Optimization of the Synthesis and Energy Transfer of Ca2MgWO6:Cr3+,Nd3+
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zabiliūtė-Karaliūnė, A.; Dapkus, H.; Petrauskas, R.P.; Butkutė, S.; Žukauskas, A.; Kareiva, A. Cr3+ doped yttrium gallium garnet for phosphor-conversion light emitting diodes. Lith. J. Phys. 2015, 55, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Martin, P.A. Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring. Chem. Soc. Rev. 2002, 31, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Godavarty, A.; Thompson, A.B.; Roy, R.; Gurfinkel, M.; Eppstein, M.J.; Zhang, C.; Sevick-Muraca, E.M. Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: Phantom studies. J. Biomed. Opt. 2004, 9, 488–496. [Google Scholar] [CrossRef]
- Blanco, M.; Villarroya, I. NIR spectroscopy: A rapid-response analytical tool. Trends Anal. Chem. 2002, 21, 240–250. [Google Scholar] [CrossRef]
- Min, P.K.; Goo, B.L. 830 nm light-emitting diode low level light therapy (LED-LLLT) enhances wound healing: A preliminary study. Laser Ther. 2013, 22, 43–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F.G. Infrared thermography for temperature measurement and non-destructive testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef] [Green Version]
- Han, C.B.; He, C.; Li, X.J. Near-infrared light emission from a GaN/Si nanoheterostructure array. Adv. Mater. 2011, 23, 4811–4814. [Google Scholar] [CrossRef]
- Xia, Q.; Batentschuk, M.; Osvet, A.; Richter, P.; Häder, D.P.; Schneider, J.; Brabec, C.J.; Wondraczek, L.; Winnacker, A. Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material. Opt. Express 2013, 21 (Suppl. S6), A909–A916. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Xia, Z.; Liu, Q. Synthesis and energy transfer studies of LaMgAl11O19:Cr3+,Nd3+ phosphors. Mater. Res. Bull. 2016, 74, 9–14. [Google Scholar] [CrossRef]
- Patwe, S.J.; Achary, S.N.; Mathews, M.D.; Tyagi, A.K. Crystal structure and thermal expansion behavior of Ca2MgWO6. Mater. Chem. Phys. 2006, 98, 486–493. [Google Scholar] [CrossRef]
- Lei, F.; Yan, B. Synthesis and photoluminescence of perovskite-type Ca2MgWO6:Eu3+ micrometer phosphor. Optoelectron. Adv. Mater. Rapid Commun. 2008, 10, 158–163. [Google Scholar]
- Cao, R.; Quan, G.; Shi, Z.; Luo, Z.; Hu, Q.; Guo, S. A double perovskite Ca2MgWO6:Bi3+ yellow-emitting phosphor: Synthesis and luminescence properties. J. Lumin. 2017, 181, 332–336. [Google Scholar] [CrossRef]
- Cao, R.; Xu, H.; Luo, W.; Luo, Z.; Guo, S.; Xiao, F.; Ao, H. Synthesis, energy transfer and luminescence properties of Ca2MgWO6:Sm3+, Bi3+ phosphor. Mater. Res. Bull. 2016, 81, 27–32. [Google Scholar] [CrossRef]
- Cui, M.; Wang, J.; Li, J.; Huang, S.; Shang, M. An abnormal yellow emission and temperature-sensitive properties for perovskite-type Ca2MgWO6 phosphor via cation substitution and energy transfer. J. Lumin. 2019, 214, 116588. [Google Scholar] [CrossRef]
- Jiang, Y.; Tong, Y.; Chen, S.; Zhang, W.; Hu, F.; Wei, R.; Guo, H. A three-mode self-referenced optical thermometry based on up-conversion luminescence of Ca2MgWO6:Er3+,Yb3+ phosphors. Chem. Eng. J. 2021, 421, 127470. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, T.; Qin, L. The red-emitting phosphors of Mn4+-activated A2MgWO6 (A = Ba, Sr, Ca) for light emitting diodes. Ceram. Int. 2021, 47, 6010–6022. [Google Scholar] [CrossRef]
