Photocatalytic Activity of Multicompound TiO2/SiO2 Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Liquid Flame Spray (LFS) Multicompound Nanoparticle Deposition
3.2. Photocatalytic Activity Characterization by Gas-Phase Oxidation of Acetylene
3.3. Tribological Wear of the Nanoparticle Coated Microscope Glasses
3.4. Scanning and Scanning Transmission Electron Microscope (SEM/STEM) Imaging
3.5. Absorption Spectrum
3.6. Wettability Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nickheslat, A.; Amin, M.M.; Izanloo, H.; Fatehizadeh, A.; Mousavi, S.M. Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide. J. Environ. Res. Public Health 2013, 2013, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaleska-Medynska, A.; Gołąbiewska, A.; Kobylański, M.P. Metal Oxide-Based Photocatalysis. Fundamentals and Prospects for Application. In Metal Oxide-Based Photocatalysis; Korotcenkov, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–50. [Google Scholar]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37. [Google Scholar] [CrossRef]
- Ran, J.; Jaroniec, M.; Qiao, S.-Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649. [Google Scholar] [CrossRef]
- Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef]
- Karapati, S.; Giannakopoulou, T.; Todorova, N.; Boukos, N.; Dimotikali, D.; Trapalis, C. Eco-efficient TiO2 modification for air pollutants oxidation. Appl. Catal. B Environ. 2015, 176, 578–585. [Google Scholar] [CrossRef]
- Khairy, M.; Zakaria, W. Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egypt. J. Pet. 2014, 23, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Yalç, Y.; Murat, K.; Zekiye, Ç. The Role of Non-Metal Doping in TiO2 Photocatalysis. J. Adv. Oxid. Technol 2010, 13, 281–296. [Google Scholar]
- Quesada, J.; Arreola-Sánchez, R.; Faba, L.; Díaz, E.; Rentería-Tapia, V.M.; Ordóñez, S. General Effect of Au nanoparticles on the activity of TiO2 for ethanol upgrading reactions. Appl. Catal. A 2018, 551, 23–33. [Google Scholar] [CrossRef]
- Ismail, A.A.; Abdelfattah, I.; Faycal Atitar, M.; Robben, L.; Bouzid, H.; Al-Sayari, S.A.; Bahnemann, D.W. Photocatalytic degradation of imazapyr using mesoporous Al2O3–TiO2 nanocomposites. Separ. Purif. Technol. 2015, 145, 147–153. [Google Scholar] [CrossRef]
- Setthaya, N.; Chindaprasirt, P.; Yin, S.; Pimraksa, K. TiO2-zeolite photocatalysts made of metakaolin and rice husk ash for removal of methylene blue dye. Powder Technol. 2017, 313, 417–426. [Google Scholar] [CrossRef]
- Gao, J.; Li, W.; Zhao, X.; Wang, L.; Pan, N. Durable visible light self-cleaning surfaces imparted by TiO2/SiO2/GO photocatalyst. Textile Res. J. 2019, 89, 517–527. [Google Scholar] [CrossRef]
- Nabih, S.; Esmail Shalan, A.; Samy Abu Serea, E.; Goda, M.A.; Fathi Sanad, M. Photocatalytic performance of TiO2@SiO2 nanocomposites for the treatment of different organic dyes. J. Mat. Sci. Mater. Electron. 2019, 30, 9623–9633. [Google Scholar] [CrossRef]
- Bellardita, M.; Addamo, M.; Di Paola, A.; Marcì, G.; Palmisano, L.; Cassar, L.; Borsa, M. Photocatalytic activity of TiO2/SiO2 systems. J. Hazard. Mater. 2010, 174, 707–713. [Google Scholar] [CrossRef]
- Xu, L.; Shen, Y.; Ding, Y.; Wang, L. Superhydrophobic and ultraviolet-blocking cotton fabrics based on TiO2/SiO2 composite. Nanopart. J. Nanosc. Nanotechnol. 2018, 18, 6879–6886. [Google Scholar] [CrossRef] [PubMed]
- Mäkelä, J.M.; Aromaa, M.; Teisala, H.; Tuominen, M.; Stepien, M.; Saarinen, J.J.; Toivakka, M.; Kuusipalo, J. Nanoparticle Deposition from Liquid Flame Spray onto Moving Roll-to-Roll Paperboard Material. J. Aerosol Sci. 2011, 68, 827–837. [Google Scholar] [CrossRef] [Green Version]
- Mäkelä, J.M.; Haapanen, J.; Harra, J.; Juuti, P.; Kujanpää, S. Liquid Flame Spray—A Hydrogen-Oxygen Flame Based Method for Nanoparticle Synthesis and Functional Nanocoatings. KONA Powder Part. J. 2017, 34, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Mädler, L.; Roessler, A.; Pratsinis, S.E. Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles. Sens. Actuators B Chem. 2006, 114, 283–295. [Google Scholar] [CrossRef]
