Enhanced Removal of Soluble and Insoluble Dyes over Hierarchical Zeolites: Effect of Synthesis Condition
Abstract
:1. Introduction
2. Results and Discussions
2.1. Crystallinity and Phase Purity
2.2. Textural Properties
2.3. Vibrational Spectroscopy
2.4. Adsorbent Morphologies
2.5. Adsorption Study
2.5.1. Adsorption Thermodynamics
2.5.2. Effect of pH
2.5.3. Effect of Initial Dye Concentration
2.5.4. Effect of Adsorbent Type
2.5.5. Adsorption to Various Dyes
2.6. Adsorption Kinetics
2.7. Adsorption Mechanism
3. Materials and Methods
3.1. Materials
3.2. Synthesis Hierarchical ZSM-5
3.3. Adsorbents Characterisation
3.4. Batch Adsorption Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Teow, Y.H.; Tajudin, S.A.; Ho, K.C.; Mohammad, A.W. Synthesis and characterization of graphene shell composite from oil palm frond juice for the treatment of dye-containing wastewater. J. Water Process Eng. 2020, 35, 101185. [Google Scholar] [CrossRef]
- Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manag. 2016, 182, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Rauf, M.A.; Salman Ashraf, S. Survey of recent trends in biochemically assisted degradation of dyes. Chem. Eng. J. 2012, 209, 520–530. [Google Scholar] [CrossRef]
- Talaiekhozani, A.; Rezania, S. Application of photosynthetic bacteria for removal of heavy metals, macro-pollutants and dye from wastewater: A review. J. Water Process Eng. 2017, 19, 312–321. [Google Scholar] [CrossRef]
- Ang, W.L.; Mohammad, A.W. State of the art and sustainability of natural coagulants in water and wastewater treatment. J. Clean. Prod. 2020, 262, 121267. [Google Scholar] [CrossRef]
- Li, J.; Shi, C.; Zhang, H.; Zhang, X.; Wei, Y.; Jiang, K.; Zhang, B. Silicalite-1 zeolite membrane: Synthesis by seed method and application in organics removal. Chemosphere 2019, 218, 984–991. [Google Scholar] [CrossRef]
- Melo, R.P.F.; Barros Neto, E.L.; Nunes, S.K.S.; Castro Dantas, T.N.; Dantas Neto, A.A. Removal of Reactive Blue 14 dye using micellar solubilization followed by ionic flocculation of surfactants. Sep. Purif. Technol. 2018, 191, 161–166. [Google Scholar] [CrossRef]
- Fan, H.; Ma, Y.; Wan, J.; Wang, Y.; Li, Z.; Chen, Y. Adsorption properties and mechanisms of novel biomaterials from banyan aerial roots via simple modification for ciprofloxacin removal. Sci. Total Environ. 2020, 708, 134630. [Google Scholar] [CrossRef]
- El-sayed, M.E.A. Nanoadsorbents for water and wastewater remediation. Sci. Total Environ. 2020, 739, 139903. [Google Scholar] [CrossRef]
- Shamsudin, M.S.; Azha, S.F.; Shahadat, M.; Ismail, S. Cellulose/bentonite-zeolite composite adsorbent material coating for treatment of N-based antiseptic cationic dye from water. J. Water Process Eng. 2019, 29, 100764. [Google Scholar] [CrossRef]
- Masudi, A.; Jusoh, N.W.C.; Muraza, O. Opportunities for less-explored zeolitic materials in the syngas-to-olefins pathway over nanoarchitectured catalysts: A mini review. Catal. Sci. Technol. 2020, 10, 1582–1596. [Google Scholar] [CrossRef]
- Hartati; Trisunaryanti, W.; Mukti, R.R.; Kartika, I.A.; Dea Firda, P.B.; Sumbogo, S.D.; Prasetyoko, D.; Bahruji, H. Highly selective hierarchical ZSM-5 from kaolin for catalytic cracking of Calophyllum inophyllum oil to biofuel. J. Energy Inst. 2020, in press. [Google Scholar] [CrossRef]
