H.W.; Wong, W.-Y. A Heterobimetallic Ruthenium(II)–Copper(II) Donor–Acceptor Complex as a Chemodosimetric Ensemble for Selective Cyanide Detection. Inorg. Chem. 2004, 43, 8387–8393. [Google Scholar] [CrossRef] [PubMed]
- Robin, A.Y.; Fromm, K.M. Coordination Polymer Networks with O- And N-Donors: What They Are, Why and How They Are Made. Coord. Chem. Rev. 2006, 250, 2127–2157. [Google Scholar] [CrossRef]
- Janiak, C. Engineering Coordination Polymers Towards Applications. Dalton Trans. 2003, 2781–2804. [Google Scholar] [CrossRef]
- Esteves, C.I.C.; Silva, A.M.F.; Raposo, M.M.M.; Costa, S.P.G. Unnatural Benz-X-Azolyl Asparagine Derivatives as Novel Fluorescent Amino Acids: Synthesis and Photophysical Characterization. Tetrahedron 2009, 65, 9373–9377. [Google Scholar] [CrossRef] [Green Version]
- Batista, R.M.F.; Costa, S.P.G.; Raposo, M.M.M. Synthesis of New Fluorescent 2-(2′,2″-Bithienyl)-1,3-Benzothiazoles. Tetrahedron Lett. 2004, 45, 2825–2828. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-H.; Otomo, A.; Nakahama, T.; Yamada, T.; Kamikado, T.; Yokoyama, S.; Mashiko, S. Novel Rigid-Rod 2,6-Diphenylbenzo[1,2-d:4,5-d’]Bisthiazole (DPBBT) Derivatives for Second-Order Nonlinear Optical Chromophores. J. Mater. Chem. 2002, 12, 2187–2188. [Google Scholar] [CrossRef]
- Breitung, E.M.; Shu, C.-F.; McMahon, R.J. Thiazole and Thiophene Analogues of Donor−Acceptor Stilbenes: Molecular Hyperpolarizabilities and Structure−Property Relationships. J. Am. Chem. Soc. 2000, 122, 1154–1160. [Google Scholar] [CrossRef]
- Sangiorgi, N.; Sangiorgi, A.; Dessì, A.; Zani, L.; Calamante, M.; Reginato, G.; Mordini, A.; Sanson, A. Improving the Efficiency Of Thin-Film Fiber-Shaped Dye-Sensitized Solar Cells By Using Organic Sensitizers. Sol. Energy Mater. Sol. Cells 2020, 204, 110209. [Google Scholar] [CrossRef]
- Dessì, A.; Monai, M.; Bessi, M.; Montini, T.; Calamante, M.; Mordini, M.; Reginato, G.; Trono, C.; Fornasiero, P.; Zani, L. Towards Sustainable H2 Production: Rational Design of Hydrophobic Triphenylamine-based Dyes for Sensitized Ethanol Photoreforming. ChemSusChem 2018, 11, 793–805. [Google Scholar] [CrossRef] [PubMed]
- Staderini, S.; Tuci, G.; Luconi, L.; Müller, P.; Kaskel, S.; Eychmüller, A.; Eichler, F.; Giambastiani, G.; Rossin, A. Zinc Coordination Polymers Containing Isomeric Forms of p-(Thiazolyl)benzoic Acid: Blue-Emitting Materials with a Solvatochromic Response to Water. Eur. J. Inorg. Chem. 2017, 4909–4918. [Google Scholar] [CrossRef]
- Staderini, S.; Tuci, G.; D’Angelantonio, M.; Manoli, F.; Manet, I.; Giambastiani, G.; Peruzzini, M.; Rossin, A. Zinc Coordination Polymers Containing the m-(2-thiazolyl)benzoic Acid Spacer: Synthesis, Characterization and Luminescent Properties in Aqueous Solutions. ChemistrySelect 2016, 6, 1123–1131. [Google Scholar] [CrossRef]
