Mono- and Dinuclear Aluminium Complexes Derived from Biguanide and Carbothiamide Ligands
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Considerations
3.2. Synthesis of the Protio-Ligand 1
3.3. Synthesis of the Complexes 3–6
3.4. Crystallographic Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Segawa, Y.; Yamashita, M.; Nozaki, K. Boryllithium: Isolation, characterization, and reactivity as a boryl anion. Science 2006, 314, 113–115. [Google Scholar] [CrossRef]
- Denk, M.; Lennon, R.; Hayashi, R.; West, R.; Belyakov, A.V.; Verne, H.P.; Haaland, A.; Wagner, M.; Metzler, N. Synthesis and Structure of a Stable Silylene. J. Am. Chem. Soc. 1994, 116, 2691–2692. [Google Scholar] [CrossRef]
- Liew, S.K.; Al-Rafia, S.M.I.; Goettel, J.T.; Lummis, P.A.; McDonald, S.M.; Miedema, L.J.; Ferguson, M.J.; McDonald, R.; Rivard, E. Expanding the steric coverage offered by bis(amidosilyl) chelates: Isolation of low-coordinate N-heterocyclic germylene complexes. Inorg. Chem. 2012, 51, 5471–5480. [Google Scholar] [CrossRef] [PubMed]
- Oetzel, J.; Weyer, N.; Bruhn, C.; Leibold, M.; Gerke, B.; Pöttgen, R.; Maier, M.; Winter, R.F.; Holthausen, M.C.; Siemeling, U. Redox-Active N-Heterocyclic Germylenes and Stannylenes with a Ferrocene-1,1′-diyl Backbone. Chem. Eur. J. 2017, 23, 1187–1199. [Google Scholar] [CrossRef] [PubMed]
- Schwamm, R.J.; Coles, M.P.; Hill, M.S.; Mahon, M.F.; McMullin, C.L.; Rajabi, N.A.; Wilson, A.S.S. A Stable Calcium Alumanyl. Angew. Chem. Int. Ed. 2020, 59, 3928–3932. [Google Scholar] [CrossRef] [PubMed]
- Weyer, N.; Heinz, M.; Schweizer, J.I.; Bruhn, C.; Holthausen, M.C.; Siemeling, U. A Stable N-Heterocyclic Silylene with a 1,1′-Ferrocenediyl Backbone. Angew. Chem. Int. Ed. 2021, 60, 2624–2628. [Google Scholar] [CrossRef]
- Kristinsdóttir, L.; Oldroyd, N.L.; Grabiner, R.; Knights, A.W.; Heilmann, A.; Protchenko, A.V.; Niu, H.; Kolychev, E.L.; Campos, J.; Hicks, J.; et al. Synthetic, structural and reaction chemistry of N-heterocyclic germylene and stannylene compounds featuring N-boryl substituents. Dalton Trans. 2019, 48, 11951–11960. [Google Scholar] [CrossRef]
- Böserle, J.; Zhigulin, G.; Ketkov, S.; Jambor, R.; Růžička, A.; Dostál, L. Diverse reactivity of a boraguanidinato germylene toward organic pseudohalides. Dalton Trans. 2018, 47, 14880–14883. [Google Scholar] [CrossRef]
- Driess, M.; Yao, S.; Brym, M.; van Wüllen, C.; Lentz, D. A New Type of N-Heterocyclic Silylene with Ambivalent Reactivity. J. Am. Chem. Soc. 2006, 128, 9628–9629. [Google Scholar] [CrossRef]
- Driess, M.; Yao, S.; Brym, M.; van Wüllen, C. A Heterofulvene-Like Germylene with a Betain Reactivity. Angew. Chem. Int. Ed. 2006, 45, 4349–4352. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Skatova, A.A.; Chudakova, V.A.; Khvoinova, N.M.; Baurin, A.Y.; Dechert, S.; Hummert, M.; Schumann, H. Stable Germylenes Derived from 1,2-Bis(arylimino)acenaphthenes. Organometallics 2004, 23, 3714–3718. [Google Scholar] [CrossRef]
- Schwamm, R.J.; Anker, M.D.; Lein, M.; Coles, M.P. Reduction vs. Addition: The Reaction of an Aluminyl Anion with 1,3,5,7-Cyclooctatetraene. Angew. Chem. Int. Ed. 2019, 58, 1489–1493. [Google Scholar] [CrossRef]
- Schwamm, R.J.; Anker, M.D.; Lein, M.; Coles, M.P.; Fitchett, C.M. Indyllithium and the Indyl Anion InL-: Heavy Analogues of N-Heterocyclic Carbenes. Angew. Chem. Int. Ed. 2018, 57, 5885–5887. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Inoue, S.; Yao, S.; Driess, M. Reactivity of N-Heterocyclic Germylene Toward Ammonia and Water. Organometallics 2011, 30, 6490–6494. [Google Scholar] [CrossRef]
