Evaluation of the Sealing Ability and Bond Strength of Two Endodontic Root Canal Sealers: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Sealing Ability Evaluation
2.3. Bond Strength Evaluation
2.4. Statistical Analysis
3. Results
3.1. Sealing Ability Evaluation
3.2. Bond Strength Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Madhuri, G.; Varri, S.; Bolla, N.; Mandava, P.; Akkala, L.; Shaik, J. Comparison of bond strength of different endodontic sealers to root dentin: An in vitro push-out test. J. Conserv. Dent. 2016, 19, 461–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camargo, R.; Silva-Sousa, Y.; Rosa, R.; Mazzi-Chaves, J.; Lopes, F.; Steier, L.; Sousa-Neto, M. Evaluation of the physicochemical properties of silicone- and epoxy resin-based root canal sealers. Braz. Oral Res. 2017, 31, 1–9. [Google Scholar] [CrossRef]
- Hulsmann, M.; Peters, O.; Dummer, P. Mechanical preparation of root canals: Shaping goals, techniques and means. Endod. Top. 2005, 10, 30–76. [Google Scholar] [CrossRef]
- Al-Kheraif, A.; Mohamed, B.; Sufyan, A.; Khan, A.; Divakar, D. Photodynamic therapy and other pretreatment methods on epoxy-based glass fiber post on the push-out bond strength to radicular dentin. Photodiagn. Photodyn. Ther. 2021, 36, 102526. [Google Scholar] [CrossRef] [PubMed]
- Al-Kherait, A.; Mohamed, B.; Khan, A.; Al-Shehri, A. Role of Riboflavin; Curcumin photosensitizers and Ozone when used as canal disinfectant on push-out bond strength of glass fiber post to radicular dentin. Photodiagn. Photodyn. Ther. 2022, 37, 102592. [Google Scholar] [CrossRef] [PubMed]
- Al-Haddad, A.; Aziz, Z. Bioceramic-Based Root Canal Sealers: A Review. Int. J. Biomater. 2016, 2016, 9753210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Kwak, S.; Ha, J.; Lee, W.; Kim, H. Physicochemical Properties of Epoxy Resin-Based and Bioceramic-Based Root Canal Sealers. Bioinorg. Chem. Appl. 2017, 2017, 2582849. [Google Scholar] [CrossRef] [Green Version]
- Ordinola-Zapata, R.; Bramante, C.; Graeff, M.; Perochena, A.; Vivan, R.; Camargo, E.; Garcia, R.; Bernardineli, N.; Gutmann, J.; Gomes de Moraes, I. Depth and percentage of penetration of endodontic sealers into dentinal tubules after root canal obturation using a lateral compaction technique: A confocal laser scanning microscopy study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 108, 450–457. [Google Scholar] [CrossRef]
- Barbizam, J.; Trope, M.; Tanomaru-Filho, M.; Teixeira, E.; Teixeira, F. Bond strength of different endodontic sealers to dentin: Push-out test. J. Appl. Oral Sci. 2011, 19, 644–647. [Google Scholar] [CrossRef] [Green Version]
- Cakici, F.; Cakici, E.; Ceyhanli, K.; Celik, E.; Kucukekenci, F.; Gunseren, A. Evaluation of bond strength of various epoxy resin-based sealers in oval shaped root canals. BMC Oral Health 2016, 16, 106. [Google Scholar] [CrossRef]
- Bueno, C.; Valentim, D.; Marques, V.; Gomes-Filho, J.; Cintra, L.; Jacinto, R.; Dezan-Junior, E. Biocompatibility and biomineralization assessment of bioceramic-, epoxy-, and calcium hydroxide-based sealers. Braz. Oral Res. 2016, 30, e81. [Google Scholar] [CrossRef] [PubMed]