- Xu, D.; Wu, X.; Zhang, Q.; Li, W.; Wang, T.; Cao, L.; Meng, J. Fluorescence property of novel near-infrared phosphor Ca2MgWO6:Cr3+. J. Alloy. Compd. 2018, 731, 156–161. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Q.; Wu, X.; Li, W.; Meng, J. Synthesis, luminescence properties and energy transfer of Ca2MgWO6:Cr3+,Yb3+ phosphors. Mater. Res. Bull. 2019, 110, 135–140. [Google Scholar] [CrossRef]
- Yang, J.H.; Choo, W.K.; Lee, C.H. Ca2MgWO6 from neutron and X-ray powder data. Acta. Crystallogr. C 2003, 59, i86–i88. [Google Scholar] [CrossRef] [Green Version]
- Shannon, R.D.; Prewitt, C.T. Effective ionic radii in oxides and fluorides. Acta. Crystallogr. B Struct. Sci. 1969, 25, 925–946. [Google Scholar] [CrossRef]
- Malysa, B.; Meijerink, A.; Jüstel, T. Temperature dependent luminescence Cr3+-doped GdAl3(BO3)4 and YAl3(BO3)4. J. Lumin. 2016, 171, 246–253. [Google Scholar] [CrossRef]
- Malysa, B.; Meijerink, A.; Wu, W.; Jüstel, T. On the influence of calcium substitution to the optical properties of Cr3+ doped SrSc2O4. J. Lumin. 2017, 190, 234–241. [Google Scholar] [CrossRef]
- Malysa, B.; Meijerink, A.; Jüstel, T. Temperature dependent photoluminescence of Cr3+ doped Sr8MgLa(PO4)7. Opt. Mater. 2018, 85, 341–348. [Google Scholar] [CrossRef]
- Anselm, V.; Jüstel, T. On the photoluminescence and energy transfer of SrGa12O19:Cr3+,Nd3+ microscale NIR phosphors. J. Mater. Res. Technol. 2021, 11, 785–791. [Google Scholar] [CrossRef]
Sample Number | Atom-% Cr3+ | Atom-% Nd3+ | Atom-% Li+ | Atom-% Na+ | Formula |
---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | Ca2MgWO6 |
2 | 1 | 0 | 2 | 0 | Ca2Mg0.97Cr0.01Li0.02WO6 |
3 | 1 | 0.5 | 2 | 1 | Ca1.97Nd0.01Na0.02Mg0.97Cr0.01Li0.02WO6 |
4 | 1 | 1 | 2 | 2 | Ca1.94Nd0.02Na0.04Mg0.97Cr0.01Li0.02WO6 |
5 | 1 | 1.5 | 2 | 3 | Ca1.91Nd0.03Na0.06Mg0.97Cr0.01Li0.02WO6 |
6 | 1 | 2 | 2 | 4 | Ca1.88Nd0.04Na0.08Mg0.97Cr0.01Li0.02WO6 |
7 | 1 | 4 | 2 | 8 | Ca1.76Nd0.08Na0.16Mg0.97Cr0.01Li0.02WO6 |
8 | 1 | 6 | 2 | 12 | Ca1.64Nd0.16Na0.24Mg0.97Cr0.01Li0.02WO6 |
9 | 1 | 8 | 2 | 16 | Ca1.52Nd0.16Na0.32Mg0.97Cr0.01Li0.02WO6 |
10 | 1 | 0 | 0 | 0 | Ca2Mg0.99Cr0.01WO6 |
11 | 1 | 0 | 1 | 0 | Ca2Mg0.98Cr0.01Li0.01WO6 |
12 | 0 | 1 | 0 | 0 | Ca1.98Nd0.02MgWO6 |
13 | 0 | 1 | 0 | 1 | Ca1.96Nd0.02Na0.02MgWO6 |
14 | 0 | 1 | 0 | 2 | Ca1.94Nd0.02Na0.04MgWO6 |
15 | 1 | 1 | 0 | 0 | Ca1.98Nd0.02Mg0.99Cr0.01WO6 |
16 | 1 | 1 | 0.5 | 0.5 | Ca1.97Nd0.02Na0.01Mg0.985Cr0.01Li0.005WO6 |
17 | 1 | 1 | 1 | 1 | Ca1.96Nd0.02Na0.02Mg0.98Cr0.01Li0.01WO6 |
18 | 1 | 1 | 1.5 | 1.5 | Ca1.95Nd0.02Na0.03Mg0.975Cr0.01Li0.015WO6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anselm, V.; Jüstel, T. Optimization of the Synthesis and Energy Transfer of Ca2MgWO6:Cr3+,Nd3+. Inorganics 2021, 9, 23. https://doi.org/10.3390/inorganics9040023
Anselm V, Jüstel T. Optimization of the Synthesis and Energy Transfer of Ca2MgWO6:Cr3+,Nd3+. Inorganics. 2021; 9(4):23. https://doi.org/10.3390/inorganics9040023
Chicago/Turabian StyleAnselm, Viktor, and Thomas Jüstel. 2021. "Optimization of the Synthesis and Energy Transfer of Ca2MgWO6:Cr3+,Nd3+" Inorganics 9, no. 4: 23. https://doi.org/10.3390/inorganics9040023
APA StyleAnselm, V., & Jüstel, T. (2021). Optimization of the Synthesis and Energy Transfer of Ca2MgWO6:Cr3+,Nd3+. Inorganics, 9(4), 23. https://doi.org/10.3390/inorganics9040023