- Camp, C.; Arnold, J. On the non-innocence of “Nacnacs”: Ligand-based reactivity in β-diketiminate supported coordination compounds. Dalton Trans. 2016, 45, 14462–14498. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Bellows, S.M.; Holland, P.L. Tuning steric and electronic effects in transition-metal β-diketiminate complexes. Dalton Trans. 2015, 44, 16654–16670. [Google Scholar] [CrossRef] [Green Version]
- Greb, L.; Ebner, F.; Ginzburg, Y.; Sigmund, L.M. Element-Ligand Cooperativity with p-Block Elements. Eur. J. Inorg. Chem. 2020, 2020, 3030–3047. [Google Scholar] [CrossRef]
- Elsby, M.R.; Baker, R.T. Strategies and mechanisms of metal-ligand cooperativity in first-row transition metal complex catalysts. Chem. Soc. Rev. 2020, 49, 8933–8987. [Google Scholar] [CrossRef]
- Abdalla, J.A.B.; Riddlestone, I.M.; Tirfoin, R.; Aldridge, S. Cooperative bond activation and catalytic reduction of carbon dioxide at a group 13 metal center. Angew. Chem. Int. Ed. 2015, 54, 5098–5102. [Google Scholar] [CrossRef]
- Hitzfeld, P.S.; Kretschmer, R. Cooperative H-X Bond Activation by Electron-Precise Aluminium and Gallium Compounds Incorporating β-Diketiminate Ligands. Eur. J. Inorg. Chem. 2020, 2020, 1624–1630. [Google Scholar] [CrossRef]
- Vass, V.; Dehmel, M.; Lehni, F.; Kretschmer, R. A Facile One-Pot Synthesis of 1,2,3-Tri- and 1,1,2,3-Tetrasubstituted Bis(guanidines) from Bis(thioureas). Eur. J. Org. Chem. 2017, 2017, 5066–5073. [Google Scholar] [CrossRef]
- Dehmel, M.; Vass, V.; Prock, L.; Görls, H.; Kretschmer, R. Synthesis and Coordination Chemistry of 3,4-Ethylene-Bridged 1,1,2,5-Tetrasubstituted Biguanides. Inorg. Chem. 2020, 59, 2733–2746. [Google Scholar] [CrossRef]
- Şerb, M.-D.; Kalf, I.; Englert, U. Biguanide and squaric acid as pH-dependent building blocks in crystal engineering. CrystEngComm 2014, 16, 10631–10639. [Google Scholar] [CrossRef]
- Fromm, K.M. Coordination polymer networks with s-block metal ions. Coord. Chem. Rev. 2008, 252, 856–885. [Google Scholar] [CrossRef] [Green Version]
- Fromm, K.M.; Sagué, J.L.; Mirolo, L. Coordination Polymer Networks: An Alternative to Classical Polymers? Macromol. Symp. 2010, 291–292, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.D. Organometallic compounds of the heavier alkali metals. Adv. Organomet. Chem. 1998, 43, 267. [Google Scholar]
- Castro-Osma, J.A.; Alonso-Moreno, C.; Lara-Sánchez, A.; Otero, A.; Fernández-Baeza, J.; Sánchez-Barba, L.F.; Rodríguez, A.M. Catalytic behaviour in the ring-opening polymerisation of organoaluminiums supported by bulky heteroscorpionate ligands. Dalton Trans. 2015, 44, 12388–12400. [Google Scholar] [CrossRef]
- CrysAlisPro, version 171.38.42b; Agilent Technologies Inc.: Oxford, UK, 2015.
- COLLECT; Data Collection Software; Nonius B.V.: Delft, The Netherlands, 1998.
- Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. In Methods in Enzymology: Macromolecular Crystallography Part A; Carter, C.W., Jr., Ed.; Academic Press: Cambridge, MA, USA, 1997; pp. 307–326. ISBN 0076-6879. [Google Scholar]
- SADABS 2.10; Bruker-AXS Inc.: Madison, WI, USA, 2002.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehmel, M.; Görls, H.; Kretschmer, R. Mono- and Dinuclear Aluminium Complexes Derived from Biguanide and Carbothiamide Ligands. Inorganics 2021, 9, 52. https://doi.org/10.3390/inorganics9070052
Dehmel M, Görls H, Kretschmer R. Mono- and Dinuclear Aluminium Complexes Derived from Biguanide and Carbothiamide Ligands. Inorganics. 2021; 9(7):52. https://doi.org/10.3390/inorganics9070052
Chicago/Turabian StyleDehmel, Maximilian, Helmar Görls, and Robert Kretschmer. 2021. "Mono- and Dinuclear Aluminium Complexes Derived from Biguanide and Carbothiamide Ligands" Inorganics 9, no. 7: 52. https://doi.org/10.3390/inorganics9070052
APA StyleDehmel, M., Görls, H., & Kretschmer, R. (2021). Mono- and Dinuclear Aluminium Complexes Derived from Biguanide and Carbothiamide Ligands. Inorganics, 9(7), 52. https://doi.org/10.3390/inorganics9070052