Customized 3D-Printed Mesh, Membrane, Bone Substitute, and Dental Implant Applied to Guided Bone Regeneration in Oral Implantology: A Narrative Review
Abstract
:1. Introduction
2. Digital Radiographic Process in 3D Printing Workflow
3. Materials and Methods
3.1. Search Strategy
3.2. Study Selection and Eligibility Criteria
3.3. Data Extraction, Collection, and Synthesis
4. Mesh
4.1. Material and Clinical Indications
4.2. Three-Dimensionally Printed Manufacturing-Controlled Characteristics
4.3. Histological Findings of Healing Processes
4.4. Complications and Their Management
4.5. Clinical Considerations
5. Membranes
5.1. Materials and Clinical Indications
5.2. Three-Dimensionally Printed Manufacturing-Controlled Characteristics
5.3. Histological Findings of Healing Processes
5.4. Complications and Their Management
5.5. Clinical Considerations
6. Bone Substitutes
6.1. Materials and Clinical Indications
6.2. Three-Dimensionally Printed Manufacturing-Controlled Characteristics
6.3. Histological Findings of Healing Processes
6.4. Complications and Their Management
6.5. Clinical Considerations
7. Dental Implant
7.1. Materials and Clinical Indications
7.2. Three-Dimensionally Printed Manufacturing-Controlled Characteristics
7.3. Histological Findings of the Healing Process
7.4. Complications and Their Management
7.5. Clinical Considerations
8. Challenges and Future Prospectives
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tallarico, M.; Park, C.-J.; Lumbau, A.I.; Annucci, M.; Baldoni, E.; Koshovari, A.; Meloni, S.M. Customized 3D-Printed Titanium Mesh Developed to Regenerate a Complex Bone Defect in the Aesthetic Zone: A Case Report Approached with a Fully Digital Workflow. Materials 2020, 13, 3874. [Google Scholar] [CrossRef] [PubMed]
- Scribante, A.; Ghizzoni, M.; Pellegrini, M.; Pulicari, F.; Manfredini, M.; Poli, P.P.; Maiorana, C.; Spadari, F. Full-Digital Customized Meshes in Guided Bone Regeneration Procedures: A Scoping Review. Prosthesis 2023, 5, 480–495. [Google Scholar] [CrossRef]
- Lo Giudice, R.; Galletti, C.; Tribst, J.P.M.; Melenchón, L.P.; Matarese, M.; Miniello, A.; Cucinotta, F.; Salmeri, F. In Vivo Analysis of Intraoral Scanner Precision Using Open-Source 3D Software. Prosthesis 2022, 4, 554–563. [Google Scholar] [CrossRef]
- D’Ambrosio, F.; Giordano, F.; Sangiovanni, G.; Di Palo, M.P.; Amato, M. Conventional versus Digital Dental Impression Techniques: What Is the Future? An Umbrella Review. Prosthesis 2023, 5, 851–875. [Google Scholar] [CrossRef]
- Mateo-Sidrón Antón, M.C.; Pérez-González, F.; Meniz-García, C. Titanium Mesh for Guided Bone Regeneration: A Systematic Review. Br. J. Oral Maxillofac. Surg. 2024, 62, 433–440. [Google Scholar] [CrossRef]
- Cucchi, A.; Chierico, A.; Fontana, F.; Mazzocco, F.; Cinquegrana, C.; Belleggia, F.; Rossetti, P.; Soardi, C.M.; Todisco, M.; Luongo, R.; et al. Statements and Recommendations for Guided Bone Regeneration. Implant. Dent. 2019, 28, 388–399. [Google Scholar] [CrossRef]
- Dahlin, C.; Linde, A.; Gottlow, J.; Nyman, S. Healing of Bone Defects by Guided Tissue Regeneration. Plast. Reconstr. Surg. 1988, 81, 672–676. [Google Scholar] [CrossRef]
- Sanz, M.; Dahlin, C.; Apatzidou, D.; Artzi, Z.; Bozic, D.; Calciolari, E.; De Bruyn, H.; Dommisch, H.; Donos, N.; Eickholz, P.; et al. Biomaterials and Regenerative Technologies Used in Bone Regeneration in the Craniomaxillofacial Region: Consensus Report of Group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. J. Clin. Periodontol. 2019, 46, 82–91. [Google Scholar] [CrossRef]
- Hadad, H.; Boos Lima, F.B.; Shirinbak, I.; Porto, T.S.; Chen, J.E.; Guastaldi, F.P. The Impact of 3D Printing on Oral and Maxillofacial Surgery. J. 3D Print. Med. 2023, 7, 3DP007. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Lee, Y.-C.; Kim, S.-G.; Garagiola, U. Advancements in Oral Maxillofacial Surgery: A Comprehensive Review on 3D Printing and Virtual Surgical Planning. Appl. Sci. 2023, 13, 9907. [Google Scholar] [CrossRef]
- Hartmann, A.; Seiler, M. Minimizing Risk of Customized Titanium Mesh Exposures—A Retrospective Analysis. BMC Oral Health 2020, 20, 36. [Google Scholar] [CrossRef] [PubMed]
- Mekcha, P.; Wongpairojpanich, J.; Thammarakcharoen, F.; Suwanprateeb, J.; Buranawat, B. Customized 3D Printed Nanohydroxyapatite Bone Block Grafts for Implant Sites: A Case Series. J. Prosthodont. Res. 2022, 67, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Mandelli, F.; Traini, T.; Ghensi, P. Customized-3D Zirconia Barriers for Guided Bone Regeneration (GBR): Clinical and Histological Findings from a Proof-of-Concept Case Series. J. Dent. 2021, 114, 103780. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A. Current Status and Applications of Additive Manufacturing in Dentistry: A Literature-Based Review. J. Oral Biol. Craniofac. Res. 2019, 9, 179–185. [Google Scholar] [CrossRef] [PubMed]
- F2792–12a; Standard Terminology for Additive Manufacturing Technologies. MIT Libraries; ASTM International: West Conshohocken, PA, USA, 2013.
- Sufaru, I.-G.; Macovei, G.; Stoleriu, S.; Martu, M.-A.; Luchian, I.; Kappenberg-Nitescu, D.-C.; Solomon, S.M. 3D Printed and Bioprinted Membranes and Scaffolds for the Periodontal Tissue Regeneration: A Narrative Review. Membranes 2022, 12, 902. [Google Scholar] [CrossRef]
- Zoabi, A.; Redenski, I.; Oren, D.; Kasem, A.; Zigron, A.; Daoud, S.; Moskovich, L.; Kablan, F.; Srouji, S. 3D Printing and Virtual Surgical Planning in Oral and Maxillofacial Surgery. J. Clin. Med. 2022, 11, 2385. [Google Scholar] [CrossRef]
- Aslam, K.; Nadim, R. A Review on Cad Cam in Dentistry. JPDA 2015, 24, 112. [Google Scholar]
- Hoang, D.; Perrault, D.; Stevanovic, M.; Ghiassi, A. Surgical Applications of Three-Dimensional Printing: A Review of the Current Literature & How to Get Started. Ann. Transl. Med. 2016, 4, 456. [Google Scholar] [CrossRef]
- Yazigi, C.; Chaar, M.S.; Busch, R.; Kern, M. The Effect of Sterilization on the Accuracy and Fit of 3D-Printed Surgical Guides. Materials 2023, 16, 5305. [Google Scholar] [CrossRef]
- Wiseman, J.; Rawther, T.; Langbart, M.; Kernohan, M.; Ngo, Q. Sterilization of Bedside 3D-Printed Devices for Use in the Operating Room. Ann. 3D Print. Med. 2022, 5, 100045. [Google Scholar] [CrossRef]
- Valls-Esteve, A.; Lustig-Gainza, P.; Adell-Gomez, N.; Tejo-Otero, A.; Englí-Rueda, M.; Julian-Alvarez, E.; Navarro-Sureda, O.; Fenollosa-Artés, F.; Rubio-Palau, J.; Krauel, L.; et al. A State-of-the-Art Guide about the Effects of Sterilization Processes on 3D-Printed Materials for Surgical Planning and Medical Applications: A Comparative Study. Int. J. Bioprint. 2023, 9, 756. [Google Scholar] [CrossRef] [PubMed]
- Ferràs-Tarragó, J.; Sabalza-Baztán, O.; Sahuquillo-Arce, J.M.; Angulo-Sánchez, M.Á.; De-La-Calva Ceinos, C.; Amaya-Valero, J.V.; Baixauli-García, F. Autoclave Sterilization of an In-House 3D-Printed Polylactic Acid Piece: Biological Safety and Heat-Induced Deformation. Eur. J. Trauma Emerg. Surg. 2022, 48, 3901–3910. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Nakajima, Y.; Omori, M.; Suwa, Y.; Kato-Kogoe, N.; Yamamoto, K.; Kitagaki, H.; Mori, S.; Nakano, H.; Ueno, T. Reconstruction of the Alveolar Bone Using Bone Augmentation with Selective Laser Melting Titanium Mesh Sheet: A Report of 2 Cases. Implant. Dent. 2018, 27, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Boogaard, M.J.; Santoro, F.; Romanos, G.E. Mesh Ridge Augmentation Using CAD/CAM Technology for Design and Printing: Two Case Reports. Compend. Contin. Educ. Dent. 2022, 43, 654–663. [Google Scholar] [PubMed]
- Chiapasco, M.; Casentini, P.; Tommasato, G.; Dellavia, C.; Del Fabbro, M. Customized CAD/CAM Titanium Meshes for the Guided Bone Regeneration of Severe Alveolar Ridge Defects: Preliminary Results of a Retrospective Clinical Study in Humans. Clin. Oral Implant. Res. 2021, 32, 498–510. [Google Scholar] [CrossRef]
