In Vitro Research Methods Used to Evaluate Shaping Ability of Rotary Endodontic Files—A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Types of Endodontic Samples
4.2. Main Evaluation Methods
4.2.1. Double Digital Images Evaluation Method
4.2.2. MCT (Micro-Computed Tomography) Evaluation Method
4.2.3. CBCT (Cone-Beam Computed Tomography) Evaluation Method
4.2.4. Comparison of Evaluation Methods
4.2.5. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schäfer, E.; Bürklein, S. Impact of nickel-titanium instrumentation of the root canal on clinical outcomes: A focused review. Odontology 2012, 100, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Hülsmann, M.; Peters, O.A.; Dummer, P.M.H. Mechanical preparation of root canals: Shaping goals, techniques and means. Endod. Top. 2005, 10, 30–76. [Google Scholar] [CrossRef]
- Schilder, H. Cleaning and shaping the root canal. Dent. Clin. N. Am. 1974, 18, 269–296. [Google Scholar] [CrossRef] [PubMed]
- Pansheriya, E.; Goel, M.; Gupta, K.D.; Ahuja, R.; Kaur, R.D.; Garg, V. Comparative Evaluation of Apical Transportation and Canal Centric Ability in Apical Region of Newer nickel-titanium File Systems Using cone-beam computed tomography on Extracted Molars: An In Vitro Study. Contemp. Clin. Dent. 2018, 9, S215–S220. [Google Scholar] [CrossRef] [PubMed]
- Short, J.A.; Morgan, L.A.; Baumgartner, J.C. A comparison of canal centering ability of four instrumentation techniques. J. Endod. 1997, 23, 503–507. [Google Scholar] [CrossRef]
- American Association of Endodontists. Glossary of Endodontic Chicago. Available online: https://www.aae.org/specialty/clinical-resources/glossary-endodontic-terms/ (accessed on 25 February 2021).
- Kandaswamy, D.; Venkateshbabu, N.; Porkodi, I.; Pradeep, G. Canal-centering ability: An endodontic challenge. J. Conserv. Dent. 2009, 12, 3–9. [Google Scholar]
- Jain, A.; Gupta, A.; Agrawal, R. Comparative analysis of canal-centering ratio, apical transportation, and remaining dentin thickness between single-file systems, i.e., OneShape and WaveOne reciprocation: An in vitro study. J. Conserv. Dent. 2018, 21, 637–641. [Google Scholar] [CrossRef]
- Iqbal, M.K.; Floratos, S.; Hsu, Y.K.; Karabucak, B. An In Vitro Comparison of Profile GT and GTX Nickel-Titanium Rotary Instruments in Apical Transportation and Length Control in Mandibular Molar. J. Endod. 2010, 36, 302–304. [Google Scholar] [CrossRef]
- Elemam, R.F.; Capelas, J.A.; Vaz, M.; Viriato, N.; de Lurdes Ferreira Lobo Pereira, M.; Azevedo, Á. In vitro evaluation of root canal transportation after use of BT-Race files. Rev. Port. Estomatol. Med. Dent. Cir. Maxilofac. 2016, 57, 87–93. [Google Scholar] [CrossRef]
- El-Desouky, S.S.; El Fahl, B.N.; Kabbash, I.A.; Hadwa, S.M. Cone-beam computed tomography evaluation of shaping ability of kedo-S square and fanta AF baby rotary files compared to manual K-files in root canal preparation of primary anterior teeth. Clin. Oral Investig. 2024, 28, 340. [Google Scholar] [CrossRef]
- Swathi, S.; Antony, D.P.; Solete, P.; Jeevanandan, G.; Vishwanathaiah, S.; Maganur, P.C. Comparative evaluation of remaining dentin thickness, canal centering ability and apical deformity between ProFit S3 and Protaper gold—A nano CT study. Saudi Dent. J. 2024, 36, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Swetha, B.; Malini, D.L.; Burla, D.; Ismail, P.M.S.; Dahiya, S.; Bhasin, R.; Mohammed, A. An In Vitro Comparative Assessment of Shaping Capacity of a Single-File System Over Multiple-File System in Root Canals. J. Pharm. Bioallied Sci. 2024, 16, S327–S328. