Synthesis and Characterization of NaCd0.92Sn1.08, Na(Cd0.28Sn0.72)2 and Na2CdSn5 with Three-Dimensional Cd-Sn Frameworks
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of Na-Cd-Sn Compounds
2.2. Characterization
3. Results and Discussion
3.1. Synthesis of Polycrystalline Na-Cd-Sn Compounds
3.2. Crystal Structure
3.2.1. NaCd0.92Sn1.08
3.2.2. Na(Cd0.28Sn0.72)2
3.2.3. Na2CdSn5
3.3. Electrical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schäfer, H.; Eisenman, B.; Müller, W. Zintl Phases: Transitions between Metallic and Ionic Bonding. Angew. Chem. Int. Ed. 1973, 12, 694–712. [Google Scholar] [CrossRef]
- Corbett, J.D. Exploratory Synthesis: The Fascinating and Diverse Chemistry of Polar Intermetallic Phases. Inorg. Chem. 2010, 49, 13–28. [Google Scholar] [CrossRef]
- Shevelkov, A.V.; Kovnir, K. Structure and Bonding 139 Zintl Phases: Principles and Recent Developments; Fässler, T.F., Mingos, D.M.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 139, pp. 97–142. [Google Scholar]
- Fässler, T.F. Structure and Bonding 140 Zintl Ions: Principles and Recent Developments; Fässler, T.F., Mingos, D.M.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 140, pp. 91–131. [Google Scholar]
- Kusakabe, K.; Geshi, M.; Tsukamoto, H.; Suzuki, N. New half-metallic materials with an alkaline earth element. J. Phys. Condens. Matter 2004, 16, S5639–S5644. [Google Scholar] [CrossRef]
- Fortner, J.; Saboungi, M.-L.; Enderby, J.E. Carrier Density Enhancement in Semiconducting NaSn and CsPb. Phys. Rev. Lett. 1995, 74, 1415–1418. [Google Scholar] [CrossRef] [PubMed]
- Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 2001, 410, 63–64. [Google Scholar] [CrossRef]
- Fässler, T.F.; Kronseder, C. BaSn3: A Superconductor at the Border of Zintl Phases and Intermetallic Compounds. Real-Space Analysis of Band Structures. Angew. Chem. Int. Ed. 1997, 36, 2683–2686. [Google Scholar]
- Suemasu, T.; Usami, N. Exploring the potential of semiconducting BaSi2 for thin-film solar cell applications. J. Phys. D Appl. Phys. 2016, 50, 023001. [Google Scholar] [CrossRef] [Green Version]
- Kauzlarich, S.M.; Zevalkink, A.; Toberer, E.; Snyder, G.J. Chapter 1 Zintl Phases: Recent Developments in Thermoelectrics and Future Outlook. In Thermoelectric Materials and Devices; Royal Society of Chemistry (RSC): London, UK, 2016; pp. 1–26. [Google Scholar]
- Kauzlarich, S.M.; Brown, S.R.; Snyder, G.J. Zintl phases for thermoelectric devices. Dalton Trans. 2007, 2099–2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodge, K.L.; Goldberger, J.E. Transition Metal-Free Alkyne Hydrogenation Catalysis with BaGa2, a Hydrogen Absorbing Layered Zintl Phase. J. Am. Chem. Soc. 2019, 141, 19969–19972. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Deringer, V.L.; Dronskowski, R.; Yamane, H. Synthesis, Crystal Structure, Chemical Bonding, and Physical Properties of the Ternary Na/Mg Stannide Na2MgSn. Inorg. Chem. 2012, 51, 4810–4816. [Google Scholar] [CrossRef]