- Stepien, M.; Saarinen, J.J.; Teisala, H.; Tuominen, M.; Aromaa, M.; Kuusipalo, J.; Mäkelä, J.M.; Toivakka, M. Adjustable wettability of paperboard by liquid flame spray nanoparticle deposition. Appl. Surf. Sci. 2011, 257, 1911–1917. [Google Scholar] [CrossRef]
- Stepien, M.; Saarinen, J.J.; Teisala, H.; Tuominen, M.; Aromaa, M.; Kuusipalo, J.; Mäkelä, J.M.; Toivakka, M. Surface chemical analysis of photocatalytic wettability conversion of TiO2 nanoparticle coating. Surf. Coat. Technol. 2012, 208, 73–79. [Google Scholar] [CrossRef]
- Stepien, M.; Saarinen, J.J.; Teisala, H.; Tuominen, M.; Aromaa, M.; Haapanen, J.; Kuusipalo, J.; Mäkelä, J.M.; Toivakka, M. ToF-SIMS analysis of UV-switchable TiO2-nanoparticle coated paper surface. Langmuir 2013, 29, 3780–3790. [Google Scholar] [CrossRef]
- Stepien, M.; Saarinen, J.J.; Teisala, H.; Tuominen, M.; Haapanen, J.; Kuusipalo, J.; Mäkelä, J.M.; Toivakka, M. Compressibility of porous TiO2 nanoparticle coating on paperboard. Nanoscale Res. Lett. 2013, 8, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teisala, H.; Geyer, F.; Haapanen, J.; Juuti, P.; Mäkelä, J.M.; Vollmer, D.; Butt, H.J. Ultrafast processing of hierarchical nanotexture for a transparent superamphiphobic coating with extremely low roll-off angle and high impalement pressure. Adv. Mater. 2018, 30, 1706529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Rangaiah, G.P.; Zhao, X.S. Photocatalytic degradation of methylene blue by titanium dioxide: Experimental and modeling study. Ind. Eng. Chem. Res. 2014, 53, 14641–14649. [Google Scholar] [CrossRef]
- Yan, X.; Ohno, T.; Nishijima, K.; Abe, R.; Ohtani, B. Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania. Chem. Phys. Lett. 2006, 429, 606–610. [Google Scholar] [CrossRef] [Green Version]
- Temerov, F.; Ankudze, B.; Saarinen, J.J. TiO2 inverse opal structures with facile decoration of precious metal nanoparticles for enhanced photocatalytic activity. Mater. Chem. Phys. 2020, 242, 122471. [Google Scholar] [CrossRef]
- Pham, K.; Temerov, F.; Saarinen, J.J. Multicompound inverse opal structures with gold nanoparticles for visible light photocatalytic activity. Mater. Des. 2020, 194, 108886. [Google Scholar] [CrossRef]
- Haapanen, J.; Aromaa, M.; Teisala, H.; Tuominen, M.; Stepien, M.; Saarinen, J.J.; Heikkilä, M.; Toivakka, M.; Kuusipalo, J.; Mäkelä, J.M. Binary TiO2/SiO2 nanoparticle coating for controlling the wetting properties of paperboard. Mater. Chem. Phys. 2015, 150, 230–237. [Google Scholar] [CrossRef]
- Keskinen, H.; Mäkelä, J.M.; Aromaa, M.; Ristimäki, J.; Kanerva, T.; Levänen, E. Effect of silver addition on the formation and deposition of titania nanoparticles produced by liquid flame spray. J. Nanopart. Res. 2007, 9, 569–588. [Google Scholar] [CrossRef]
- Ulrich, G.D. Theory of Particle Formation and Growth in Oxide Synthesis Flames. Combust. Sci. Technol. 1971, 4, 47–57. [Google Scholar] [CrossRef]
- Teleki, A.; Pratsinis, S.E.; Wegner, K.; Jossen, R. Flame-coating of titania particles with silica. J. Mater. Res. 2005, 20, 1336–1347. [Google Scholar] [CrossRef] [Green Version]
- Kwon, C.H.; Kim, J.H.; Jung, I.S.; Shin, H.; Yoon, K.H. Preparation and characterization of TiO2–SiO2 nano-composite thin films. Cer. Int. 2003, 29, 851–856. [Google Scholar] [CrossRef]
- Kapridaki, C.; Maravelaki-Kalaitzaki, P. TiO2–SiO2–PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Prog. Org. Coat. 2013, 76, 400–410. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temerov, F.; Haapanen, J.; Mäkelä, J.M.; Saarinen, J.J. Photocatalytic Activity of Multicompound TiO2/SiO2 Nanoparticles. Inorganics 2021, 9, 21. https://doi.org/10.3390/inorganics9040021
Temerov F, Haapanen J, Mäkelä JM, Saarinen JJ. Photocatalytic Activity of Multicompound TiO2/SiO2 Nanoparticles. Inorganics. 2021; 9(4):21. https://doi.org/10.3390/inorganics9040021
Chicago/Turabian StyleTemerov, Filipp, Janne Haapanen, Jyrki M. Mäkelä, and Jarkko J. Saarinen. 2021. "Photocatalytic Activity of Multicompound TiO2/SiO2 Nanoparticles" Inorganics 9, no. 4: 21. https://doi.org/10.3390/inorganics9040021
APA StyleTemerov, F., Haapanen, J., Mäkelä, J. M., & Saarinen, J. J. (2021). Photocatalytic Activity of Multicompound TiO2/SiO2 Nanoparticles. Inorganics, 9(4), 21. https://doi.org/10.3390/inorganics9040021