- Ciocca, L.; Lizio, G.; Baldissara, P.; Sambuco, A.; Scotti, R.; Corinaldesi, G. Prosthetically CAD-CAM-Guided Bone Augmentation of Atrophic Jaws Using Customized Titanium Mesh: Preliminary Results of an Open Prospective Study. J. Oral Implantol. 2018, 44, 131–137. [Google Scholar] [CrossRef]
- Cucchi, A.; Vignudelli, E.; Franceschi, D.; Randellini, E.; Lizio, G.; Fiorino, A.; Corinaldesi, G. Vertical and Horizontal Ridge Augmentation Using Customized CAD/CAM Titanium Mesh with versus without Resorbable Membranes. A Randomized Clinical Trial. Clin. Oral Implant. Res. 2021, 32, 1411–1424. [Google Scholar] [CrossRef]
- Dellavia, C.; Canciani, E.; Pellegrini, G.; Tommasato, G.; Graziano, D.; Chiapasco, M. Histological Assessment of Mandibular Bone Tissue after Guided Bone Regeneration with Customized Computer-aided Design/Computer-assisted Manufacture Titanium Mesh in Humans: A Cohort Study. Clin. Implant. Dent. Relat. Res. 2021, 23, 600–611. [Google Scholar] [CrossRef]
- De Santis, D.; Umberto, L.; Dario, D.; Paolo, F.; Zarantonello, M.; Alberti, C.; Verlato, G.; Gelpi, F. Custom Bone Regeneration (CBR): An Alternative Method of Bone Augmentation—A Case Series Study. J. Clin. Med. 2022, 11, 4739. [Google Scholar] [CrossRef]
- Gelețu, G.; Burlacu, A.; Murariu, A.; Andrian, S.; Golovcencu, L.; Baciu, E.-R.; Maftei, G.; Onica, N. Customized 3D-Printed Titanium Mesh Developed for an Aesthetic Zone to Regenerate a Complex Bone Defect Resulting after a Deficient Odontectomy: A Case Report. Medicina 2022, 58, 1192. [Google Scholar] [CrossRef]
- Lizio, G.; Pellegrino, G.; Corinaldesi, G.; Ferri, A.; Marchetti, C.; Felice, P. Guided Bone Regeneration Using Titanium Mesh to Augment 3-dimensional Alveolar Defects Prior to Implant Placement. A Pilot Study. Clin. Oral Implant. Res. 2022, 33, 607–621. [Google Scholar] [CrossRef]
- Mounir, M.; Shalash, M.; Mounir, S.; Nassar, Y.; El Khatib, O. Assessment of Three Dimensional Bone Augmentation of Severely Atrophied Maxillary Alveolar Ridges Using Prebent Titanium Mesh vs Customized Poly-ether-ether-ketone (PEEK) Mesh: A Randomized Clinical Trial. Clin. Implant. Dent. Relat. Res. 2019, 21, 960–967. [Google Scholar] [CrossRef]
- Navarro Cuéllar, C.; Tousidonis Rial, M.; Antúnez-Conde, R.; Ochandiano Caicoya, S.; Navarro Cuéllar, I.; Arenas de Frutos, G.; Sada Urmeneta, Á.; García-Hidalgo Alonso, M.I.; Navarro Vila, C.; Salmerón Escobar, J.I. Virtual Surgical Planning, Stereolitographic Models and CAD/CAM Titanium Mesh for Three-Dimensional Reconstruction of Fibula Flap with Iliac Crest Graft and Dental Implants. J. Clin. Med. 2021, 10, 1922. [Google Scholar] [CrossRef]
- Nickenig, H.-J.; Riekert, M.; Zirk, M.; Lentzen, M.-P.; Zöller, J.E.; Kreppel, M. 3D-Based Buccal Augmentation for Ideal Prosthetic Implant Alignment—An Optimized Method and Report on 7 Cases with Pronounced Buccal Concavities. Clin. Oral Investig. 2022, 26, 3999–4010. [Google Scholar] [CrossRef]
- Yang, W.; Chen, D.; Wang, C.; Apicella, D.; Apicella, A.; Huang, Y.; Li, L.; Zheng, L.; Ji, P.; Wang, L.; et al. The Effect of Bone Defect Size on the 3D Accuracy of Alveolar Bone Augmentation Performed with Additively Manufactured Patient-Specific Titanium Mesh. BMC Oral Health 2022, 22, 557. [Google Scholar] [CrossRef]
- Bai, L.; Ji, P.; Li, X.; Gao, H.; Li, L.; Wang, C. Mechanical Characterization of 3D-Printed Individualized Ti-Mesh (Membrane) for Alveolar Bone Defects. J. Healthc. Eng. 2019, 2019, 1–13. [Google Scholar] [CrossRef]
- Gutta, R.; Baker, R.A.; Bartolucci, A.A.; Louis, P.J. Barrier Membranes Used for Ridge Augmentation: Is There an Optimal Pore Size? J. Oral Maxillofac. Surg. 2009, 67, 1218–1225. [Google Scholar] [CrossRef]
- Rakhmatia, Y.D.; Ayukawa, Y.; Jinno, Y.; Furuhashi, A.; Koyano, K. Micro-Computed Tomography Analysis of Early Stage Bone Healing Using Micro-Porous Titanium Mesh for Guided Bone Regeneration: Preliminary Experiment in a Canine Model. Odontology 2017, 105, 408–417. [Google Scholar] [CrossRef]
- Zhao, D.; Dong, H.; Niu, Y.; Fan, W.; Jiang, M.; Li, K.; Wei, Q.; Palin, W.M.; Zhang, Z. Electrophoretic Deposition of Novel Semi-Permeable Coatings on 3D-Printed Ti-Nb Alloy Meshes for Guided Alveolar Bone Regeneration. Dent. Mater. 2022, 38, 431–443. [Google Scholar] [CrossRef]
- Proussaefs, P.; Lozada, J. Use of Titanium Mesh for Staged Localized Alveolar Ridge Augmentation: Clinical and Histologic-Histomorphometric Evaluation. J. Oral Implantol. 2006, 32, 237–247. [Google Scholar] [CrossRef]
- Cucchi, A.; Sartori, M.; Parrilli, A.; Aldini, N.N.; Vignudelli, E.; Corinaldesi, G. Histological and Histomorphometric Analysis of Bone Tissue after Guided Bone Regeneration with Non-resorbable Membranes vs Resorbable Membranes and Titanium Mesh. Clin. Implant. Dent. Relat. Res. 2019, 21, 693–701. [Google Scholar] [CrossRef]
- Poli, P.; Beretta, M.; Maiorana, C.; Souza, F.; Bovio, A.; Manfredini, M. Therapeutic Strategies in the Management of Nonresorbable Membrane and Titanium Mesh Exposures Following Alveolar Bone Augmentation: A Systematic Scoping Review. Int. J. Oral Maxillofac. Implant. 2022, 37, 250–269. [Google Scholar] [CrossRef]
- Her, S.; Kang, T.; Fien, M.J. Titanium Mesh as an Alternative to a Membrane for Ridge Augmentation. J. Oral Maxillofac. Surg. 2012, 70, 803–810. [Google Scholar] [CrossRef]
- Al-Ardah, A.J.; AlHelal, A.; Proussaefs, P.; AlBader, B.; Al Humaidan, A.A.; Lozada, J. Managing Titanium Mesh Exposure with Partial Removal of the Exposed Site: A Case Series Study. J. Oral Implantol. 2017, 43, 482–490. [Google Scholar] [CrossRef]
- Sumida, T.; Otawa, N.; Kamata, Y.; Kamakura, S.; Mtsushita, T.; Kitagaki, H.; Mori, S.; Sasaki, K.; Fujibayashi, S.; Takemoto, M.; et al. Custom-Made Titanium Devices as Membranes for Bone Augmentation in Implant Treatment: Clinical Application and the Comparison with Conventional Titanium Mesh. J. Cranio-Maxillofac. Surg. 2015, 43, 2183–2188. [Google Scholar] [CrossRef]
- Sagheb, K.; Schiegnitz, E.; Moergel, M.; Walter, C.; Al-Nawas, B.; Wagner, W. Clinical Outcome of Alveolar Ridge Augmentation with Individualized CAD-CAM-Produced Titanium Mesh. Int. J. Implant. Dent. 2017, 3, 36. [Google Scholar] [CrossRef]
- Gu, C.; Xu, L.; Shi, A.; Guo, L.; Chen, H.; Qin, H. Titanium Mesh Exposure in Guided Bone Regeneration Procedures: A Systematic Review and Meta-Analysis. Int. J. Oral Maxillofac. Implant. 2022, 37, e29–e40. [Google Scholar] [CrossRef]
- Rengo, C.; Fiorino, A.; Cucchi, A.; Nappo, A.; Randellini, E.; Calamai, P.; Ferrari, M. Patient-Reported Outcomes and Complication Rates after Lateral Maxillary Sinus Floor Elevation: A Prospective Study. Clin. Oral Investig. 2021, 25, 4431–4444. [Google Scholar] [CrossRef]
- Jamalpour, M.R.; Yadegari, A.; Vahdatinia, F.; Amirabad, L.M.; Jamshidi, S.; Shojaei, S.; Shokri, A.; Moeinifard, E.; Omidi, M.; Tayebi, L. 3D-Printed Bi-Layered Polymer/Hydrogel Construct for Interfacial Tissue Regeneration in a Canine Model. Dent. Mater. 2022, 38, 1316–1329. [Google Scholar] [CrossRef]
- Jang, H.J.; Kang, M.S.; Kim, W.-H.; Jo, H.J.; Lee, S.-H.; Hahm, E.J.; Oh, J.H.; Hong, S.W.; Kim, B.; Han, D.-W. 3D Printed Membranes of Polylactic Acid and Graphene Oxide for Guided Bone Regeneration. Nanoscale Adv. 2023, 5, 3619–3628. [Google Scholar] [CrossRef]
