Effects of Different Toothpastes on the Nanomechanical Properties and Chemical Composition of Resin-Modified Glass Ionomer Cement and Composite Resin Restorations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Specimen Preparation
2.3. Restorative Procedures
2.4. Erosion–Abrasion Cycles
2.5. Analyses of Nanohardness (H)
2.6. Energy-Dispersive X-ray Spectroscopy (EDS) and Scanning Electron Microscopy (SEM)
2.7. Micro-Raman Spectroscopy
2.8. Statistical Analysis
3. Results
3.1. Nanohardness (H)
3.2. Energy-Dispersive Spectroscopy (EDS)
3.3. Analysis of Micro-Raman Spectroscopy
3.4. Scanning Electron Microscopy (SEM)
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Coupal, I.; Sołtysiak, A. Dental erosion in archaeological human remains: A critical review of literature and proposal of a differential diagnosis protocol. Arch. Oral Biol. 2017, 84, 50–57. [Google Scholar]
- Carvalho, T.S.; Colon, P.; Ganss, C.; Huysmans, M.C.; Lussi, A.; Schlueter, N.; Schmalz, G.; Shellis, R.P.; Tveit, A.B.; Wiegand, A. Consensus report of the European Federation of Conservative Dentistry: Erosive tooth wear—Diagnosis and management. Clin. Oral Investig. 2015, 19, 1557–1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlueter, N.; Glatzki, J.; Klimek, J.; Ganss, C. Erosive-abrasive tissue loss in dentine under simulated bulimic conditions. Arch. Oral Biol. 2012, 57, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Ganss, C.; Lussi, A.; Schlueter, N. The histological features and physical properties of eroded dental hard tissues. Monogr. Oral Sci. 2014, 25, 99–107. [Google Scholar] [PubMed]
- Lussi, A.; Buzalaf, M.A.R.; Duangthip, D.; Anttonen, V.; Ganss, C.; João-Souza, S.H.; Baumann, T.; Carvalho, T.S. The use of fluoride for the prevention of dental erosion and erosive tooth wear in children and adolescents. Eur. Arch. Paediatr. Dent. 2019, 20, 517–527. [Google Scholar]
- Schlueter, N.; Lussi, A.; Tolle, A.; Ganss, C. Effects of Erosion Protocol Design on Erosion/Abrasion Study Outcome and on Active Agent (NaF and SnF2) Efficacy. Caries Res. 2016, 50, 170–179. [Google Scholar] [CrossRef]
- Moda, M.D.; Briso, A.L.F.; Oliveira, R.P.; Pini, N.I.P.; Gonçalves, D.F.M.; Santos, P.H.D.; Fagundes, T.C. Effects of different toothpastes on the prevention of erosion in composite resin and glass ionomer cement enamel and dentin restorations. J. Appl. Oral Sci. 2020, 28, e20200493. [Google Scholar]
- Dündar, A.; Şengün, A.; Başlak, C.; Kuş, M. Effects of citric acid modified with fluoride, nano-hydroxyapatite and casein on eroded enamel. Arch. Oral Biol. 2018, 93, 177–186. [Google Scholar] [CrossRef]
- Ganss, C.; Möllers, M.; Schlueter, N. Do abrasives play a role in toothpaste efficacy against erosion/abrasion? Caries Res. 2017, 51, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Pini, N.I.; Lima, D.A.; Lovadino, J.R.; Ganss, C.; Schlueter, N. In vitro efficacy of experimental chitosan-containing solutions as anti-erosive agents in enamel. Caries Res. 2016, 50, 337–345. [Google Scholar] [CrossRef]