- Prasetyoko, D.; Ayunanda, N.; Fansuri, H.; Hartanto, D.; Ramli, Z. Phase Transformation of Rice Husk Ash in the Synthesis of ZSM-5 without Organic Template. J. Math. Fundam. Sci. 2014, 44, 250–262. [Google Scholar] [CrossRef] [Green Version]
- Vegere, K.; Vitola, L.; Argalis, P.P.; Bajare, D.; Krauklis, A.E. Alkali-Activated Metakaolin as a Zeolite-Like Binder for the Production of Adsorbents. Inorganics 2019, 7, 141. [Google Scholar] [CrossRef] [Green Version]
- Sokri, M.N.M.; Daiko, Y.; Mouline, Z.; Honda, S.; Iwamoto, Y. Formation of Micro and Mesoporous Amorphous Silica-Based Materials from Single Source Precursors. Inorganics 2016, 4, 5. [Google Scholar] [CrossRef]
- Tao, H.; Li, C.; Ren, J.; Wang, Y.; Lu, G. Synthesis of mesoporous zeolite single crystals with cheap porogens. J. Solid State Chem. 2011, 184, 1820–1827. [Google Scholar] [CrossRef]
- Groen, J.C.; Bach, T.; Ziese, U.; Paulaime-van Donk, A.M.; de Jong, K.P.; Moulijn, J.A.; Pérez-Ramírez, J. Creation of Hollow Zeolite Architectures by Controlled Desilication of Al-Zoned ZSM-5 Crystals. J. Am. Chem. Soc. 2005, 127, 10792–10793. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Khan, W.; Wu, Z.; Choi, J.; Yip, A.C.K. Modern synthesis strategies for hierarchical zeolites: Bottom-up versus top-down strategies. Adv. Powder Technol. 2019, 30, 467–484. [Google Scholar] [CrossRef]
- Pérez-Ramírez, J.; Abelló, S.; Bonilla, A.; Groen, J.C. Tailored Mesoporosity Development in Zeolite Crystals by Partial Detemplation and Desilication. Adv. Funct. Mater. 2009, 19, 164–172. [Google Scholar] [CrossRef]
- Holm, M.S.; Hansen, M.K.; Christensen, C.H. “One-Pot” Ion-Exchange and Mesopore Formation During Desilication. Eur. J. Inorg. Chem. 2009, 2009, 1194–1198. [Google Scholar] [CrossRef]
- Yue, Y.; Guo, X.; Liu, T.; Liu, H.; Wang, T.; Yuan, P.; Zhu, H.; Bai, Z.; Bao, X. Template free synthesis of hierarchical porous zeolite Beta with natural kaolin clay as alumina source. Microporous Mesoporous Mater. 2020, 293, 109772. [Google Scholar] [CrossRef]
- Lv, Y.; Ye, C.; Zhang, J.; Guo, C. Rapid and efficient synthesis of highly crystalline SSZ-13 zeolite by applying high shear mixing in the aging process. Microporous Mesoporous Mater. 2020, 293, 109812. [Google Scholar] [CrossRef]
- Hartanto, D.; Kurniawati, R.; Pambudi, A.B.; Utomo, W.P.; Leaw, W.L.; Nur, H. One-pot non-template synthesis of hierarchical ZSM-5 from kaolin source. Solid State Sci. 2019, 87, 150–154. [Google Scholar] [CrossRef]
- Li, H.; Cheng, R.; Liu, Z.; Du, C. Waste control by waste: Fenton–like oxidation of phenol over Cu modified ZSM–5 from coal gangue. Sci. Total Environ. 2019, 683, 638–647. [Google Scholar] [CrossRef] [PubMed]
- Sachse, A.; Grau-Atienza, A.; Jardim, E.O.; Linares, N.; Thommes, M.; García-Martínez, J. Development of Intracrystalline Mesoporosity in Zeolites through Surfactant-Templating. Cryst. Growth Des. 2017, 17, 4289–4305. [Google Scholar] [CrossRef]
- Sivalingam, S.; Sen, S. Rapid ultrasound assisted hydrothermal synthesis of highly pure nanozeolite X from fly ash for efficient treatment of industrial effluent. Chemosphere 2018, 210, 816–823. [Google Scholar] [CrossRef]