- Tuci, G.; Giambastiani, G.; Kwon, S.; Stair, P.C.; Snurr, R.Q.; Rossin, A. Chiral Co(II) Metal−Organic Framework in the Heterogeneous Catalytic Oxidation of Alkenes under Aerobic and Anaerobic Conditions. ACS Catal. 2014, 4, 1032–1039. [Google Scholar] [CrossRef]
- Rossin, A.; Tuci, G.; Giambastiani, G.; Peruzzini, M. 1D and 2D Thiazole-Based Copper(II) Coordination Polymers: Synthesis and Applications in Carbon Dioxide Capture. ChemPlusChem 2014, 79, 406–412. [Google Scholar] [CrossRef]
- Rossin, A.; Di Credico, B.; Giambastiani, G.; Peruzzini, A.; Pescitelli, G.; Reginato, G.; Borfecchia, E.; Gianolio, D.; Lamberti, C.; Bordiga, S. Synthesis, Characterization and CO2 Uptake of a Chiral Co(II) Metal–Organic Framework Containing a Thiazolidine-Based Spacer. J. Mater. Chem. 2012, 22, 10335–10344. [Google Scholar] [CrossRef]
- Rossin, A.; Giambastiani, G. Structural Features and Applications of Metal–Organic Frameworks Containing Thiazole- and Thiazolidine-Based Spacers. CrystEngComm 2015, 17, 218–228. [Google Scholar] [CrossRef]
- Dannenbauer, N.; Matthes, P.R.; Scheller, T.P.; Nitsch, J.; Zottnick, S.H.; Gernert, M.S.; Steffen, A.; Lambert, C.; Müller-Buschbaum, K. Near-Infrared Luminescence and Inner Filter Effects of Lanthanide Coordination Polymers with 1,2-Di(4-pyridyl)Ethylene. Inorg. Chem. 2015, 55, 7396–7406. [Google Scholar] [CrossRef]
- Dannenbauer, N.; Matthes, P.R.; Müller-Buschbaum, K. Luminescent Coordination Polymers for the VIS and NIR Range Constituting LnCl3 and 1,2-Bis(4-Pyridyl)Ethane. Dalton Trans. 2016, 45, 6529–6540. [Google Scholar] [CrossRef] [PubMed]
- Dannenbauer, N.; Zottnick, S.H.; Müller-Buschbaum, K. Thiazole and the Diazines Pyrazine and Pyrimidine as Sensitizers for Lanthanide Luminescence from VIS to NIR. Z. Anorg. Allg. Chem. 2017, 643, 1513–1518. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Sun, R.; Ye, Y.; Tang, H.; Dong, X.; Yan, J.; Wang, K.; Zhou, Q.; Wang, Z. Application of a Novel Red-Emitting Cationic Iridium(III) Coordination Polymer in Warm White Light-Emitting Diodes. Opt. Mater. 2018, 76, 141–146. [Google Scholar] [CrossRef]
- Artem’ev, A.V.; Samsonenko, D.G.; Antonova, O.V. CuI-Based Coordination Polymers with 2-Thiazolyl Sulfide Ligands: First Examples. Polyhedron 2018, 151, 171–176. [Google Scholar] [CrossRef]
- Rogovoy, M.I.; Samsonenko, D.G.; Rakhmanova, M.I.; Artem’ev, A.V. Self-Assembly of Ag(I)-Based Complexes and Layered Coordination Polymers Bridged by (2-Thiazolyl)Sulfides. Inorg. Chim. Acta 2019, 489, 19–26. [Google Scholar] [CrossRef]
- Woodward, A.N.; Kolesar, J.M.; Hall, S.R.; Saleh, N.; Jones, D.S.; Walter, M.G. Thiazolothiazole Fluorophores Exhibiting Strong Fluorescence and Viologen-Like Reversible Electrochromism. J. Am. Chem. Soc. 2017, 139, 8467–8473. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Hung, W.; Tang, W.; Hsu, Y.; Chen, C.; Meng, F.; Chou, P. Control of the Reversibility of Excited-State Intramolecular Proton Transfer (ESIPT) Reaction: Host-Polarity Tuning White Organic Light Emitting Diode on a New Thiazolo[5,4-d]thiazole ESIPT System. Chem. Mater. 2016, 23, 8815–8824. [Google Scholar] [CrossRef]