- Yamada, T.; Ikeda, T.; Stoffel, R.P.; Deringer, V.L.; Dronskowski, R.; Yamane, H. Synthesis, Crystal Structure, and High-Temperature Phase Transition of the Novel Plumbide Na2MgPb. Inorg. Chem. 2014, 53, 5253–5259. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Yue, C.; Zhang, H.; Fang, Z.; Weng, H. Predicting Dirac semimetals based on sodium ternary compounds. Npj Comput. Mater. 2018, 4, 68. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Y.B.; Yao, S.-H.; Zhou, J. Low lattice thermal conductivity and high thermoelectric figure of merit in Na2MgSn. Phys. Rev. B 2019, 99, 024310. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Hoffman, S.D.; Fässler, T.F. Na29Zn24Sn32: A Zintl phase containing a novel type of {Sn14} enneahedra and heteroatomic {Zn8Sn4} icosahedra. Angew. Chem. Int. Ed. 2007, 46, 3144–3148. [Google Scholar] [CrossRef]
- Kim, S.J.; Kraus, F.; Fässler, T.F. Na6ZnSn2, Na4.24K1.76(1)ZnSn2, and Na20Zn8Sn11: Three Intermetallic Structures Containing the Linear {Sn-Zn-Sn}6− Unit. J. Am. Chem. Soc. 2009, 131, 1469–1478. [Google Scholar] [CrossRef]
- Ponou, S.; Kim, S.J.; Fässler, T.F. Synthesis and Characterization of Na5M2+xSn10−x (x approximate to 0.5, M = Zn, Hg)-A Doped Tetrahedral Framework Structure. J. Am. Chem. Soc. 2009, 131, 10246–10252. [Google Scholar] [CrossRef] [PubMed]
- Stegmaier, S.; Kim, S.J.; Henze, A.; Fässler, T.F. Tetrahedral Framework Structures: Polymorphic Phase Transition with Reorientation of Hexagonal Helical Channels in the Zintl Compound Na2ZnSn5 and Its Relation to Na5Zn2+xSn10−x. J. Am. Chem. Soc. 2013, 135, 10654–10663. [Google Scholar] [CrossRef]
- Kanno, M.; Yamada, T.; Ikeda, T.; Nagai, H.; Yamane, H. Thermoelectric Properties of Na2ZnSn5Dimorphs with Na Atoms Disordered in Tunnels. Chem. Mater. 2017, 29, 859–866. [Google Scholar] [CrossRef]
- Matthes, R.; Schuster, H.-U. Ternäre Natriumphasen mit Cadmium bzw. Quecksilber und Zinn bzw. Blei/Ternary Sodium Phases with Cadmium or Mercury and Tin or Lead. Z. Nat. B 1980, 35, 778–780. [Google Scholar] [CrossRef]
- Todorov, E.; Sevov, S.C. Synthesis, characterization, electronic structure, and bonding of heteroatomic deltahedral clusters: Na49Cd58.5Sn37.5, a network structure containing the first empty icosahedron without a group 13 element and the largest closo-deltahedron. J. Am. Chem. Soc. 1997, 119, 2869–2876. [Google Scholar] [CrossRef]
- Todorov, E.; Sevov, S.C. Synthesis, characterization, and bonding of heteroatomic clusters: Na13Cd20E7 (E = Pb, Sn), a further example of a structure containing empty icosahedra without an element of group 13. Inorg. Chem. 1997, 36, 4298–4302. [Google Scholar] [CrossRef]