- Kielbassa, A.M.; Gillmann, L.; Zantner, C.; Meyer-Lueckel, H.; Hellwig, E.; Schulte-Mönting, J. Profilometric and microradiographic studies on the effects of toothpaste and acidic gel abrasivity on sound and demineralized bovine dental enamel. Caries Res. 2005, 39, 380–386. [Google Scholar] [CrossRef]
- Lussi, A.; Schlueter, N.; Rakhmatullina, E.; Ganss, C. Dental erosion: An overview with emphasis on chemicaland histopathological aspects. Caries Res. 2011, 45, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Schlueter, N.; Jaeggi, T.; Lussi, A. Is dental erosion really a problem? Adv. Dent. Res. 2012, 24, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Alghilan, M.A.; Cook, N.B.; Platt, J.A.; Eckert, G.J.; Hara, A.T. Susceptibility of restorations and adjacent enamel/dentine to erosion under different salivary flow conditions. J. Dent. 2015, 43, 1476–1482. [Google Scholar] [CrossRef] [PubMed]
- Viana, Í.; Alania, Y.; Feitosa, S.; Borges, A.B.; Braga, R.R.; Scaramucci, T. Bioactive Materials Subjected to Erosion/Abrasion and Their Influence on Dental Tissues. Oper. Dent. 2020, 45, E114–E123. [Google Scholar] [CrossRef]
- Honório, H.M.; Rios, D.; Francisconi, L.F.; Magalhães, A.C.; Machado, M.A.; Buzalaf, M.A. Effect of prolonged erosive pH cycling on different restorative materials. J. Oral Rehabil. 2008, 35, 947–953. [Google Scholar] [CrossRef]
- Souza, B.M.; Comar, L.P.; Vertuan, M.; Fernandes-Neto, C.; Buzalaf, M.A.; Magalhães, A.C. Effect of an experimental paste with hydroxyapatite nanoparticles and fluoride on dental demineralisation and remineralisation in situ. Caries Res. 2015, 49, 499–507. [Google Scholar] [CrossRef]
- Cruz, N.V.; Pessan, J.P.; Manarelli, M.M.; Souza, M.D.; Delbem, A.C. In vitro effect of low-fluoride toothpastes containing sodium trimetaphosphate on enamel erosion. Arch. Oral Biol. 2015, 60, 1231–1236. [Google Scholar] [CrossRef]
- Strazzi-Sahyon, H.B.; Chimanski, A.; Yoshimura, H.N.; Dos Santos, P.H. Effect of previous photoactivation of the adhesive system on the color stability and mechanical properties of resin components in ceramic laminate veneer luting. J. Prosthet. Dent. 2018, 120, 631.e1–631.e6. [Google Scholar] [CrossRef]
- Dos Santos, P.H.; Karol, S.; Bedran-Russo, A.K.B. Long-term nano-mechanical properties of biomodified dentin–resin interface components. J. Biomech. 2011, 44, 1691–1694. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, A.; Schneider, S.; Sener, B.; Roos, M.; Attin, T. Stability against brushing abrasion and the erosion-protective effect of different fluoride compounds. Caries Res. 2014, 48, 154–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furini, L.N.; Feitosa, E.; Alessio, P.; Shimabukuro, M.H.; Riul, A., Jr.; Constantino, C.J. Tuning the nanostructure of DODAB/nickel tetrasulfonated phthalocyanine bilayers in LbL films. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 2937–2946. [Google Scholar] [CrossRef]
- Toledano, M.; Cabello, I.; Osorio, E.; Aguilera, F.S.; Medina-Castillo, A.L.; Toledano-Osorio, M.; Osorio, R. Zn-containing polymer nanogels promote cervical dentin remineralization. Clin. Oral Investig. 2018, 23, 1197–1208. [Google Scholar] [CrossRef] [PubMed]