- Won, J.-Y.; Park, C.-Y.; Bae, J.-H.; Ahn, G.; Kim, C.; Lim, D.-H.; Cho, D.-W.; Yun, W.-S.; Shim, J.-H.; Huh, J.-B. Evaluation of 3D Printed PCL/PLGA/β-TCP versus Collagen Membranes for Guided Bone Regeneration in a Beagle Implant Model. Biomed. Mater. 2016, 11, 055013. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.V.; Petronyuk, Y.S.; Guseynov, N.A.; Tereshchuk, S.V.; Popov, A.A.; Volkov, A.V.; Gorshenev, V.N.; Olkhov, A.A.; Levin, V.M.; Dymnikov, A.B.; et al. Biocompatibility and Bioresorption of 3D-Printed Polylactide and Polyglycolide Tissue Membranes. Bull. Exp. Biol. Med. 2021, 170, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.-H.; Jeong, J.; Won, J.-Y.; Bae, J.-H.; Ahn, G.; Jeon, H.; Yun, W.-S.; Bae, E.-B.; Choi, J.-W.; Lee, S.-H.; et al. Porosity Effect of 3D-Printed Polycaprolactone Membranes on Calvarial Defect Model for Guided Bone Regeneration. Biomed. Mater. 2017, 13, 015014. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Park, J.-Y.; Hong, I.-P.; Jeon, S.-H.; Cha, J.-K.; Paik, J.-W.; Choi, S.-H. 3D-Printed Barrier Membrane Using Mixture of Polycaprolactone and Beta-Tricalcium Phosphate for Regeneration of Rabbit Calvarial Defects. Materials 2021, 14, 3280. [Google Scholar] [CrossRef]
- Petposri, S.; Thuaksuban, N.; Buranadham, S.; Suwanrat, T.; Punyodom, W.; Supphaprasitt, W. Physical Characteristics and Biocompatibility of 3D-Printed Polylactic-Co-Glycolic Acid Membranes Used for Guided Bone Regeneration. J. Funct. Biomater. 2023, 14, 275. [Google Scholar] [CrossRef]
- Manzano Romero, P.; Vellone, V.; Maffia, F.; Cicero, G. Customized Surgical Protocols for Guided Bone Regeneration Using 3D Printing Technology: A Retrospective Clinical Trial. J. Craniofac. Surg. 2020, 32, e198–e202. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Jiang, H.B.; Ryu, J.-H.; Kang, H.; Kim, K.-M.; Kwon, J.-S. Comparing Properties of Variable Pore-Sized 3D-Printed PLA Membrane with Conventional PLA Membrane for Guided Bone/Tissue Regeneration. Materials 2019, 12, 1718. [Google Scholar] [CrossRef]
- Shim, J.-H.; Won, J.-Y.; Park, J.-H.; Bae, J.-H.; Ahn, G.; Kim, C.-H.; Lim, D.-H.; Cho, D.-W.; Yun, W.-S.; Bae, E.-B.; et al. Effects of 3D-Printed Polycaprolactone/β-Tricalcium Phosphate Membranes on Guided Bone Regeneration. Int. J. Mol. Sci. 2017, 18, 899. [Google Scholar] [CrossRef]
- Ali, M.; Mohd Noor, S.N.F.; Mohamad, H.; Ullah, F.; Javed, F.; Abdul Hamid, Z.A. Advances in Guided Bone Regeneration Membranes: A Comprehensive Review of Materials and Techniques. Biomed. Phys. Eng. Express 2024, 10, 032003. [Google Scholar] [CrossRef]
- Lundgren, A.K.; Lundgren, D.; Taylor, Å. Influence of Barrier Occlusiveness on Guided Bone Augmentation. An Experimental Study in the Rat. Clin. Oral Implant. Res. 1998, 9, 251–260. [Google Scholar] [CrossRef]
- Hutmacher, D.W.; Sittinger, M. Periosteal Cells in Bone Tissue Engineering. Tissue Eng. 2003, 9, 45–64. [Google Scholar] [CrossRef] [PubMed]
- McAllister, B.S.; Haghighat, K. Bone Augmentation Techniques. J. Periodontol. 2007, 78, 377–396. [Google Scholar] [CrossRef] [PubMed]
- Giordano, F.; Langone, G.; Di Paola, D.; Alfieri, G.; Cioffi, A.; Sammartino, G. Roll Technique Modification: Papilla Preservation. Implant. Dent. 2011, 20, e48–e52. [Google Scholar] [CrossRef] [PubMed]
- Marouf, H.A.; El-Guindi, H.M. Efficacy of High-Density versus Semipermeable PTFE Membranes in an Elderly Experimental Model. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2000, 89, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Scantlebury, T.V. 1982–1992: A Decade of Technology Development for Guided Tissue Regeneration. J. Periodontol. 1993, 64 (Suppl. S11), 1129–1137. [Google Scholar] [CrossRef]
- Kofina, V.; Monfaredzadeh, M.; Rawal, S.Y.; Dentino, A.R.; Singh, M.; Tatakis, D.N. Patient-Reported Outcomes Following Guided Bone Regeneration: Correlation with Clinical Parameters. J. Dent. 2023, 136, 104605. [Google Scholar] [CrossRef]
- Kijartorn, P.; Thammarakcharoen, F.; Suwanprateeb, J.; Buranawat, B. The Use of Three Dimensional Printed Hydroxyapatite Granules in Alveolar Ridge Preservation. Key Eng. Mater. 2017, 751, 663–667. [Google Scholar] [CrossRef]
- Kijartorn, P.; Wongpairojpanich, J.; Thammarakcharoen, F.; Suwanprateeb, J.; Buranawat, B. Clinical Evaluation of 3D Printed Nano-Porous Hydroxyapatite Bone Graft for Alveolar Ridge Preservation: A Randomized Controlled Trial. J. Dent. Sci. 2022, 17, 194–203. [Google Scholar] [CrossRef]
- Kim, N.; Yang, B.-E.; On, S.-W.; Kwon, I.-J.; Ahn, K.-M.; Lee, J.-H.; Byun, S.-H. Customized Three-Dimensional Printed Ceramic Bone Grafts for Osseous Defects: A Prospective Randomized Study. Sci. Rep. 2024, 14, 3397. [Google Scholar] [CrossRef]
- Kim, J.-W.; Yang, B.-E.; Hong, S.-J.; Choi, H.-G.; Byeon, S.-J.; Lim, H.-K.; Chung, S.-M.; Lee, J.-H.; Byun, S.-H. Bone Regeneration Capability of 3D Printed Ceramic Scaffolds. Int. J. Mol. Sci. 2020, 21, 4837. [Google Scholar] [CrossRef]
- Thammarakcharoen, F.; Palanuruksa, P.; Suwanprateeb, J. In Vitro Resorbability of Three Different Processed Hydroxyapatite. Key Eng. Mater. 2015, 659, 3–7. [Google Scholar] [CrossRef]
- Lo Giudice, R.; Puleio, F.; Rizzo, D.; Alibrandi, A.; Lo Giudice, G.; Centofanti, A.; Fiorillo, L.; Di Mauro, D.; Nicita, F. Comparative Investigation of Cutting Devices on Bone Blocks: An SEM Morphological Analysis. Appl. Sci. 2019, 9, 351. [Google Scholar] [CrossRef]
- Cheng, K.; Liu, Y.; Wang, R.; Zhang, J.; Jiang, X.; Dong, X.; Xu, X. Topological Optimization of 3D Printed Bone Analog with PEKK for Surgical Mandibular Reconstruction. J. Mech. Behav. Biomed. Mater. 2020, 107, 103758. [Google Scholar] [CrossRef] [PubMed]
- Avila-Ortiz, G.; Elangovan, S.; Kramer, K.W.O.; Blanchette, D.; Dawson, D.V. Effect of Alveolar Ridge Preservation after Tooth Extraction. J. Dent. Res. 2014, 93, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, M.M.; Hart, C.N.; Halbritter, S.A.; Morton, D.; Buser, D. Early Loading of Nonsubmerged Titanium Implants with a Chemically Modified Sand-Blasted and Acid-Etched Surface: 6-Month Results of a Prospective Case Series Study in the Posterior Mandible Focusing on Peri-Implant Crestal Bone Changes and Implant Stability Quotient (ISQ) Values. Clin. Implant. Dent. Relat. Res. 2009, 11, 338–347. [Google Scholar] [CrossRef]
- Choukroun, J.; Diss, A.; Simonpieri, A.; Girard, M.-O.; Schoeffler, C.; Dohan, S.L.; Dohan, A.J.J.; Mouhyi, J.; Dohan, D.M. Platelet-Rich Fibrin (PRF): A Second-Generation Platelet Concentrate. Part IV: Clinical Effects on Tissue Healing. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2006, 101, e56–e60. [Google Scholar] [CrossRef]
- Gasparro, R.; Sammartino, G.; Mariniello, M.; di Lauro, A.E.; Spagnuolo, G.; Marenzi, G. Treatment of Periodontal Pockets at the Distal Aspect of Mandibular Second Molar after Surgical Removal of Impacted Third Molar and Application of L-PRF: A Split-Mouth Randomized Clinical Trial. Quintessence Int. 2020, 51, 204–211. [Google Scholar] [CrossRef]
- Gasparro, R.; Qorri, E.; Valletta, A.; Masucci, M.; Sammartino, P.; Amato, A.; Marenzi, G. Non-Transfusional Hemocomponents: From Biology to the Clinic—A Literature Review. Bioengineering 2018, 5, 27. [Google Scholar] [CrossRef]
- Miron, R.J.; Zucchelli, G.; Pikos, M.A.; Salama, M.; Lee, S.; Guillemette, V.; Fujioka-Kobayashi, M.; Bishara, M.; Zhang, Y.; Wang, H.-L.; et al. Use of Platelet-Rich Fibrin in Regenerative Dentistry: A Systematic Review. Clin. Oral Investig. 2017, 21, 1913–1927. [Google Scholar] [CrossRef]
- Alayan, J.; Ivanovski, S. A Prospective Controlled Trial Comparing Xenograft/Autogenous Bone and Collagen-Stabilized Xenograft for Maxillary Sinus Augmentation—Complications, Patient-Reported Outcomes and Volumetric Analysis. Clin. Oral Implant. Res. 2018, 29, 248–262. [Google Scholar] [CrossRef]
- Pippi, R. Post-Surgical Clinical Monitoring of Soft Tissue Wound Healing in Periodontal and Implant Surgery. Int. J. Med. Sci. 2017, 14, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, P.; Selvakumar, N. Development of Patient Specific Dental Implant Using 3D Printing. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 3549–3558. [Google Scholar] [CrossRef]
- Chang Tu, C.; Tsai, P.-I.; Chen, S.-Y.; Kuo, M.Y.-P.; Sun, J.-S.; Chang, J.Z.-C. 3D Laser-Printed Porous Ti6Al4V Dental Implants for Compromised Bone Support. J. Formos. Med. Assoc. 2020, 119, 420–429. [Google Scholar] [CrossRef]