- Tang, F.; Po, H.C.; Vishwanath, A.; Wan, X.G. Topological materials discovery by large-order symmetry indicators. Sci. Adv. 2019, 5, eaau8725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Sevov, S.C. Heteroatomic deltahedral clusters of main-group elements: Synthesis and structure of the Zintl ions [In4Bi5]3−, [InBi3]2−, and [GaBi3]2−. Inorg. Chem. 2000, 39, 5383–5389. [Google Scholar] [CrossRef]
- Adam, M.; Hovestreydt, E.; Ruf, M.; Kaercher, J. Reaching a new highpoint with crystallography software -APEX3. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, s194. [Google Scholar] [CrossRef]
- Farrugia, L. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Lacroix-Orio, L.; Tillard, M.; Belin, C. Synthesis, crystal and electronic structure of Li8Zn2Ge3, a compound displaying an open layered anionic network. Solid State Sci. 2006, 8, 208–215. [Google Scholar] [CrossRef]
- Stegmaier, S.; Fässler, T.F. Lithium-Stuffed Diamond Polytype Zn-Tt Structures (Tt = Sn, Ge): The Two Lithium-Zinc-Tetrelides Li3Zn2Sn4 and Li2ZnGe3. Inorg. Chem. 2013, 52, 2809–2816. [Google Scholar] [CrossRef] [PubMed]
- Mantina, M.; Valero, R.; Cramer, C.J.; Truhlar, D.G. Atomic Radii of the Elements; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Yamada, T.; Yamane, H.; Nagai, H. A Thermoelectric Zintl Phase Na2+xGa2+xSn4−x with Disordered Na Atoms in Helical Tunnels. Adv. Mater. 2015, 27, 4708–4713. [Google Scholar] [CrossRef]
- Kanno, M.; Yamada, T.; Yamane, H.; Nagai, H. Synthesis, Crystal Structure, and Thermoelectric Properties of Na2+xAl2+xSn4−x (x = −0.38, −0.24). Chem. Mater. 2016, 28, 601–607. [Google Scholar] [CrossRef]
Chemical Formula | NaCd0.92Sn1.08 | Na(Cd0.28Sn0.72)2 | Na2CdSn5 |
Crystal Form | block | block | block |
Crystal Size/μm3 | 28 × 86 × 134 | 32 × 65 × 92 | 93 × 125 × 197 |
Formula Weight, Mr /g mol−1 | 254.58 | 256.85 | 751.83 |
Crystal System | hexagonal | hexagonal | tetragonal |
Space Group, Z | P−6m2, 3 | P63/mmc, 2 | I−42d, 4 |
Radiation, λ/Å | 0.71073 | 0.71073 | 0.71073 |
F000 | 327 | 220 | 1280 |
Temperature, T/K | 300(2) | 298(2) | 299(2) |
Unit Cell Dimensions | |||
a/Å | 4.93260(10) | 4.8458(2) | 6.42700(10) |
c/Å | 10.8508(3) | 7.7569(3) | 22.8086(5) |
Unit Cell Volume, V/Å3 | 228.636(11) | 157.743(14) | 942.14(4) |
Calculated Density, Dcal/Mgm−3 | 5.547 | 5.408 | 5.300 |
Absorption Coefficient, μ/m−1 | 15.064 | 14.980 | 15.268 |
Limiting Indices | |||
h | −6 ≤ h ≤ 6 | −6 ≤ h ≤ 8 | −11 ≤ h ≤ 10 |
k | −6 ≤ k ≤ 6 | −7 ≤ k ≤ 8 | −10 ≤ k ≤ 11 |
l | −14 ≤ l ≤ 14 | −12 ≤ l ≤ 8 | −41 ≤ l ≤ 41 |
θ Range for Data Collection | 3.756–28.261 | 4.858–36.227 | 3.293–40.228 |
Reflections Collected/Unique | 3258/271 | 1617/170 | 11489/1481 |
Rint | 0.0322 | 0.0266 | 0.0328 |
Data/Restrains/Parameters | 271/0/18 | 170/0/7 | 1481/0/24 |
Extinction Coefficient, x | 0.011(2) | 0.0118(17) | 0.0056(2) |