- Schlueter, N.; Hara, A.; Shellis, R.P.; Ganss, C. Methods for the Measurement and Characterization of Erosion in Enamel and Dentine. Caries Res. 2011, 45, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Basting, R.T.; Leme, A.A.; Bridi, E.C.; Amaral, F.L.; França, F.M.; Turssi, C.P.; Bedran-Russo, A.K. Nanomechanical properties, SEM, and EDS microanalysis of dentin treated with 2.5% titanium tetrafluoride, before and after an erosive challenge. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 103, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, D.F.M.; Briso, A.L.F.; Pini, N.I.P.; Moda, M.D.; Parpinelli de Oliveira, R.; Santos, P.H.D.; Fagundes, T.C. Effects of dentifrices on mechanical resistance of dentin and restorative materials after erosion and abrasion. J. Mech. Behav. Biomed Mater. 2019, 97, 7–12. [Google Scholar] [CrossRef]
- Medeiros, M.I.; Carlo, H.L.; Lacerda-Santos, R.; Lima, B.A.; Souza, F.B.; Rodrigues, J.A.; Carvalho, F.G. Thickness and nanomechanical properties of protective layer formed by TiF4 varnish on enamel after erosion. Braz. Oral Res. 2016, 30, e75err. [Google Scholar] [CrossRef] [Green Version]
- Cadenaro, M.; Antoniolli, F.; Sauro, S.; Tay, F.R.; Di Lenarda, R.; Prati, C.; Biasotto, M.; Contardo, L.; Breschi, L. Degree of conversion and permeability of dental adhesives. Eur. J. Oral Sci. 2005, 113, 525–530. [Google Scholar] [CrossRef]
- Suzuki, T.Y.; Gomes-Filho, J.E.; Gallego, J.; Pavan, S.; Dos Santos, P.H.; Fraga-Briso, A.L. Mechanical properties of components of the bonding interface in different regions of radicular dentin surfaces. J. Prosthet. Dent. 2014, 113, 54–61. [Google Scholar] [CrossRef]
- Kaur, S.; Makkar, S.; Kumar, R.; Pasricha, S.; Gupta, P. Comparative evaluation of surface properties of enamel and different esthetic restorative materials under erosive and abrasive challenges: An in vitro study. Indian J. Dent. 2015, 6, 172–180. [Google Scholar]
- Gajewski, V.E.; Pfeifer, C.S.; Fróes-Salgado, N.R.; Boaro, L.C.; Braga, R.R. Monomers used in resin composites: Degree of conversion, mechanical properties and water sorption/solubility. Braz. Dent. J. 2012, 23, 508–514. [Google Scholar] [CrossRef]
- Tian, K.V.; Nagy, P.M.; Chass, G.A.; Fejerdy, P.; Nicholson, J.W.; Csizmadia, I.G.; Dobó-Nagy, C. Qualitative assessment of microstructure and Hertzian indentation failure in biocompatible glass ionomer cements. J. Mater. Sci. Mater. Med. 2012, 23, 677–685. [Google Scholar] [CrossRef]
- Rolim, F.G.; Sá, A.F.; Silva-Filho, G.W.; Brandim, A.S.; Vale, G.C. Effect of High-Fluoride Dentifrice on Enamel Erosion Adjacent to Restorations In Vitro. Oper. Dent. 2016, 41, 157–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira-Junior, W.F.; Ferraz, L.N.; Pini, N.; Ambrosano, G.; Aguiar, F.; Tabchoury, C.; Lima, D. Effect of toothpaste use against mineral loss promoted by dental bleaching. Oper. Dent. 2018, 43, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, S.J.C.; João-Souza, S.H.; Aoki, I.V.; Borges, A.B.; Hara, A.T.; Scaramucci, T. Anti-Erosive effect of solutions containing sodium fluoride, stannous chloride, and selected film-forming polymers. Caries Res. 2019, 53, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Guler, S.; Unal, M. The Evaluation of Color and Surface Roughness Changes in Resin based Restorative Materials with Different Contents After Waiting in Various Liquids: An SEM and AFM study. Microsc. Res. Tech. 2018, 81, 1422–1433. [Google Scholar] [CrossRef] [PubMed]