- Tedesco, J.; Lee, B.E.J.; Lin, A.Y.W.; Binkley, D.M.; Delaney, K.H.; Kwiecien, J.M.; Grandfield, K. Osseointegration of a 3D Printed Stemmed Titanium Dental Implant: A Pilot Study. Int. J. Dent. 2017, 2017, 5920714. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lee, J.; Amara, H.B.; Lee, J.-B.; Lee, K.-S.; Shin, S.-W.; Lee, Y.-M.; Kim, B.; Kim, P.; Koo, K.-T. Comparison of 3D-Printed Dental Implants with Threaded Implants for Osseointegration: An Experimental Pilot Study. Materials 2020, 13, 4815. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Su, K.; Su, L.; Liang, P.; Ji, P.; Wang, C. Comparison of 3D-Printed Porous Tantalum and Titanium Scaffolds on Osteointegration and Osteogenesis. Mater. Sci. Eng. C 2019, 104, 109908. [Google Scholar] [CrossRef]
- Sonaye, S.Y.; Bokam, V.K.; Saini, A.; Nayak, V.V.; Witek, L.; Coelho, P.G.; Bhaduri, S.B.; Bottino, M.C.; Sikder, P. Patient-Specific 3D Printed Poly-Ether-Ether-Ketone (PEEK) Dental Implant System. J. Mech. Behav. Biomed. Mater. 2022, 136, 105510. [Google Scholar] [CrossRef]
- Binobaid, A.; Guner, A.; Camilleri, J.; Jiménez, A.; Essa, K. A 3D Printed Ultra-Short Dental Implant Based on Lattice Structures and ZIRCONIA/Ca2SiO4 Combination. J. Mech. Behav. Biomed. Mater. 2024, 155, 106559. [Google Scholar] [CrossRef]
- Di Francesco, F.; Minervini, G.; Lanza, A. Stock and Customized Abutments Supporting Implant Restorations: Current Aspects and Future Perspectives of Biological and Mechanical Complications. Prosthesis 2024, 6, 1091–1094. [Google Scholar] [CrossRef]
- Giordano, F.; Di Spirito, F.; Acerra, A.; Rupe, A.; Cirigliano, G.; Caggiano, M. The Outcome of Tilted Distal Implants Immediately Loaded under Screw-Retained Cross-Arch Prostheses. A 5-Year Retrospective Cohort Study. J. Osseointegr. 2024, 16, 31–38. [Google Scholar] [CrossRef]
- Pisano, M.; Giordano, F.; Sangiovanni, G.; Capuano, N.; Acerra, A.; D’Ambrosio, F. The Interaction between the Oral Microbiome and Systemic Diseases: A Narrative Review. Microbiol. Res. 2023, 14, 1862–1878. [Google Scholar] [CrossRef]
- Park, J.-H.; Odkhuu, M.; Cho, S.; Li, J.; Park, B.-Y.; Kim, J.-W. 3D-Printed Titanium Implant with Pre-Mounted Dental Implants for Mandible Reconstruction: A Case Report. Maxillofac. Plast. Reconstr. Surg. 2020, 42, 28. [Google Scholar] [CrossRef] [PubMed]
- Khorsandi, D.; Fahimipour, A.; Abasian, P.; Saber, S.S.; Seyedi, M.; Ghanavati, S.; Ahmad, A.; De Stephanis, A.A.; Taghavinezhaddilami, F.; Leonova, A.; et al. 3D and 4D Printing in Dentistry and Maxillofacial Surgery: Printing Techniques, Materials, and Applications. Acta Biomater. 2021, 122, 26–49. [Google Scholar] [CrossRef] [PubMed]
- De Stefano, M.; Singh, K.; Raina, A.; Mohan, S.; Ul Haq, M.I.; Ruggiero, A. Tribocorrosion of 3D Printed Dental Implants: An Overview. J. Taibah Univ. Med. Sci. 2024, 19, 644–663. [Google Scholar] [CrossRef]
- Trombelli, L.; Farina, R.; Tomasi, C.; Vignoletti, F.; Paolantoni, G.; Giordano, F.; Ortensi, L.; Simonelli, A. Factors Affecting Radiographic Marginal Bone Resorption at Dental Implants in Function for at Least 5 Years: A Multicenter Retrospective Study. Clin. Oral Implants Res. 2024, 1–12. [Google Scholar] [CrossRef]
- Schmidt, M.; Pohle, D.; Rechtenwald, T. Selective Laser Sintering of PEEK. CIRP Ann. 2007, 56, 205–208. [Google Scholar] [CrossRef]
- Chambrone, L.; Rincón-Castro, M.V.; Poveda-Marín, A.E.; Diazgranados-Lozano, M.P.; Fajardo-Escolar, C.E.; Bocanegra-Puerta, M.C.; Palma, L.F. Histological Healing Outcomes at the Bone-Titanium Interface of Loaded and Unloaded Dental Implants Placed in Humans: A Systematic Review of Controlled Clinical Trials. Int. J. Oral Implant. 2020, 13, 321–342. [Google Scholar]
- Di Spirito, F.; Lo Giudice, R.; Amato, M.; Di Palo, M.P.; D’Ambrosio, F.; Amato, A.; Martina, S. Inflammatory, Reactive, and Hypersensitivity Lesions Potentially Due to Metal Nanoparticles from Dental Implants and Supported Restorations: An Umbrella Review. Appl. Sci. 2022, 12, 11208. [Google Scholar] [CrossRef]
- Suárez-López del Amo, F.; Garaicoa-Pazmiño, C.; Fretwurst, T.; Castilho, R.M.; Squarize, C.H. Dental Implants-associated Release of Titanium Particles: A Systematic Review. Clin. Oral Implant. Res. 2018, 29, 1085–1100. [Google Scholar] [CrossRef]
- Dai, N.; Zhang, L.-C.; Zhang, J.; Zhang, X.; Ni, Q.; Chen, Y.; Wu, M.; Yang, C. Distinction in Corrosion Resistance of Selective Laser Melted Ti-6Al-4V Alloy on Different Planes. Corros. Sci. 2016, 111, 703–710. [Google Scholar] [CrossRef]
- Toptan, F.; Alves, A.C.; Carvalho, Ó.; Bartolomeu, F.; Pinto, A.M.P.; Silva, F.; Miranda, G. Corrosion and Tribocorrosion Behaviour of Ti6Al4V Produced by Selective Laser Melting and Hot Pressing in Comparison with the Commercial Alloy. J. Mater. Process. Technol. 2019, 266, 239–245. [Google Scholar] [CrossRef]
- Amaya-Vazquez, M.R.; Sánchez-Amaya, J.M.; Boukha, Z.; Botana, F.J. Microstructure, Microhardness and Corrosion Resistance of Remelted TiG2 and Ti6Al4V by a High Power Diode Laser. Corros. Sci. 2012, 56, 36–48. [Google Scholar] [CrossRef]
- Attar, H.; Prashanth, K.G.; Chaubey, A.K.; Calin, M.; Zhang, L.C.; Scudino, S.; Eckert, J. Comparison of Wear Properties of Commercially Pure Titanium Prepared by Selective Laser Melting and Casting Processes. Mater. Lett. 2015, 142, 38–41. [Google Scholar] [CrossRef]
- Mace, A.; Gilbert, J.L. Low Cycle Fretting and Fretting Corrosion Properties of Low Carbon CoCrMo and Additively Manufactured CoCrMoW Alloys for Dental and Orthopedic Applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2023, 111, 1600–1613. [Google Scholar] [CrossRef]
- Kunrath, M.F. Customized Dental Implants: Manufacturing Processes, Topography, Osseointegration and Future Perspectives of 3D Fabricated Implants. Bioprinting 2020, 20, e00107. [Google Scholar] [CrossRef]
- Revilla-León, M.; Sadeghpour, M.; Özcan, M. A Review of the Applications of Additive Manufacturing Technologies Used to Fabricate Metals in Implant Dentistry. J. Prosthodont. 2020, 29, 579–593. [Google Scholar] [CrossRef]
- Duraccio, D.; Mussano, F.; Faga, M.G. Biomaterials for Dental Implants: Current and Future Trends. J. Mater. Sci. 2015, 50, 4779–4812. [Google Scholar] [CrossRef]
- Dadhich, A.; Nilesh, K.; Shah, S.; Saluja, H. Three-Dimensional Printing in Maxillofacial Surgery: A Quantum Leap in Future. Natl. J. Maxillofac. Surg. 2022, 13, S203–S211. [Google Scholar] [CrossRef]
Studies | Three-Dimensionally Printed Mesh | Three-Dimensionally Printed Manufacturing-Controlled Characteristics | Clinical and Radiographical Findings | Histological Findings of the Healing Process | Reported Complications | Patient-Reported Outcomes | Main Conclusions |
---|---|---|---|---|---|---|---|
Human Studies | |||||||
Boogaard M., [25] 2022 Comped Contin Educ Dent Human study (case series) Sample size: n.2 | Material: Ti (n.2) Three-dimensional printing method: MD Bone defect: horizontal and vertical (n.2) Position: mandibular posterior region (n.2) Associated membrane: pericardium membrane (CopioOs®) (n.2) Associated bone substitute: particulate allograft (Puros®) (n.1); autologous bone and xenograft (RegenerOss®) (n.1) | Shape | After 6 months Mean vertical bone gain: 5.4 mm (range 4.1–6.7 mm) Mean horizontal bone gain: 9.75 mm (range 8.7–10.8 mm) | MD | Mesh exposure (n.1) | MD | The GBR surgery utilized customized 3D printed Ti meshes that were safe and predictable in horizontal and vertical ridge augmentations and could be associated with direct implant placement. |