- Akhtar, F.; Andersson, L.; Ogunwumi, S.; Hedin, N.; Bergström, L. Structuring adsorbents and catalysts by processing of porous powders. J. Eur. Ceram. Soc. 2014, 34, 1643–1666. [Google Scholar] [CrossRef] [Green Version]
- Rostamizadeh, M.; Yaripour, F.; Hazrati, H. Ni-doped high silica HZSM-5 zeolite (Si/Al = 200) nanocatalyst for the selective production of olefins from methanol. J. Anal. Appl. Pyrolysis 2018, 132, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Abdulrasheed, A.A.; Jalil, A.A.; Hamid, M.Y.S.; Siang, T.J.; Fatah, N.A.A.; Izan, S.M.; Hassan, N.S. Dry reforming of methane to hydrogen-rich syngas over robust fibrous KCC-1 stabilized nickel catalyst with high activity and coke resistance. Int. J. Hydrogen Energy 2019. [Google Scholar] [CrossRef]
- Wu, Y.; Su, M.; Chen, J.; Xu, Z.; Tang, J.; Chang, X.; Chen, D. Superior adsorption of methyl orange by h-MoS2 microspheres: Isotherm, kinetics, and thermodynamic studies. Dye. Pigment. 2019, 170, 107591. [Google Scholar] [CrossRef]
- Ma, J.; Jia, Y.; Jing, Y.; Yao, Y.; Sun, J. Kinetics and thermodynamics of methylene blue adsorption by cobalt-hectorite composite. Dyes Pigment. 2012, 93, 1441–1446. [Google Scholar] [CrossRef]
- Brião, G.V.; Jahn, S.L.; Foletto, E.L.; Dotto, G.L. Highly efficient and reusable mesoporous zeolite synthetized from a biopolymer for cationic dyes adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2018, 556, 43–50. [Google Scholar] [CrossRef]
- Rizzi, V.; D‘Agostino, F.; Fini, P.; Semeraro, P.; Cosma, P. An interesting environmental friendly cleanup: The excellent potential of olive pomace for disperse blue adsorption/desorption from wastewater. Dyes Pigment. 2017, 140, 480–490. [Google Scholar] [CrossRef]
- Al-Degs, Y.S.; El-Barghouthi, M.I.; El-Sheikh, A.H.; Walker, G.M. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigment. 2008, 77, 16–23. [Google Scholar] [CrossRef]
- Varghese, S.P.; Babu, A.T.; Babu, B.; Antony, R. γ-MnOOH nanorods: Efficient adsorbent for removal of methylene blue from aqueous solutions. J. Water Process Eng. 2017, 19, 1–7. [Google Scholar] [CrossRef]
- Saravanan, A.; Karishma, S.; Jeevanantham, S.; Jeyasri, S.; Kiruthika, A.R.; Kumar, P.S.; Yaashikaa, P.R. Optimization and modeling of reactive yellow adsorption by surface modified Delonix regia seed: Study of nonlinear isotherm and kinetic parameters. Surf. Interfaces 2020, 20, 100520. [Google Scholar] [CrossRef]
- Kulawong, S.; Chanlek, N.; Osakoo, N. Facile synthesis of hierarchical structure of NaY zeolite using silica from cogon grass for acid blue 185 removal from water. J. Environ. Chem. Eng. 2020, 8, 104114. [Google Scholar] [CrossRef]
- Boscaro, P.; Cacciaguerra, T.; Cot, D.; Fajula, F.; Hulea, V.; Galarneau, A. C,N-doped TiO2 monoliths with hierarchical macro-/mesoporosity for water treatment under visible light. Microporous Mesoporous Mater. 2019, 280, 37–45. [Google Scholar] [CrossRef]
- Li, Y.; Zimmerman, A.R.; He, F.; Chen, J.; Han, L.; Chen, H.; Hu, X.; Gao, B. Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue. Sci. Total Environ. 2020, 722, 137972. [Google Scholar] [CrossRef]