Flack parameter | 0.08(8) | – | 0.04(7) |
Goodness-of-Fit on F2, S | 1.160 | 1.234 | 1.277 |
R1, wR2 (I > 2σ (I)) | 0.0178, 0.0408 | 0.0143, 0.0270 | 0.0197, 0.0325 |
R1, wR2 (all data) | 0.0178, 0.0408 | 0.0164, 0.0276 | 0.0228, 0.0334 |
Largest Diffraction Peak and Hole, Δρ/e Å−3 | 1.023, −1.554 | 1.353, −0.648 | 1.065, −0.969 |
Atom | Site | Occ. | x | y | z | Ueq(Å) |
---|---|---|---|---|---|---|
NaCd0.92Sn1.08 | ||||||
Na1 | 1d | 1 | 1/3 | 2/3 | 1/2 | 0.0242(18) |
Na2 | 2h | 1 | 1/3 | 2/3 | 0.1654(6) | 0.0242(12) |
Cd/Sn1 | 1e | 0.92/0.08 | 2/3 | 1/3 | 0 | 0.0265(4) |
Cd/Sn2 | 2g | 0.92/0.08 | 0 | 0 | 0.29945(15) | 0.0236(3) |
Sn1 | 1a | 1 | 0 | 0 | 0 | 0.0147(3) |
Sn2 | 2i | 1 | 2/3 | 1/3 | 0.36068(8) | 0.0122(3) |
Na(Cd0.28Sn0.72)2 | ||||||
Na1 | 2b | 1 | 1 | 0 | 1/4 | 0.0273(6) |
Cd/Sn1 | 4f | 0.28/0.72 | 1/3 | 2/3 | 0.05416(3) | 0.01576(10) |
tI-Na2CdSn5 | ||||||
Na1 | 16e | 1/2 | 0.1517(7) | 0.2132(13) | 0.1398(3) | 0.064(3) |
Cd1 | 4a | 1 | 0 | 0 | 0 | 0.01813(8) |
Sn1 | 16e | 1 | 0.16221(3) | 0.15809(3) | 0.31679(2) | 0.01457(5) |
Sn2 | 4b | 1 | 0 | 0 | 1/2 | 0.01345(7) |
Compounds and Atomic Sites | Distance (Å) | |
---|---|---|
NaCd0.92Sn1.08 | ||
Sn1 | -Cd/Sn1 | 2.84784(6) |
Sn1 | -Cd/Sn2 | 3.2492(17) |
Sn2 | -Sn2 | 3.0235(18) |
Sn2 | -Cd/Sn2 | 2.9243(5) |
Sn1 | -Na2 | 3.366(4) |
Sn2 | -Na1 | 3.2242(5) |
Sn2 | -Na2 | 3.550(4) |
Cd/Sn1 | -Na2 | 3.366(4) |
Cd/Sn2 | -Na2 | 3.198(4) |
Na(Cd0.28Sn0.72)2 | ||
Cd/Sn1 | -Cd/Sn1 | 2.92115(19), 3.0382(5) |
Cd/Sn1 | -Na1 | 3.18354(17), 3.6598(2) |
tI-Na2CdSn5 | ||
Sn1 | -Sn1 | 2.8854(4), 2.9115(4) |
Sn1 | -Sn2 | 2.8400(2) |
Cd1 | -Sn1 | 2.8699(2) |
Na1 | -Na1 | 0.824(14), 3.363(16), 3.819(5) |
Na1 | -Sn1 | 3.176(8), 3.287(9), 3.419(5), 3.495(5), 3.598(5), 3.670(5) |
Na1 | -Cd1 | 3.266(8), 3.604(8) |
Na1 | -Sn2 | 3.634(6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asamiya, Y.; Yamada, T.; Yamane, H. Synthesis and Characterization of NaCd0.92Sn1.08, Na(Cd0.28Sn0.72)2 and Na2CdSn5 with Three-Dimensional Cd-Sn Frameworks. Inorganics 2021, 9, 19. https://doi.org/10.3390/inorganics9030019
Asamiya Y, Yamada T, Yamane H. Synthesis and Characterization of NaCd0.92Sn1.08, Na(Cd0.28Sn0.72)2 and Na2CdSn5 with Three-Dimensional Cd-Sn Frameworks. Inorganics. 2021; 9(3):19. https://doi.org/10.3390/inorganics9030019
Chicago/Turabian StyleAsamiya, Yuki, Takahiro Yamada, and Hisanori Yamane. 2021. "Synthesis and Characterization of NaCd0.92Sn1.08, Na(Cd0.28Sn0.72)2 and Na2CdSn5 with Three-Dimensional Cd-Sn Frameworks" Inorganics 9, no. 3: 19. https://doi.org/10.3390/inorganics9030019
APA StyleAsamiya, Y., Yamada, T., & Yamane, H. (2021). Synthesis and Characterization of NaCd0.92Sn1.08, Na(Cd0.28Sn0.72)2 and Na2CdSn5 with Three-Dimensional Cd-Sn Frameworks. Inorganics, 9(3), 19. https://doi.org/10.3390/inorganics9030019