Chiapasco M., [26] 2021 Clin Oral Implants Res Human study (retrospective study) Sample size: n.41 | Material: Ti (n.53) Three-dimensional printing method: laser sintering (n.53) Bone defect: MD Position: N/D Associated membrane: collagen membrane (n.53) Associated bone substitute: 50:50 autologous bone and xenograft (Bio-Oss®) (n.53) | Shape | After 7 months Mean vertical bone gain: 4.78 ± 1.88 mm (range 1.00–8.90 mm) Mean horizontal bone gain: 6.35 ± 2.10 mm (range 2.14–11.48 mm) After 10 months Implant survival rate: 100% | No signs of necrosis, fatty cell infiltration, or fibrosis were observed | Early mesh exposure (n.11) Mesh infection (n.1) Partial bone loss (n.4) Need to remove mesh earlier (n.2) | MD | The 3D printed Ti mesh seemed to represent a reliable GBR approach for severe atrophic edentulous ridge defects, in terms of mean vertical bone gain, peri-implant bone resorption, and survival implant rates. The 3D printed Ti mesh simplified the surgery but was associated with a higher mesh exposure and complexity in mesh removal. |
Ciocca L., [27] 2018 J Oral Implantol Human study (prospective study) Sample size: n.9 | Material: Ti (n.9) Three-dimensional printing method: direct metal laser sintering (n.9) Bone defect: MD Position: MD Associated membrane: none Associated bone substitute: 50:50 autologous bone from the iliac crest or mandibular ramus and xenograft (Bio-Oss®) (n.9) | Shape Thickness | After 6–8 months Vertical bone gain: range 1.72–4.1 mm in mandible; 2.14–6.88 in maxilla | MD | Early mesh exposure (n.3) Late mesh exposure (n.3) Mesh infection (n.1) | MD | The 3D printed Ti mesh should be considered a cautious approach due to the high post-operative morbidity rate for mesh exposure. The number of retaining screws was reduced to one or at most two. |
Cucchi A., [28] 2021 Clin Oral Implants Res Human study (RCT) Sample size: n.30 | Material: Ti (n.30) Three-dimensional printing method: SLM (n.30) Bone defect: vertical (n.25) horizontal (n.5) Position: maxillary anterior region (n.6); mandibular anterior region (n.1); maxillary posterior region (n.8) mandibular posterior region (n.15) Associated membrane: none (n.15); collagen membrane (n.15) Associated bone substitute: 50:50 autologous bone and xenograft (Zcore®) (n.30) | Shape Roughness | After 6 months Bone density: hard (n.7); medium (n.19); soft (n.4) Pseudo-periosteum: type 1 (n.17); type 2 (n.8); type 3 (n.5) Mean regenerated bone volume: 40.07 mm3 Mean lacking bone volume: 37.4 mm3 Mean regeneration rate: 7.98% | MD | Paresthesia of mental nerve (n.3) Paresthesia of infra-orbital nerve (n.1) Partial mesh fractures (n.2) Partial mesh misfitting (n.1) Early mesh exposure (n.3) Late mesh exposure (n.2) Mesh infection (n.2) | MD | The 3D printed Ti mesh can be considered a valid solution to horizontal and vertical bone regeneration, both in using mesh alone or covered with a long-lasting membrane. The use of 3D printed Ti mesh alone was comparable to using the mesh covered by a membrane. No statistically significant differences were found, even if a better trend in regeneration rates and healing complications was found when the Ti mesh was combined with a membrane. |
Dellavia C., [29] 2021 Clin Implant Dent Relat Res Human study (cohort study) Sample size: n.20 | Material: Ti (n.20) Three-dimensional printing method: laser sintering (n.20) Bone defect: vertical and horizontal (n.20) Position: MD Associated membrane: collagen membrane (n.20) Associated bone substitute: 50:50 autologous bone and xenograft (Bio-Oss®) (n.20) | Shape | After 9 months Mean vertical bone gain: 5.20 mm Mean horizontal bone gain: 6.80 mm Mean vertical bone resorption: 0.35 mm Mean horizontal bone resorption: 0.34 mm | After 9 months Regenerated bone showed high organization and mineralization and close contact with Ti mesh and was characterized by medullary spaces, blast-like and osteoid cells in the periphery region, rare inflammatory cells, and blood vessels | Early mesh exposure (n.2) Late mesh exposure (n.1) Mesh infection (n.0) | MD | Customized 3D printed Ti meshes can be applied in GBR surgery with histological findings that make the regenerated bone suitable for implant placement. Three-dimensionally printed mesh exposures did not significantly affect the regenerated bone. |
De Santis D., [30] 2022 J Clin Med Human study (case series) Sample size: n.10 | Material: Ti (n.10) Three-dimensional printing method: laser sintering (n.10) Bone defect: less than 8 mm in height and 5 mm in thickness Position: from maxillary incisor to first premolar (n.6); mandibular molars (n.4) Associated membrane: collagen membranes (n.10) Associated bone substitute: 50:50 autologous bone and xenograft (Bio-Oss®) (n.20) | Shape | At 6 months Mean horizontal bone gain: 6.37 ± 2.17 mm (range 2.78–9.12 mm) Mean vertical bone gain: 5.95 ± 2.06 mm (range 2.68–9.02 mm) Mean regenerated bone volume: 3012 ± 1938 mm3 (range 1273–6879 mm3) | MD | Late mesh exposure (n.1) | MD | Customized bone regeneration with customized titanium meshes is a predictable and encouraging alternative to traditional GBR. |
Geletu G.L., [31] 2022 Medicina (Kaunas) Human study (case report) Sample size: n.1 | Material: Ti (n.1) Three-dimensional printing method: SLM (n.1) Bone defect: MD Position: maxillary lateral incisor and canine Associated membrane: none Associated bone substitute: 50:50 mixed particulate bone of allograft bone and pure mineral bovine | Shape | After 11 months Vertical bone gain: 11.63 mm Horizontal bone gain: 10.34 | MD | None | MD | The customized 3D printed Ti mesh is easy to manipulate, reduces surgery time, has a low risk of dehiscence, and is predictable in volume bone regeneration. |
Inoue K., [24] 2018 Implant Dent Human study (case series) Sample size: n.2 | Material: Ti (n.2) Three-dimensional printing method: SLM (n.2) Bone defect: MD Position: maxillary central incisor (n.1); from maxillary canines to second premolar (n.1) Associated membrane: none (n.1); collagen membrane (n.1) Associated bone substitute: xenograft (Bio-Oss®) (n.1); autologous bone (n.1) | Shape Thickness Porous size | MD | MD | None | MD | The 3D printed Ti meshes manufactured through SLM 3D printed methods can be applied to several bone defect types, reducing the surgery time and post-operative infection risk. |
Lizio G., [32] 2022 Clin Oral Implants Res Human study (pilot study) Sample size: n.17 | Material: Ti (n.17) Three-dimensional printing method: laser sintering (n.17) Bone defect: vertical and horizontal (n.17) Position: maxillary anterior region (n.7); maxillary posterior region with sinus lift (n.1); mandibular posterior region (n.11) Associated membrane: none Associated bone substitute: 60:40 autologous bone and xenograft (Bio-Oss®) (n.17) | Shape Thickness | After 6 months Mean regenerated bone volume: 1003.92 mm3 Mean lacking bone volume: 149.33 mm3 Mean regeneration rate: 83.99% | MD | Paresthesia of mental nerve (n.1) Partial mesh misfitting (18%) Early mesh exposure (n.6) Late mesh exposure (n.4) Mesh infection (n.3) Loss of graft: (n.5) | MD | The 3D printed Ti meshes improved the predictability of GBR by up to 88% in 74% of cases. |
Mounir M., [33] 2019 Clin Implant Den Relat Res Human study (RCT) Sample size: n.8 | Material: PEEK (n.8) Three-dimensional printing method: MD Bone defect: vertical and horizontal (n.8) Position: N/D Associated membrane: collagen membrane (n.8) Associated bone substitute: 50:50 autologous bone from the anterior iliac crest and xenograft (n.8) | Shape Thickness | After 6 months Mean regeneration rate: 31.8% | MD | Early mesh exposure (n.1) | MD | The customized 3D printed PEEK mesh could be used as a valid product in GBR surgery. No statistically significant differences were found compared to a prebent Ti mesh |