- Wong, S.; Ghafar, N.A.; Ngadi, N.; Razmi, F.A.; Inuwa, I.M.; Mat, R.; Amin, N.A.S. Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Sci. Rep. 2020, 10, 2928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarmah, D.; Karak, N. Double network hydrophobic starch based amphoteric hydrogel as an effective adsorbent for both cationic and anionic dyes. Carbohydr. Polym. 2020, 242, 116320. [Google Scholar] [CrossRef] [PubMed]
- Ghabaee, S.; Behin, J.; Ansari, M.; Rajabi, L. Synthesis and characterization maleate-alumoxane nanoparticles for removal of reactive yellow 84 dye from aqueous solution. Adv. Powder Technol. 2020, 31, 2061–2071. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, S.; Wang, X.; Sun, C.; Wang, Y.; Hu, L. Preparation of mesoporous Al-MCM-41 from natural palygorskite and its adsorption performance for hazardous aniline dye-basic fuchsin. Microporous Mesoporous Mater. 2018, 265, 266–274. [Google Scholar] [CrossRef]
- Yang, C.; Cheng, J.; Chen, Y.; Hu, Y. Enhanced adsorption performance of MoS2 nanosheet-coated MIL-101 hybrids for the removal of aqueous rhodamine B. J. Colloid Interface Sci. 2017, 504, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Ouachtak, H.; El Haouti, R.; El Guerdaoui, A.; Haounati, R.; Amaterz, E.; Addi, A.A.; Akbal, F.; Taha, M.L. Experimental and molecular dynamics simulation study on the adsorption of Rhodamine B dye on magnetic montmorillonite composite γ-Fe2O3@Mt. J. Mol. Liq. 2020, 309, 113142. [Google Scholar] [CrossRef]
- Mittersteiner, M.; Schmitz, F.; Barcellos, I.O. Reuse of dye-colored water post-treated with industrial waste: Its adsorption kinetics and evaluation of method efficiency in cotton fabric dyeing. J. Water Process Eng. 2017, 17, 181–187. [Google Scholar] [CrossRef]
Sample | Surface Area (m2/g) | Pore Volume (cm3/g) | pHpzc (S3) | ||||
---|---|---|---|---|---|---|---|
SBET | Smicro | Sext | Vtot | Vmicro | Vmeso | ||
ZSM-5comm | 353 | 242 | 111 | 0.201 | 0.138 | 0.012 | 7.62 |
ZSM-5deAl | 348 | 229 | 66 | 0.181 | 0.124 | 0.065 | 7.93 |
ZSM-5deSil | 366 | 213 | 52 | 0.188 | 0.111 | 0.074 | 7.38 |
ZSM-5deSil-deAl | 428 | 271 | 97 | 0.238 | 0.131 | 0.098 | 7.55 |
Sample | Filtrate after Treatment (mmol/L) | Washing with Water (mmol/g) | Washing with Acetic Acid (mmol/g) | |||
---|---|---|---|---|---|---|
Si | Al | Si | Al | Si | Al | |
ZSM-5comm | - | - | 0 | 0 | 0.01 | 0.01 |
ZSM-5deAl | 90 | 0.03 | 0 | 0.02 | 3 | 25 |
ZSM-5deSil | 32 | 25 | 0 | 0 | 4 | 9 |
ZSM-5deSil-deAl | 120 | 45 | 0 | 0 | 3 | 5 |
Adsorption Model | Adsorbent | Parameter | CR | RY | MB | RhB | DB-1 | DB-14 |
---|---|---|---|---|---|---|---|---|
Langmuir | ZSM-5comm | R2 | 0.9917 | 0.9994 | 0.9997 | 0.9923 | 0.9969 | 0.9969 |
KL | 0.0332 | 0.2704 | 0.0768 | 0.03176 | 1.1716 | 0.2314 | ||
Qm (mg/g) | 181.82 | 188.679 | 204.082 | 166.667 | 50.505 | 188.679 | ||
ZSM-5deAl | R2 | 0.998 | 0.9978 | 0.9991 | 0.9929 | 0.9996 | 0.9996 | |
KL | 0.0662 | 0.1340 | 0.3235 | 0.1044 | 0.7066 | 0.3814 | ||
Qm (mg/g) | 243.90 | 357.143 | 454.545 | 526.316 | 54.645 | 222.222 | ||
ZSM-5deSil | R2 | 0.991 | 0.9942 | 0.9961 | 0.9951 | 0.9995 | 0.9996 | |