- Martinho, J.P.; França, S.; Paulo, S.; Paula, A.B.; Coelho, A.S.; Abrantes, A.M.; Caramelo, F.; Carrilho, E.; Marto, C.M.; Botelho, M.F.; et al. Effect of Different Irrigation Solutions on the Diffusion of MTA Cement into the Root Canal Dentin. Materials 2020, 13, 5472. [Google Scholar] [CrossRef] [PubMed]
- Jafari, F.; Jafari, S. Composition and physicochemical properties of calcium silicate based sealers: A review article. J. Clin. Exp. Dent. 2017, 9, 1249–1255. [Google Scholar] [CrossRef]
- Utneja, S.; Nawal, R.; Talwar, S.; Verma, M. Current perspectives of bioceramic technology in endodontics: Calcium enriched mixture cement—Review of its composition, properties and applications. Restor. Dent. Endod. 2015, 40, 1–13. [Google Scholar] [CrossRef]
- Jitaru, S.; Hodisan, I.; Timis, L.; Lucian, A.; Bud, M. The Use of Bioceramics in Endodontics—Literature review. Clujul Med. 2016, 89, 470–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandolfi, M.; Siboni, F.; Prati, C. Properties of a novel polysiloxane-guttapercha calcium silicate-bioglass-containing root canal sealer. Dent. Mater. 2016, 32, 113–126. [Google Scholar] [CrossRef]
- Onay, E.; Ungor, M.; Ari, H.; Belli, S.; Ogus, E. Push-out bond strength and SEM evaluation of new polymeric root canal fillings. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 107, 879–885. [Google Scholar] [CrossRef]
- Sagsen, B.; Ustün, Y.; Demirbuga, S.; Pala, K. Push-out bond strength of two new calcium silicate-based endodontic sealers to root canal dentine. Int. Endod. J. 2011, 44, 1088–1091. [Google Scholar] [CrossRef]
- Guneser, M.; Akbulut, M.; Eldeniz, A. Effect of various endodontic irrigants on the push-out bond strength of biodentine and conventional root perforation repair materials. J. Endod. 2013, 39, 380–384. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Y.; Huang, S.; Lin, C. Limitations of push-out test in bond strength measurement. J. Endod. 2013, 39, 283–287. [Google Scholar] [CrossRef]
- Tuncel, B.; Nagas, E.; Cehreli, Z.; Uyanik, O.; Vallittu, P.; Lassila, L. Effect of endodontic chelating solutions on the bond strength of endodontic sealers. Braz. Oral Res. 2015, 29, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef] [Green Version]
- Colombo, M.; Poggio, C.; Dagna, A.; Meravini, M.; Riva, P.; Trovati, F.; Pietrocola, G. Biological and physico-chemical properties of new root canal sealers. J. Clin. Exp. Dent. 2018, 10, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. Bioceramic materials in endodontics. Endod. Top. 2015, 32, 3–30. [Google Scholar] [CrossRef]
- Marques-Ferreira, M.; Abrantes, M.; Ferreira, H.; Caramelo, F.; Botelho, M.; Carrilho, E. Sealing efficacy of system B versus Thermafil and Guttacore obturation techniques evidenced by scintigraphic analysis. J. Clin. Exp. Dent. 2017, 9, 56–60. [Google Scholar]
- Mann, S.; McWalter, G. Evaluation of apical seal and placement control in straight and curved canals obturated by laterally condensed and thermoplasticized gutta-percha. J. Endod. 1987, 13, 10–17. [Google Scholar] [CrossRef]