Navarro Cuéllar C., [34] 2021 J Clin Med Human study (retrospective study) Sample size: n.8 | Material: Ti (n.8) Three-dimensional printing method: MD Bone defect: horizontal (mean 10.05 cm) and vertical Position: MD Associated membrane: none Associated bone substitute: cortico-cancellous iliac crest graft and free fibula flap (n.8) | Shape Pore size Roughness | After 6 months Mean vertical bone gain: 12.22 mm (range 10.1–13.4 mm) Implant survival rate (94.7%) After 3 years of prosthetic rehabilitation Mean bone resorption: 1.43 mm (range 0.5–2.4 mm) | MD | None | Good esthetic result (n.6) Fair results (n.2) | The combination of virtual surgical planning and 3D printed Ti meshes increased the intra-operative efficiency and reduced the complication rate and bone resorption. |
Nickenig H.J., [35] 2022 Clin Oral Investig Human study (case series) Sample size: n.3 | Material: Ti (n.3) Three-dimensional printing method: MD Bone defect: buccal bone concavities (mean 4.00 mm) Position: anterior region of the maxilla (n.1) or mandibula (n.2) Associated membrane: none Associated bone substitute: 2/3 or 1/3 ratio of autologous bone and xenograft (Bio-Oss®) | Shape | After 6 months Mean bone gain: 3.7 ± 0.59 mm (range 3.1–4.8) After 12 months Mean bone gain: 4.3 ± 0.83 (range 3.2–5.1 mm) | MD | None | MD | Customized 3D printed Ti meshes are highly reliable in terms of augmentation extent and healing when used for the GBR of buccal bone concavities of the anterior alveolar ridge. |
Tallarico M., [1] 2020 Materials (Basel) Human study (case report) Sample size: n.1 | Material: Ti (n.1) Three-dimensional printing method: MD Bone defect: horizontal Position: maxillary right central incisor Associated membrane: none Associated bone substitute: 50:50 autologous bone and xenograft (Bio-Oss®) | Shape | After 12 months Implant survival rate: 100% | MD | None | MD | A 3D printed Ti mesh can be manufactured with higher accuracy and could represent a valid option for GBR surgery associated with predictable results. |
Yang, W., [36] 2022 BMC Oral Health Human study (retrospective study) Sample size: n.20 | Material: Ti (n.20) Three-dimensional printing method: laser additive manufacturing (n.20) Bone defect: minor bone defect less or equal to 150 mm2 (n.10); major bone defects greater than 150 mm2 (n.10); vertical (n.6); horizontal (n.2); vertical and horizontal (n.12) Position: maxilla (n.7); mandible (n.13) Associated membrane: i-PRF and N/D resorbable membrane (n.20) Associated bone substitute: 50:50 autologous bone and xenograft | Shape Thickness Inner diameter of titanium pin holes | MD | MD | Late mesh exposure (n.3) Mesh infection (n.0) | MD | The 3D printed Ti mesh accuracy was not significantly affected by alveolar bone defect size. |
Studies | Three-Dimensionally Printed Membrane | Three-Dimensionally Printed Manufacturing-Controlled Characteristics | Clinical and Radiographical Findings | Histological Findings of the Healing Process | Reported Complications | Patient-Reported Outcomes | Main Conclusions |
---|---|---|---|---|---|---|---|
Human study and ex vivo study | |||||||
Manzano Romero P., [57] 2021 J Craniofac Surg Human study and ex vivo (retrospective) Sample size: n.13 | Material: PLA n.12 Three-dimensional printing method: fused deposition modeling (n.13) Bone defect: horizontal (n.10); vertical (n.3) Position: maxilla (n.10); mandible (n.3) Associated mesh: none Associated bone substitute: xenograft (n.10) | Shape | Mean horizontal bone gain: 8.29 mm Mean vertical bone gain: 6.96 | MD | MD | NA | A 3D printed model is a valid tool for planning GBR surgery. Customized surgery can improve the students’ and surgeons’ training, as well as the communication with patients, and help dentists visualize during the operation. |
Animal Studies | |||||||
Jamalpour M.R., [50] 2022 Dent Mater Animal study (canine) Sample size: n.4 | Material: PCL and hydrogen (n.6) Three-dimensional printing method: MD Bone defect: 5.8 mm in diameter, 2 mm in depth (n.8) Position: tibia (n.4) Associated mesh: Associated bone substitute: xenograft (Cerabone®) (n.8) | Shape Pore size Biodegradability | After 4 weeks Mean regenerated bone gain (large pore size membrane): 60.00% Mean regenerated bone gain (small pore size membrane): 55.71% | After 4 weeks Mean fibrous tissue (large pore size membrane): 40.00% Mean fibrous tissue (small pore-size membrane): 44.29% | MD | NA | A 3D printed hybrid bi-layered membrane in Gelatin/PCL could represent a promising membrane for GBR surgery due to its interfacial tissue good properties. |
Jang H.J., [51] 2023 Nanoscale Adv Animal study (rat) Sample size: n.24 | Material: graphene oxide-incorporated PLA (n.24) Three-dimensional printing method: MD Bone defect: 5 mm in diameter Position: calvaria Associated mesh: MD Associated bone substitute: MD | PLA concentration Mechanical properties Biodegradability | After 4 weeks Bone mineral density: 1.30 ± 0.07 g/cm3 After 8 weeks Bone mineral density: 1.19 ± 0.04 g/cm3 | MD | MD | NA | The graphene oxide-incorporated PLA membranes exhibited excellent physico-chemical properties and provide a microenvironments= that can facilitate the preosteoblasts’ behaviors. |
Kim E.V., [53] 2021 Bull Expo Biol Med Animal study (rabbit) Sample ize: n.36 | Material: PLA (n.18) and PLA/PGA (n.18) Three-dimensional printing method: layer-by-layer deposition Bone defect: MD Position: right ear Associated mesh: none Associated bone substitute: cortico-cancellous iliac crest graft and free fibula flap (n.8) | Shape Thickness Roughness | MD | After 7 days A thin connective capsule was detected in the dermis around PLA membranes, with lots of macrophages, moderate and diffuse infiltration of plasmacells, and no vascular cells. Fibrous connective tissue was detected in the dermis around PLA/PGA membranes separated by layers of collagen, granulation tissue, and lymphoplasmacytic infiltration in small foci and few macrophages. Copolymer swelling and impregnation. No vascular ingrowth. After 14 days Foreign-body giant cells were detected on the PLA membrane surface. Intensification of PLA/PGA swelling and impregnation was observed. After 28 days A connective tissue capsule was detected around the PLA membrane, and a lot of macrophages and lymphoplasma cells were inside and under the capsule. No vascular ingrowth. A fibrous connective tissue, separated by a dense fibrous connective tissue, was found around the PLA/PGA membrane. | MD | NA | The 3D printed PLA/PGA membranes showed more promising results than 3D printed PLA membranes for their periods of bioresorption, and a gentler hydrolytic decomposition process for the surrounding tissues. |
Lee J.Y., [55] 2021 Materials (Basel) Animal study (rabbit) Sample size: n.10 | Material: PCL (n.10); PCL/β-TCP (n.10) Three-dimensional printing method: melting process (n.20) Bone defect: n.20 Position: calvaria (n.30) Associated mesh: none Associated bone substitute: 60:40 hydroxyapatite and β-TCP (n.10) | Shape Thickness | After 2 weeks Mean regenerated bone volume (PCL): 3.34 ± 1.88 mm3 Mean regenerated bone volume (PCL/β-TCP): 28.94 ± 8.15 mm3 After 8 weeks Mean regenerated bone volume (PCL): 20.41 ± 5.75 mm3 Mean regenerated bone volume (PCL/β-TCP): 62.20 ± 21.58 mm3 | After 2 weeks In the PCL/β-TCP group, new bone was found at the defect margins. No inflammatory cells were detected. In the PCL group, new bone was found from the defect margin and around the graft particles. After 8 weeks Some parts of the PCL/β-TCP membranes were resorbed and replaced by new bone and connective tissue. No inflammatory cells were detected. More mature lamellar bones were observed compared to 2 weeks. In the PCL group, new bone was found across the defect. No inflammatory cells were detected. The membrane was intact and integrated with the surrounding tissue. | None | NA | Three-dimensionally printed PCL/β-TCP membranes showed good structural stability, slow degradation, and biocompatibility. The greatest regenerated bone volume was obtained when the membrane was associated with the bone substitute. |