KL | 0.0456 | 0.0607 | 0.0657 | 0.8710 | 0.5552 | 0.3258 | ||
Qm (mg/g) | 312.5 | 370.370 | 555.556 | 123.457 | 56.818 | 232.558 | ||
ZSM-5deSil-deAl | R2 | 0.9948 | 0.991 | 0.9984 | 0.9992 | 0.9991 | 0.996 | |
KL | 0.0747 | 0.1933 | 0.0934 | 0.1928 | 0.9016 | 0.41 | ||
Qm (mg/g) | 322.58 | 434.783 | 588.235 | 625 | 60.606 | 243.902 |
Dye | T (K) | KL | ΔG (kJ/mol) | ΔH (kJ/mol) | ΔS (kJ/mol) | R2 |
---|---|---|---|---|---|---|
CR | 303 | 1.108 | −0.259 | 108.832 | 0.371 | 0.9987 |
313 | 1.212 | −0.501 | ||||
323 | 1.333 | −0.773 | ||||
RY | 303 | 1.125 | −0.297 | 169.004 | 0.571 | 0.990 |
313 | 1.273 | −0.62 | ||||
323 | 1.500 | −1.089 | ||||
MB | 303 | 1.250 | −0.562 | 187.226 | 0.644 | 0.996 |
313 | 1.448 | −0.964 | ||||
323 | 1.719 | −1.454 | ||||
RhB | 303 | 1.189 | −0.434 | 158.227 | 0.542 | 0.985 |
313 | 1.326 | −0.734 | ||||
323 | 1.556 | −1.187 | ||||
DB-1 | 303 | 1.029 | −0.071 | 9.023 | 0.032 | 0.997 |
313 | 1.038 | −0.096 | ||||
323 | 1.044 | −0.117 | ||||
DB-14 | 303 | 1.067 | −0.162 | 98.177 | 0.332 | 0.995 |
313 | 1.175 | −0.420 | ||||
323 | 1.260 | −0.621 |
Dye | Molecular Structure | λmax (nm) | Mw (g/mol) | Size (Å2) |
---|---|---|---|---|
CR | 495 | 696 | 7 × 25 | |
RY | 410 | 593 | 12.7 × 31.2 | |
MB | 663 | 320 | 5.9 × 13.8 | |
RhB | 558 | 479 | 9.8 × 15.0 | |
DB-1 | 607 | 268 | 8.98 × 10.66 | |
DB-14 | 530 | 413 | 12.13 × 10.7 |
Adsorbents | Dye | Qm (mg/g) | Ref. |
---|---|---|---|
Activated carbon/PEI | CR | 34.36 | [41] |
Starch/hydrogel | CR | 64.73 | [42] |
ZSM-5deSil-deAl | CR | 322.581 | This study |
maleate-alumoxane | RY | 244 | [43] |
Surface modified AC | RY | 24.15 | [37] |
ZSM-5deSil-deAl | RY | 434.783 | This study |
Mesoporous birnessite | MB | 113 | [44] |
Biopolymer/ZSM-5 | MB | 548.16 | [33] |
MBM-BC | BC | 501 | [40] |
ZSM-5deSil-deAl | MB | 588.235 | This study |
MoS2/MIL-101 hybrid | RhB | 344.8 | [45] |
-Fe2O3/montmorillonite | RhB | 209.20 | [46] |
ZSM-5deSil-deAl | RhB | 625 | This study |
ZSM-5deSil-deAl | DB-1 | 60.606 | This study |
ZSM-5deSil-deAl | DB-14 | 243.902 | This study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iryani, A.; Masudi, A.; Rozafia, A.I.; Hartanto, D.; Santoso, M.; Nur, H.; Azami, M.S. Enhanced Removal of Soluble and Insoluble Dyes over Hierarchical Zeolites: Effect of Synthesis Condition. Inorganics 2020, 8, 52. https://doi.org/10.3390/inorganics8090052
Iryani A, Masudi A, Rozafia AI, Hartanto D, Santoso M, Nur H, Azami MS. Enhanced Removal of Soluble and Insoluble Dyes over Hierarchical Zeolites: Effect of Synthesis Condition. Inorganics. 2020; 8(9):52. https://doi.org/10.3390/inorganics8090052
Chicago/Turabian StyleIryani, Ani, Ahmad Masudi, Ade I. Rozafia, Djoko Hartanto, Mardi Santoso, Hadi Nur, and Mohammad S. Azami. 2020. "Enhanced Removal of Soluble and Insoluble Dyes over Hierarchical Zeolites: Effect of Synthesis Condition" Inorganics 8, no. 9: 52. https://doi.org/10.3390/inorganics8090052
APA StyleIryani, A., Masudi, A., Rozafia, A. I., Hartanto, D., Santoso, M., Nur, H., & Azami, M. S. (2020). Enhanced Removal of Soluble and Insoluble Dyes over Hierarchical Zeolites: Effect of Synthesis Condition. Inorganics, 8(9), 52. https://doi.org/10.3390/inorganics8090052