- Muliyar, S.; Shameem, K.; Thankachan, R.; Francis, P.; Jayapalan, C.; Hafiz, K. Microleakage in Endodontics. J. Int. Oral Health 2014, 6, 99–104. [Google Scholar]
- Vogt, B.; Xavier, C.; Demarco, F.; Padilha, M. Dentin penetrability evaluation of three different dyes in root-end cavities filled with mineral trioxide aggregate (MTA). Braz. Oral Res. 2006, 20, 132–136. [Google Scholar] [CrossRef]
- Asawaworarit, W.; Pinyosopon, T.; Kijsamanmith, K. Comparison of apical sealing ability of bioceramic sealer and epoxy resin-based sealer using the fluid filtration technique and scanning electron microscopy. J. Dent. Sci. 2020, 15, 186–192. [Google Scholar] [CrossRef]
- Pedullà, E.; Abiad, R.; Conte, G.; La Rosa, G.; Rapisarda, E.; Neelakantan, P. Root fillings with a matched-taper single cone and two calcium silicate-based sealers: An analysis of voids using micro-computed tomography. Clin. Oral Investig. 2020, 24, 4487–4492. [Google Scholar] [CrossRef]
- Kurup, D.; Nagpal, A.; Shetty, S.; Mandal, T.; Anand, J.; Mitra, R. Data on the push-out bond strength of three different root canal treatment sealers. Bioinformation 2021, 17, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Savariz, A.; González-Rodríguez, M.; Ferrer-Luque, C. Long-term sealing ability of GuttaFlow versus Ah Plus using different obturation techniques. Med. Oral Patol. Oral Cir. Bucal. 2010, 15, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Asawaworarit, W.; Yachor, P.; Kijsamanmith, K.; Vongsavan, N. Comparison of the apical sealing ability of calcium silicate-based sealer and resin-based sealer using the fluid-filtration technique. Med. Princ. Pract. 2016, 25, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, M.; Parrilli, A.; Fini, M.; Prati, C.; Dummer, P. 3D micro-CT analysis of the interface voids associated with Thermafil root fillings used with AH Plus or a flowable MTA sealer. Int. Endod. J. 2013, 46, 253–263. [Google Scholar] [CrossRef]
- Yavari, H.; Shari, S.; Galledar, S.; Samiei, M.; Janani, M. Effect of retreatment on the push-out bond strength of MTA-based and epoxy resin-based endodontic sealers. J. Dent. Res. Dent. Clin. Dent. Prospect. 2017, 11, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Fisher, M.; Berzins, D.; Bahcall, J. An in vitro comparison of bond strength of various obturation materials to root canal dentin using a push-out test design. J. Endod. 2007, 33, 856–858. [Google Scholar] [CrossRef]
- Dem, K.; Wu, Y.; Kaminga, A.; Dai, Z.; Cao, X.; Zhu, B. The push out bond strength of polydimethylsiloxane endodontic sealers to dentin. BMC Oral Health 2019, 8, 181. [Google Scholar] [CrossRef] [Green Version]
- Ozlek, E.; Gündüz, H.; Akkol, E.; Neelakantan, P. Dentin moisture conditions strongly influence its interactions with bioactive root canal sealers. Restor. Dent. Endod. 2020, 45, e24. [Google Scholar] [CrossRef] [Green Version]
- Assmann, E.; Scarparo, R.; Böttcher, D.; Grecca, F. Dentin bond strength of two mineral trioxide aggregate-based and one epoxy resin-based sealers. J. Endod. 2012, 38, 219–221. [Google Scholar] [CrossRef]