Petposri S., [56] 2023 J Funct Biomater Animal study (rat) Sample size: MD | Material: PLGA (LA:GA = 10:90) (n.MD); PLGA (LA:GA = 70:30) (n.MD) Three-dimensional printing method: SLM (n.MD) Bone defect: 8 mm in diameter Position: calvaria Associated mesh: MD Associated bone substitute: MD | Shape PLA and PGA concentration Microstructures Mechanical properties Biodegradability Pore sizes Thickness | After 2–4 weeks The new bone in PLGA (70:30) was lower than that of the group with a collagen membrane. After 8 weeks The new bone in PLGA (70:30) was greater than that of the group with a collagen membrane. | After 2 weeks Dense fibrous tissue was found surrounding PLGA (70:30) membrane and new bone in the middle and from the peripheries of the bone defect. After 4 weeks New bone regenerating from the defect peripheries; occasionally, giant cells with ingesting PLGA (70:30) membrane particles were found. After 8 weeks New bone regenerating along the inferior side of the PLGA (70:30) membrane. | Membrane infection (n.0) Dehiscence (n.0) Lack of mechanical properties over time (PLGA 10:90) Acid products (PLGA 10:90) | NA | Three-dimensionally printed PLGA (70:30) membranes were suitable for GBR surgery due to their good degradability, biocompatibility, and mechanical properties. The viability of cells cultured on 3D printed PLGA (10:90) membranes decreased after one weeks. For this reason, PLGA (10:90) was not suitable for GBR surgery. |
Shim J.H., [59] 2017 Int J Mol Sci Animal study (beagle) Sample size: n.3 | Material: PCL (n.3) or PCL/β-TCP (n.3) Three-dimensional printing method: multi-head deposition system Bone defect: length, 7 mm; height, 5 mm; depth, 5 mm (n.18) Position: mandible (n.3) Associated mesh: none Associated bone substitute: deproteinized bovine bone grafts (n.3) | Shape Thickness Pore size Mechanical properties | After 8 weeks Mean regenerated bone volume (PCL): 27.29 ± 2.19 mm3 Mean regenerated bone volume (PCL/β-TCP): 29.22 ± 3.11 mm3 Mean non-mineralized tissue volume (PCL): 123.58 ± 5.56 mm3 Mean non-mineralized tissue volume: (PCL/β-TCP): 122.37 ± 7.33 mm3 Mean remaining bone substitute volume: (PCL): 24.84 ± 5.30 mm3 Mean remaining bone substitute volume: (PCL/β-TCP): 24.12 ± 5.48 mm3 | After 8 weeks PCL and PCL/β-TCP membranes were closely in contact with the buccal bone. New bone was observed around the xenograft graft. | None | NA | The 3D printed PCL membranes, as well as the PCL/β-TCP membranes, showed better GBR performance compared to collagen membrane. 3D printed PCL/β-TCP showed greater structural stability, and their potential use as a resorbable membrane in GRB surgery should be considered. |
Won J.Y., [52] 2016 Biomed Mater Animal study (beagle) Sample size: n.3 | Material: PCL/PLGA/ β-TCP (n.MD) Three-dimensional printing method: multi-head deposition system (n.MD) Bone defect: n.6 Position: first and second premolars region Associated mesh: none Associated bone substitute: deproteinized bovine bone grafts | Shape Roughness Mechanical properties | After 8 weeks Mean regenerated bone volume: 1.57 ± 0.70 mm3 Mean non-mineralized tissue volume: 8.52 ± 2.47 mm3 Mean remaining bone substitute volume: 3.95 ± 1.97 mm3 Bone-to-implant contact: 56.48 ± 4.68% | After 8 weeks The newly bone was formed in the buccal implant area. A large amount of material grafts was found in the peri-implant dehiscence area. | None | NA | Three-dimensionally printed PCL/PLGA/ β-TCP membranes showed similar performance in bone regeneration compared to collagen membranes applied to GBR surgery in peri-implant defects. Hence, 3D printed PCL/PLGA/ β-TCP membranes had good efficacy as resorbable GBR membranes and with a higher stability than collagen membranes. |
In vitro study | |||||||
Zhang H.Y., [58] 2019 Materials (basel) In vitro study Sample size: n.MD | Material: PLA (n.MD) Three-dimensional printing method: fused deposition modeling (n.MD) | Thickness Pore size | NA | NA | None | NA | Three-dimensionally printed membranes showed better mechanical properties than conventional membranes manufactured via the conventional solvent casting process. The membrane pore size (small, large, or no pore) conditioned the mechanical properties and cell growth. |
Studies | Three-Dimensionally Printed Bone Substitutes | Three-Dimensionally Printed Manufacturing-Controlled Characteristics | Clinical and Radiographical Findings | Histological Findings of the Healing Process | Reported Complications | Patient-Reported Outcomes | Main Conclusions |
---|---|---|---|---|---|---|---|
Human study | |||||||
Kijartorn P., [68] 2017 Key Engineering Materials Human study (case series) Sample size: n.5 | Material: HA (n.5) Three-dimensional printing method: MD Bone defect: MD Position: maxillary anterior region (n.5) Associated mesh: none Associated membranes: collagen membrane (Bio-gide®) | Granule size | At 8 weeks Good primary stability (n.5) | At 8 weeks Few neutrophils were found. The grafted area was occupied by newly regenerated bone encompassing or in close contact with residual HA granules and tissue of granulation. Blood vessels, osteoblast, and marrow tissue were observed. | None | MD | Three-dimensionally printed HA bone substitutes may represent a suitable alternative. |
Kijartorn P., [69] 2022 J Dent Sci Human study (RCT) Sample size: n.30 | Material: HA (n.15) Three-dimensional printing method: MD Bone defect: MD Position: MD Associated mesh: none Associated membranes: non-resorbable membrane (n.15) | Granule size | After 3 months Implant stability: 73.8 ± 2.87 | After 4 months Mean bone formation: 33.20 ± 6.73% Mean residual bone graft: 27.04 ± 7.91% Mean connective tissue: 39.76 ± 4.03% | MD | Three-dimensionally printed HA bone substitutes may represent a suitable alternative. | |
Kim N.H., [70] 2024 Sci Rep Human study (prospective RCT) Sample size: n.60 | Material: 60:40 HA and β-TCP (n.30) Three-dimensional printing method: digital light sintering (n.30) Bone defect: MD Position: MD Associated mesh: none Associated membranes: collagen membrane (n.30) | Shape Pore size | After 5 months Mean tissue volume: 44.87 ± 5.59 mm3 Mean bone volume: 8.94 ± 2.32 mm3 Bone surface density: 14.95 ± 6.39 L/mm3 Bone mineral density: 0.77 ± 0.46 g/cm3 | After 5 months New bone was found around the bone substitutes. No specific inflammatory responses were detected around the bone substitutes. | MD | No discomfort after surgery (n.30) | Customized 3D printed bone substitutes are a potential alternative to conventional bone substitutes in GRB surgery. However, HA and β-TCP did not demonstrate significant regeneration properties compared to conventional bone substitutes. |
Mekcha P., [12] 2023 J Prosthodont Res Human study (case series) Sample size: n.12 | Material: nanoHA (n.12) Three-dimensional printing method: MD Bone defect: horizontal (n.12) Position: anterior region (n.6); premolars region (n.4); molar region (n.4) Associated mesh: MD Associated membranes: PRF (n.9) | Shape Internal microstructure Pore size | After 6 months Mean horizontal bone gain: 2.45 ± 0.70 | After 6 months Newly regenerated bone and blood vessels were retrieved at the graft interface and native bone area. Mean bone tissue: 30.48 ± 4.81% Mean new bone formation: 28.6 0 ± 1.88% Mean residual graft: 19.82 ± 4.07% Mean connective tissue: 20.81 ± 4.41% | Dehiscence (n.2) Partial/total bone graft failure (n.3) | During surgical time VAS score: 1.41 ± 0.51 After 2 weeks VAS score: 0.92 ± 0.51 After 1 month VAS score: 0.33 ± 0.49 After 2, 3, 6 months VAS score: 0 | The 3D printed HA bone substitute is a viable option for primary implant-site regeneration. |
Animal study | |||||||