- Osorio, R.; Toledano-Osorio, M.; Osorio, E.; Aguilera, F.S.; Padilla-Mondéjar, S.; Toledano, M. Zinc and silica are active components to efficiently treat in vitro simulated eroded dentin. Clin. Oral Investig. 2018, 22, 2859–2870. [Google Scholar] [CrossRef] [PubMed]
- Ganss, C.; Schlueter, N.; Klimek, J. Retention of KOH-soluble fluoride on enamel and dentine under erosive conditions—A comparison of in vitro and in situ results. Arch. Oral Biol. 2007, 52, 9–14. [Google Scholar] [CrossRef]
Material | Application Mode | Composition | Manufacturer |
---|---|---|---|
Adper Single Bond 2 (Adhesive system) | Apply one layer of adhesive, wait for 20 s, air stream for 5 s, and polymerize for 10 s | Bis-GMA, HEMA, dimethacrylates, ethanol, water, a novel photoinitiator system and a methacrylate functional copolymer of polyacrylic and polyitaconic acids | 3M ESPE, St. Paul, MN, USA |
Filtek Z350 XT (color A2B) Batch: 672,912 | Apply increments of 2 mm and polymerize for 20 s each | Bis-GMA, UDMA, Bis-EMA, TEGDMA, PEGDMA, Zirconia and agglomerates of silica and camphorquinone | 3M ESPE, St. Paul, MN, USA |
Fuji II LC (color A3) Batch: 17,051,316 | Apply GC conditioner for 20 s and rinse and dry for 10 s. Dispense one level scoop of powder with two drops of liquid and mix for 15–20 s. Transfer the mixture to the centrix syringe and polymerize for 40 s. | Powder: fluor-amino-silicate glass. Liquid: aqueous solution of polycarboxylic acid, TEGDMA and HEMA | GC, Tokyo, Japan |
Curaprox Enzycal Zero (RDA-60) * Batch: 442MHDEXP1121 | Fluoride-free toothpaste (WF) | Water, sorbitol, hydrated silica, Glycerin, Steareth-20, titanium dioxide (Cl 77,891), flavor, sodium phosphate, carrageenan, sodium chloride, citric acid, sodium benzoate, potassium thiocyanate, glucose oxidase, amyloglucosidase, lactoperoxidase | Trybol, Neuhausen am Rheinfall, Swiss |
Colgate Total 12 (RDA-70/80) * Batch: 6184BR121R | Sodium Fluoride Toothpaste (NaF) | Sodium fluoride (1450 ppm as NaF) water, triclosan, sorbitol, silica, sodium lauryl sulfate, PMV/MA copolymer, sodium hydroxide, saccharin sodium, titanium dioxide | Colgate-Palmolive, São Bernardo do Campo, SP, Brazil. |
Crest Pro-Health (RDA-155) * Batch: 6039GF | Stannous Fluoride Toothpaste (SnF2) | Stannous fluoride (1100 ppm F as SnF2) glycerin, hydrated silica, sodium hexametaphosphate, propylene glycol, peg 6, water, zinc lactate, trisodium phosphate, sodium lauryl sulfate, carrageenan, sodium saccharin, xanthan gum, blue 1 | Procter & Gamble, Cincinnati, OH, USA |
Factors | ERMGIC-C | ECR-C | RMGIC-C | CR-C | DRMGIC-C | DCR-C |
---|---|---|---|---|---|---|
WF | 2.97 (0.45) Aa | 2.66 (0.40) Ab | 0.47 (0.20) Ab | 0.69 (0.12) Aa | 0.68 (0.15) Aa | 0.63 (0.10) Aa |
NaF | 2.89 (0.73) Aa | 2.96 (0.43) Aa | 0.41 (0.19) Ab | 0.67 (0.17) Aa | 0.59 (0.12) Ba | 0.61 (0.15) Aa |