- Pane, E.; Palamara, J.; Messer, H. Critical evaluation of the push-out for root canal filling materials. J. Endod. 2013, 39, 669–673. [Google Scholar] [CrossRef]
- Vilas-Boas, D.; Grazziotin-Soares, R.; Ardenghi, D.; Bauer, J.; Souza, P.; Candeiro, G.; Maia-Filho, E.; Carvalho, C. Effect of diferente endodontic sealers and time of cementation on push-out bond strength of fiber posts. Clin. Oral Investig. 2018, 22, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.; Neelakantan, P.; Sanjeev, K.; Matinlinna, J. Effect of irrigant neutralizing reducing agents on the compromised dislocation resistance of an epoxy resin and a methacrylate resin-based root canal sealer in vitro. Int. J. Adhes. Adhes. 2018, 82, 206–210. [Google Scholar] [CrossRef]
- Tasdemir, T.; Yesilyurt, C.; Ceyhanli, K.; Celik, D.; Er, K. Evaluation of apical filling after root canal filling by 2 different techniques. J. Can. Dent. Assoc. 2009, 75, 201–201d. [Google Scholar]
Endodontic Sealer | Manufacturer | Composition |
---|---|---|
AH-Plus® | Dentsply Maillefer, Ballaiques, Switzerland | Bisphenol A/F epoxy resin, calcium tungstate, zirconium dioxide, iron oxide pigments dibenzyldiamina, aminoadamantane, silicone oil |
GuttaFlow Bioseal® | Coltène/Whaledent, GmbH + Co. KG, Germany | Gutta-percha powder, polydimethylsiloxane, platinum catalyst, zirconium dioxide, calcium salicylate, nano-silver particles, coloring, bioactive glass ceramic |
G1 (AH-Plus®, n = 15) | G2 (GuttaFlow Bioseal®, n = 15) | G3 (Negative Control, n = 4) | G4 (Positive Control, n = 4) | |
---|---|---|---|---|
Mean | 1.158 | 0.349 | 0.331 | 2.395 |
Standard deviation | 0.768 | 0.172 | 0.182 | 0.234 |
Minimum value | 0.331 | 0.081 | 0.167 | 2.135 |
Maximum value | 3.209 | 0.718 | 0.537 | 2.652 |
Variable | Unit | Amplitude | Median | Mean | SD | |||
---|---|---|---|---|---|---|---|---|
Minimum | Maximum | Value | SEM | 95%CI | ||||
G1 (AH-Plus®, n = 36) | ||||||||
F | N | 0.03 | 10.05 | 3.43 | 3.40 | 0.40 | (2.72 to 4.16) | 2.40 |
Radius | mm | 0.026 | 0.060 | 0.042 | 0.042 | 0.001 | (0.039 to 0.044) | 0.008 |
radius | mm | 0.023 | 0.055 | 0.039 | 0.039 | 0.001 | (0.036 to 0.042) | 0.008 |
Thickness | mm | 0.520 | 2.300 | 0.640 | 0.772 | 0.064 | (0.652 to 0.902) | 0.386 |
Tension | MPa | 0.180 | 93.621 | 15.181 | 20.244 | 3.096 | (14.862 to 26.393) | 18.579 |
G2 (GuttaFlow Bioseal®, n = 36) | ||||||||
F | N | 0.01 | 9.20 | 0.83 | 1.60 | 0.39 | (0.93 to 2.37) | 2.33 |
Radius | mm | 0.025 | 0.062 | 0.046 | 0.043 | 0.002 | (0.040 to 0.047) | 0.010 |
radius | mm | 0.023 | 0.057 | 0.039 | 0.039 | 0.002 | (0.036 to 0.042) | 0.009 |
Thickness | mm | 0.580 | 1.960 | 1.560 | 1.259 | 0.081 | (1.108 to 1.418) | 0.484 |
Tension | MPa | 0.024 | 19.766 | 2.560 | 4.880 | 0.918 | (3.235 to 6.648) | 5.510 |
Dependent Variable | X: Independent Variable (Material) | Mann–Whitney | |||||
---|---|---|---|---|---|---|---|
Yi: | Units | G1 (AH-Plus®, n = 36) | G2 (GuttaFlow Bioseal®, n = 36) | Z | p | Effect Size | |
Cohen’s r | Qualitative | ||||||
F | N | 3.40 ± 2.40 | 1.60 ± 2.33 | 3.886 | <0.001 | 0.458 | medium |