- Dessì, A.; Calamante, M.; Mordini, A.; Peruzzini, M.; Sinicropi, A.; Basosi, R.; Fabrizi de Biani, F.; Taddei, M.; Colonna, D.; di Carlo, A.; et al. Organic Dyes with Intense Light Absorption Especially Suitable for Application in Thin-Layer Dye-Sensitized Solar Cells. Chem. Commun. 2014, 50, 13952–13955. [Google Scholar] [CrossRef] [Green Version]
- Pereira Clementino, R.F.; de Souza Santos, A.B.; Bandeira Jovino Marques, O.J.; Ratkovski, D.R.; Gatto, C.C.; Malvestiti, I.; de Araujo Machado, F.L.; Lago Falcão, E.H. Structural Description, Luminescent and Magnetic Properties of Novel 2-D Coordination Polymers Containing Thiazolo[5,4-d]Thiazole Rings and Trivalent Lanthanide Ions. J. Solid State Chem. 2018, 268, 94–101. [Google Scholar] [CrossRef]
- Zhai, Z.; Yang, S.; Cao, M.; Li, L.; Du, C.; Zang, S. Rational Design of Three Two-Fold Interpenetrated Metal−Organic Frameworks: Luminescent Zn/Cd-Metal–Organic Frameworks for Detection of 2,4,6-Trinitrophenol and Nitrofurazone in the Aqueous Phase. Cryst. Growth Des. 2018, 18, 7173–7182. [Google Scholar] [CrossRef]
- Zhai, Z.; Yang, S.; Luo, P.; Li, L.; Du, C.; Zang, S. Dicarboxylate-Induced Structural Diversity of Luminescent Zn(II)/Cd(II) Metal–Organic Frameworks Based on the 2,5-Bis(4-Pyridyl)Thiazolo[5,4-d]Thiazole Ligand. Eur. J. Inorg. Chem. 2019, 2725–2734. [Google Scholar] [CrossRef]
- Khatun, A.; Panda, D.K.; Sayresmith, N.; Walter, M.G.; Saha, S. Thiazolothiazole-Based Luminescent Metal–Organic Frameworks with Ligand-to-Ligand Energy Transfer and Hg2+ Sensing Capabilities. Inorg. Chem. 2019, 58, 12707–12715. [Google Scholar] [CrossRef] [PubMed]
- Arici, M.; Yesilel, O.Z.; Dege, N. Three Co(II) Coordination Polymers Constructed from 2,5-Di(4-Pyridyl)Thiazolo[5,4-d]Thiazole and V-Shaped Dicarboxylic Acids: Syntheses, Characterizations, Structural Diversity and Optical Properties. Polyhedron 2019, 163, 77–83. [Google Scholar] [CrossRef]
- Li, P.; Yin, X.; Gao, L.; Yang, S.; Sui, Q.; Gong, T.; Gao, E. Modulating Excitation Energy of Luminescent Metal−Organic Frameworks for Detection of Cr(VI) in Water. ACS Appl. Nano Mater. 2019, 2, 4646–4654. [Google Scholar] [CrossRef]
- Fan, J.; Li, J.; Zhang, L.; Zhang, L.; Wang, D. New CuII and CdII Metal–organic Coordination Polymers with 1,2,4-Triazolo[3,4-b]-1,3,4-Thiadiazole Ligands: Syntheses, Structures and Luminescent Properties. J. Chin. Chem. Soc. 2015, 62, 786–792. [Google Scholar] [CrossRef]
- Wen, G.; Liu, D.; Chen, Y.; Wei, Y.; Zhu, Q.; Wang, X.; Xua, M.; Yao, Y.; Ma, L. A Rare Twofold Interpenetrating NbO Mixed-Ligand Mesomeric Network from Two Individual Heterochiral 3D Frameworks. Inorg. Chem. Commun. 2016, 74, 86–89. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Fan, C.; Zong, Z.; Zhang, D.; Luo, Q.; Bi, C.; Fan, Y. A Novel Metal–Organic Frameworks Assembled by One Angular Ligand and 5-Aminoisophthalic Acid: Synthesis, Structure, Electrochemical and Photocatalytic Properties. Polyhedron 2019, 168, 21–27. [Google Scholar] [CrossRef]