SnF2 | 3.09 (0.83) Aa | 2.98 (0.63) Aa | 0.49 (0.21) Ab | 0.70 (0.21) Aa | 0.65 (0.13) Aba | 0.67 (0.15) Aa |
Factors | ERMGIC-E | ECR-E | RMGIC-E | CR-E | DRMGIC-E | DCR-E |
WF | 0.51 (0.17) Aa * | 0.55 (0.22) Aa * | 0.29 (0.09) Ab * | 0.64 (0.08) Aa | 0.05 (0.02) Aa * | 0.10 (0.05) Aa * |
NaF | 0.52 (0.24) Aa * | 0.50 (0.30) Aa * | 0.34 (0.16) Ab | 0.65 (0.18) Aa | 0.08 (0.04) Aa * | 0.06 (0.02) Aa * |
SnF2 | 0.27 (0.07) Aa * | 0.23 (0.06) Aa * | 0.25 (0.14) Ab * | 0.63 (0.11) Aa | 0.08 (0.03) Aa * | 0.07 (0.02) Aa * |
Factors | ERMGIC-C | ERMGIC-E | ECR-C | ECR-E |
---|---|---|---|---|
WF | 1.80 (0.10) Aa | 1.78 (0.12) Aa | 1.79 (0.10) Aa | 1.80 (0.12) Aa |
NaF | 1.75 (0.14) Aa | 1.78 (0.16) Aa | 1.80 (0.10) Aa | 1.87 (0.08) Aa |
SnF2 | 1.81 (0.02) Aa | 1.71 (0.09) Aa | 1.75 (0.12) Aa | 1.77 (0.09) Aa |
Factors | DRMGIC-C | DRMGIC-E | DCR-C | DCR-E |
---|---|---|---|---|
WF | 1.74 (0.08) Aa | 0.53 (0.83) Ab | 1.71 (0.09) Aa | 0.62 (0.96) Bb |
NaF | 1.68 (0.08) Aa | 1.12 (0.87) Aa | 1.95 (0.35) Aa | 1.77 (0.12) Aa |
SnF2 | 1.70 (0.08) Aa | 0.53 (0.81) Aa | 1.74 (0.10) Aa | 1.22 (0.95) ABab |
Factors | ERMGIC-C | ERMGIC-E | ECR-C | ECR-E |
---|---|---|---|---|
WF | 0.06 (0.08) Aa | 0.04 (0.01) Aa | 0.04 (0.01) Aa | 0.04 (0.01) Aa |
NaF | 0.05 (0.01) Aa | 0.05 (0.02) Aa | 0.03 (0.01) Aa | 0.04 (0.01) Aa |
SnF2 | 0.04 (0.02) Aa | 0.08 (0.13) Aa | 0.04 (0.01) Aa | 0.04 (0.02) Aa |
Factors | DRMGIC-C | DRMGIC-E | DCR-C | DCR-E |
---|---|---|---|---|
WF | 0.33 (0.20) Bb | 0.35 (0.05) Aab | 0.42 (0.07) Aa | 0.29 (0.04) Ab |
NaF | 0.42 (0.06) Aa | 0.36 (0.08) Aab | 0.39 (0.04) Aa | 0.26 (0.08) Ab |
SnF2 | 0.45 (0.07) Aa | 0.31 (0.08) Ab | 0.42 (0.06) Aa | 0.25 (0.09) Ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moda, M.D.; Dos Santos, P.H.; Pini, N.I.P.; Furini, L.N.; Briso, A.L.F.; Assmann, A.; Fagundes, T.C. Effects of Different Toothpastes on the Nanomechanical Properties and Chemical Composition of Resin-Modified Glass Ionomer Cement and Composite Resin Restorations. Dent. J. 2023, 11, 173. https://doi.org/10.3390/dj11070173
Moda MD, Dos Santos PH, Pini NIP, Furini LN, Briso ALF, Assmann A, Fagundes TC. Effects of Different Toothpastes on the Nanomechanical Properties and Chemical Composition of Resin-Modified Glass Ionomer Cement and Composite Resin Restorations. Dentistry Journal. 2023; 11(7):173. https://doi.org/10.3390/dj11070173
Chicago/Turabian StyleModa, Mariana Dias, Paulo Henrique Dos Santos, Nubia Inocencya Pavesi Pini, Leonardo Negri Furini, André Luiz Fraga Briso, André Assmann, and Ticiane Cestari Fagundes. 2023. "Effects of Different Toothpastes on the Nanomechanical Properties and Chemical Composition of Resin-Modified Glass Ionomer Cement and Composite Resin Restorations" Dentistry Journal 11, no. 7: 173. https://doi.org/10.3390/dj11070173
APA StyleModa, M. D., Dos Santos, P. H., Pini, N. I. P., Furini, L. N., Briso, A. L. F., Assmann, A., & Fagundes, T. C. (2023). Effects of Different Toothpastes on the Nanomechanical Properties and Chemical Composition of Resin-Modified Glass Ionomer Cement and Composite Resin Restorations. Dentistry Journal, 11(7), 173. https://doi.org/10.3390/dj11070173