Radius | mm | 0.042 ± 0.008 | 0.043 ± 0.010 | 0.568 | 0.570 | 0.067 | small |
radius | mm | 0.039 ± 0.008 | 0.039 ± 0.009 | 0.073 | 0.942 | 0.009 | small |
Thickness | mm | 0.772 ± 0.386 | 1. 259 ± 0.484 | 4.509 | <0.001 | 0.531 | large |
Tension | MPa | 20.244 ± 18.579 | 4.880 ± 5.510 | 5.068 | <0.001 | 0.597 | large |
Dependent variable | X: Independent Variable (Material) | Mann–Whitney | |||
---|---|---|---|---|---|
Yi: | Units | G1 (AH-Plus®, n = 36) | G2 (GuttaFlow Bioseal®, n = 36) | Z | p |
Cervical zone (n = 24) | n = 12 | n = 12 | |||
F | N | 2.67 ± 1.80 | 2.99 ± 3.44 | –0.577 | 0.564 |
Radius | mm | 0.047 ± 0.007 | 0.048 ± 0.009 | –0.058 | 0.954 |
radius | mm | 0.045 ± 0.007 | 0.044 ± 0.007 | –0.318 | 0.751 |
Thickness | mm | 0.613 ± 0.040 | 1.262 ± 0.541 | –4.056 | <0.001 |
Tension | MPa | 15.008 ± 10.768 | 7.511 ± 6.712 | –2.021 | 0.043 |
Medial zone (n = 24) | n = 12 | n = 12 | |||
F | N | 2.56 ± 1.95 | 1.08 ± 1.23 | –2.108 | 0.035 |
Radius | mm | 0.043 ± 0.006 | 0.050 ± 0.006 | –2.570 | 0.010 |
radius | mm | 0.040 ± 0.006 | 0.043 ± 0.007 | –1.530 | 0.126 |
Thickness | mm | 0.628 ± 0.051 | 1.492 ± 0.358 | –3.999 | <0.001 |
Tension | MPa | 16.875 ± 14.104 | 2.534 ± 2.780 | –3.002 | 0.003 |
N | |||||
Apical zone (n = 24) | n = 12 | n = 12 | |||
F | N | 4.97 ± 2.69 | 0.73 ± 0.82 | –3.754 | <0.001 |
Radius | mm | 0.036 ± 0.007 | 0.032 ± 0.006 | –1.502 | 0.133 |
radius | mm | 0.032 ± 0.006 | 0.030 ± 0.005 | –1.270 | 0.204 |
Thickness | mm | 1.075 ± 0.564 | 1.023 ± 0.453 | –0.607 | 0.544 |
Tension | MPa | 28.849 ± 25.697 | 4.595 ± 5.495 | –3.406 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques Ferreira, M.; Martinho, J.P.; Duarte, I.; Mendonça, D.; Craveiro, A.C.; Botelho, M.F.; Carrilho, E.; Miguel Marto, C.; Coelho, A.; Paula, A.; et al. Evaluation of the Sealing Ability and Bond Strength of Two Endodontic Root Canal Sealers: An In Vitro Study. Dent. J. 2022, 10, 201. https://doi.org/10.3390/dj10110201
Marques Ferreira M, Martinho JP, Duarte I, Mendonça D, Craveiro AC, Botelho MF, Carrilho E, Miguel Marto C, Coelho A, Paula A, et al. Evaluation of the Sealing Ability and Bond Strength of Two Endodontic Root Canal Sealers: An In Vitro Study. Dentistry Journal. 2022; 10(11):201. https://doi.org/10.3390/dj10110201
Chicago/Turabian StyleMarques Ferreira, Manuel, José Pedro Martinho, Inês Duarte, Diogo Mendonça, Ana Catarina Craveiro, Maria Filomena Botelho, Eunice Carrilho, Carlos Miguel Marto, Ana Coelho, Anabela Paula, and et al. 2022. "Evaluation of the Sealing Ability and Bond Strength of Two Endodontic Root Canal Sealers: An In Vitro Study" Dentistry Journal 10, no. 11: 201. https://doi.org/10.3390/dj10110201
APA StyleMarques Ferreira, M., Martinho, J. P., Duarte, I., Mendonça, D., Craveiro, A. C., Botelho, M. F., Carrilho, E., Miguel Marto, C., Coelho, A., Paula, A., Paulo, S., Chichorro, N., & Abrantes, A. M. (2022). Evaluation of the Sealing Ability and Bond Strength of Two Endodontic Root Canal Sealers: An In Vitro Study. Dentistry Journal, 10(11), 201. https://doi.org/10.3390/dj10110201