- Sk, M.; Biswas, S. A Thiadiazole-Functionalized Zr(IV)-Based Metal–Organic Framework as a Highly Fluorescent Probe for the Selective Detection of Picric Acid. CrystEngComm 2016, 18, 3104–3113. [Google Scholar] [CrossRef]
- Mallick, A.; El-Zohry, A.M.; Shekhah, O.; Yin, J.; Jia, J.; Himanshu Aggarwal, H.; Emwas, A.; Mohammed, O.F.; Eddaoudi, M. Unprecedented Ultralow Detection Limit of Amines using a Thiadiazole-Functionalized Zr(IV)-Based Metal–Organic Framework. J. Am. Chem. Soc. 2019, 141, 7245–7249. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Liang, L.; Cui, X.; Wang, X.; Yang, E.; Zhao, X. Assembly of ZnII-Coordination Polymers Constructed from Benzothiadiazole Functionalized Bipyridines and V-Shaped Dicarboxylic Acids: Topology Variety, Photochemical and Visible-Light-Driven Photocatalytic Properties. CrystEngComm 2018, 20, 668–678. [Google Scholar] [CrossRef]
- Wang, X.; Xiong, Y.; Sha, X.; Liu, G.; Lin, H. Various Polycarboxylate-Directed Cd(II) Coordination Polymers Based on a Semirigid Bis-Pyridyl-bis-Amide Ligand: Construction and Fluorescent and Photocatalytic Properties. Cryst. Growth Des. 2017, 17, 483–496. [Google Scholar] [CrossRef]
- Gogia, A.; Mandal, S.K. A Rational Design and Green Synthesis of 3D Metal Organic Frameworks Containing a Rigid Heterocyclic Nitrogen-Rich Dicarboxylate: Structural Diversity, CO2 Sorption and Selective Sensing of 2,4,6-TNP in Water. Dalton Trans. 2019, 48, 2388–2398. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Bucior, B.; Tuci, G.; Luconi, L.; Getzschmann, J.; Kaskel, S.; Snurr, R.Q.; Giambastiani, G.; Rossin, A. Computational Screening, Synthesis and Testing of Metal–Organic Frameworks with a Bithiazole Linker for Carbon Dioxide Capture and its Green Conversion into Cyclic Carbonates. Mol. Syst. Des. Eng. 2019, 4, 1000–1013. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercuri, G.; Giambastiani, G.; Rossin, A. Thiazole- and Thiadiazole-Based Metal–Organic Frameworks and Coordination Polymers for Luminescent Applications. Inorganics 2019, 7, 144. https://doi.org/10.3390/inorganics7120144
Mercuri G, Giambastiani G, Rossin A. Thiazole- and Thiadiazole-Based Metal–Organic Frameworks and Coordination Polymers for Luminescent Applications. Inorganics. 2019; 7(12):144. https://doi.org/10.3390/inorganics7120144
Chicago/Turabian StyleMercuri, Giorgio, Giuliano Giambastiani, and Andrea Rossin. 2019. "Thiazole- and Thiadiazole-Based Metal–Organic Frameworks and Coordination Polymers for Luminescent Applications" Inorganics 7, no. 12: 144. https://doi.org/10.3390/inorganics7120144
APA StyleMercuri, G., Giambastiani, G., & Rossin, A. (2019). Thiazole- and Thiadiazole-Based Metal–Organic Frameworks and Coordination Polymers for Luminescent Applications. Inorganics, 7(12), 144. https://doi.org/10.3390/inorganics7120144