Kim J.W., [71] 2020 Int J Mol Sci Animal study (beagle) Sample size: n.12 | Material: HA and β-TCP (n.16) Three-dimensional printing method: digital light processing Bone defect: 7 mm × 3 mm × 6 mm (n.16) Position: mandibular second premolar and first molar region (n.16) Associated mesh: none Associated membranes: collagen membrane (Genoss®) (n.16) | Shape Mechanical properties | After 4 weeks Mean new bone formation: 27.44 ± 5.86% Mean residual graft: 31.02 ± 1.35% After 8 weeks Mean residual graft: 67.72 ± 11.25% | After 4 weeks No signs of inflammation. Granulation tissue was observed in the defects. New blood vessels were found. After 8 weeks No signs of inflammation. Little/no granulation tissue was observed in the defects. New blood vessels were found. New bone ingrowth on the lower and center side. | None | NA | The mechanical properties and bone regenerative ability of 3D printed HA/β-TCP bone substitutes could be affected by pore structure. Three-dimensionally printed HA/β-TCP bone substitutes are easy to use in large defect area and have good bone-forming ability. |
In vitro study | |||||||
Thammarakcharoen F., [72] 2015 Key Engineering Materials In vitro study Sample size: n.MD | Material: HA (n.MD) Three-dimensional printing method: MD | Resorbability Microstructure Pore size | NA | NA | None | NA | Crystallinity and porosity of 3D printed HA bone substitutes are important characteristics that conditioned the resorbability rate. High porosity combined with low crystallinity were preferred to enhance the resorbability. |
Studies | Three-Dimensionally Printed Dental Implant | Three-Dimensionally Printed Manufacturing-Controlled Characteristics | Clinical and Radiographical Findings | Histological Findings of the Healing Process | Reported Complications | Patient-Reported Outcomes | Main Conclusions |
---|---|---|---|---|---|---|---|
Animal Study | |||||||
Balamurugan P., [83] 2021 J Ambient Intell Human Comput Animal study (cadaver goat) Sample size: MD | Material: Ti Three-dimensional printing method: SLM Bone defect: MD Position: posterior mandible | Shape Abutment Microstructure Mechanical properties | MD | MD | MD | NA | Digital manufacturing and back-engineering software make it possible to manufacture dental devices capable of withstanding high chewing forces and offer more flexibility than conventional dental implants. |
Chang Tu C., [84] 2020 J Formos Med Assoc Animal study (white rabbits) Sample size: n.20 | Material: Ti6Al4V (n.20) Three-dimensional printing method: laser sintering (n.20) Bone defect: MD Position: distal femoral condyle (n.20) | Shape Design Pore size Mechanical properties | MD | After 12 months Trabecular thickness and bone density were high. The trabecular thickness and porosity increased over time, reflecting the physiological bone remodeling process. | MD | NA | Three-dimensionally printed dental implants should be promising devices for GBR and the reconstruction of large bone defects due to failed implants. |
Li L., [86] 2020 Materials (Basel) Animal study (beagle) Sample size: n.4 | Material: Ti (n.4) Three-dimensional printing method: direct metal laser melting (n.4) Bone defect: MD Position: posterior mandible (n.4) | Shape Design Microstructure Pore size | After 3 months Implant stability: ranges from 71.18 ± 5.96 to 82.62 ± 4.09 | After 3 months No evidence of inflammatory response, except for two implants. New bone was found in the threads and lattice structures of 3D printed implants. | Implant failure (n.2) | NA | Three-dimensionally printed dental implants with spikes had a comparable implant stability to 3D printed dental implants without spikes at 3 months. A 3D printed implant without spikes and conventional implants has comparable stability and bone-to-implant contact. |
Tedesco J., [85] 2017 Int J Dent Animal pilot study (rabbit) Sample size: n.12 | Material: Ti6Al4V (n.12) Three-dimensional printing method: direct melting laser sintering (n.12) Bone defect: MD Position: tibial metaphysis (n.12) | Shape Diameter Length Roughness | After 1 month: The newly regenerated bone accounted for 50% of the total length of the bone. After 3 months: The newly regenerated bone accounted for 55% of the total length of the bone. | After 1 month: The bone was actively remodeled around dental implants, and multinucleated osteoclast and hypertrophic osteoblast were found. No debris was detected. After 3 months: The bone was still actively remodeled around dental implants, but more mature bone morphology was detected. A layer of bone-covered dental implant surface was obtained. | MD | NA | A 3D printed dental implant provides a means for innovative designs with inherent implant surfaces, which enhance osseointegration in rabbits for up to twelve weeks. Dual-stemmed 3D printed dental implants showed successful bone–impact contact and bone growth similar to conventional or other 3D printed implant designs up to twelve weeks. |
Wang H., [87] 2019 Mater Sci Eng C Mater Biol Appl Animal study (rabbits) Sample size: n.36 | Materials: Ti and Tantalum (n.36) Three-dimensional printing method: SLM (n.36) Bone defect: MD Position: femur (n.36) | Shape Design Pore size Mechanical properties | MD | After 2 weeks Bone growth along the implant pores was found. After 4 weeks Bone growth was observed also in the center of implant pores. | MD | NA | Porous tantalum is a promising material for GBR. |
In vitro Study | |||||||
Binobaid A., [89] 2024 J Mech Behav Biomed Mater In vitro study | Materials: lattice structure, zirconia, and calcium silicate Three-dimensional printing method: digital light processing | Shape Length (ultra-short) Material combination ratio Pore size Mechanical properties Biocompatibility | NA | NA | The lattice structure with a 300 µm pore size greatly influenced the implant’s mechanical properties and is not suitable for dental implants. | The mechanical properties of dental implants in zirconia/calcium silicate are similar to those of dental implants in Ti6Al4V and of cancellous bone. | |
Sonaye S.Y., [88] 2022 J Mech Behav Biomed Mater In vitro study | Material: PEEK Three-dimensional printing method: fused filament | Shape Implant–abutment connection Mechanical properties Aging properties Thermal properties | NA | NA | MD | NA | Three-dimensionally printed dental implants have the potential to be highly translational, with high resolution and mechanical properties even under axial forces. Personalized treatment with 3D printed dental implants requires low economic costs and time. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Spirito, F.; Giordano, F.; Di Palo, M.P.; Ferraro, C.; Cecere, L.; Frucci, E.; Caggiano, M.; Lo Giudice, R. Customized 3D-Printed Mesh, Membrane, Bone Substitute, and Dental Implant Applied to Guided Bone Regeneration in Oral Implantology: A Narrative Review. Dent. J. 2024, 12, 303. https://doi.org/10.3390/dj12100303
Di Spirito F, Giordano F, Di Palo MP, Ferraro C, Cecere L, Frucci E, Caggiano M, Lo Giudice R. Customized 3D-Printed Mesh, Membrane, Bone Substitute, and Dental Implant Applied to Guided Bone Regeneration in Oral Implantology: A Narrative Review. Dentistry Journal. 2024; 12(10):303. https://doi.org/10.3390/dj12100303
Chicago/Turabian StyleDi Spirito, Federica, Francesco Giordano, Maria Pia Di Palo, Cosimo Ferraro, Luigi Cecere, Eugenio Frucci, Mario Caggiano, and Roberto Lo Giudice. 2024. "Customized 3D-Printed Mesh, Membrane, Bone Substitute, and Dental Implant Applied to Guided Bone Regeneration in Oral Implantology: A Narrative Review" Dentistry Journal 12, no. 10: 303. https://doi.org/10.3390/dj12100303
APA StyleDi Spirito, F., Giordano, F., Di Palo, M. P., Ferraro, C., Cecere, L., Frucci, E., Caggiano, M., & Lo Giudice, R. (2024). Customized 3D-Printed Mesh, Membrane, Bone Substitute, and Dental Implant Applied to Guided Bone Regeneration in Oral Implantology: A Narrative Review. Dentistry Journal, 12(10), 303. https://doi.org/10.3390/dj12100303