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Liu, C.; Bai, B.; Pei, F.; Tang, Y.; Song, W.; Chen, X.; Gu, Y. Micro-computed tomographic evaluation of the shaping ability of three nickel-titanium rotary systems in the middle mesial canal of mandibular first molars: An ex vivo study based on 3D printed tooth replicas. BMC Oral Health 2024, 24, 294. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Balasubramanian, R.; Jayakumar, S.; Harikrishnan, S.; Chandrasekaran, R. Evaluation of Canal-centering Ability and Apical Transportation of Hyflex-EDM, OneShape, WaveOne Gold, and Reciproc Files: An Ex Vivo Study. J. Contemp. Dent. Pract. 2023, 24, 802–808. [Google Scholar]
- Singh, T.; Kumari, M.; Kochhar, R. Comparative evaluation of canal transportation and centering ability of rotary and reciprocating file systems using cone-beam computed tomography: An in vitro study. J. Conserv. Dent. 2023, 26, 332–337. [Google Scholar] [CrossRef]
- Manocha, S.K.; Saha, S.G.; Agarwal, R.S.; Vijaywargiya, N.; Saha, M.K.; Surana, A. Comparative evaluation of canal transportation and canal centering ability in oval canals with newer nickel-titanium rotary single file systems—A cone-beam computed tomography study. J. Conserv. Dent. 2023, 26, 326–333. [Google Scholar] [CrossRef]
- Hawi, N.; Pedulla, E.; La Rosa, G.R.M.; Conte, G.; Nehme, W.; Neelakantan, P. Influence of Coronal Flaring on the Shaping Ability of Two Heat-Treated Nickel-Titanium Endodontic Files: A Micro-Computed Tomographic Study. J. Clin. Med. 2023, 12, 357. [Google Scholar] [CrossRef]
- Biasillo, V.; Castagnola, R.; Colangeli, M.; Panzetta, C.; Minciacchi, I.; Plotino, G.; Staffoli, S.; Marigo, L.; Grande, N.M. Comparison of shaping ability of the Reciproc Blue and One Curve with or without glide path in simulated S-shaped root canals. Restor. Dent. Endod. 2022, 47, e3. [Google Scholar] [CrossRef]
- Dantas, W.C.F.; Marceliano-Alves, M.F.V.; Marceliano, E.F.V.; Marques, E.F.; de Carvalho Coutinho, T.M.; Alves, F.R.F.; Martin, A.S.; Pelegrine, R.A.; Lopes, R.T.; Bueno, C. Microtomographic Assessment of the Shaping Ability of the Hyflex CM and XP-endo Shaper Systems in Curved Root Canals. Eur. J. Dent. 2023, 17, 699–705. [Google Scholar] [CrossRef]
- Suzuki, E.H.; Sponchiado-Junior, E.C.; Pandolfo, M.T.; Garcia, L.; Carvalho, F.M.A.; Marques, A.A.F. Shaping Ability of Reciprocating and Rotary Systems After Root Canal Retreatment: A CBCT Study. Braz. Dent. J. 2022, 33, 12–21. [Google Scholar] [CrossRef]
- Haridoss, S.; Rakkesh, K.M.; Swaminathan, K. Transportation and Centering Ability of Kedo-S Pediatric and Mtwo Instruments in Primary Teeth: A Cone-beam ComputedTomography Study. Int. J. Clin. Pediatr. Dent. 2022, 15, S30–S34. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhou, J.; Wan, J.; Yang, Y. Shaping ability of ProTaper Gold and WaveOne Gold nickel-titanium rotary instruments in simulated S-shaped root canals. J. Dent. Sci. 2022, 17, 430–437. [Google Scholar] [CrossRef]
- Medeiros, T.C.; Lima, C.O.; Barbosa, A.F.A.; Augusto, C.M.; Bruno, A.M.V.; Lopes, R.T.; Amoroso-Silva, P.A.; Marceliano-Alves, M.F. Shaping ability of reciprocating and rotary systems in oval-shaped root canals: A microcomputed tomography study. Acta Odontol. Latinoam. 2021, 34, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, M. Comparative Evaluation of Canal-shaping Abilities of RaceEvo, R-Motion, Reciproc Blue, and ProTaper Gold NiTi Rotary File Systems: A CBCT Study. J. Contemp. Dent. Pract. 2021, 22, 1406–1412. [Google Scholar] [CrossRef] [PubMed]
- Shojaeian, S.; Mortezapour, N.; Soltaninejad, F.; Zargar, N.; Zandi, B.; Shantiaee, Y.; Bidaki, A. Comparison of Canal Transportation and Centering Ability of One-G, EdgeGlidePath, and Neolix: A MicroComputed Tomography Study of Curved Root Canals. Int. J. Dent. 2021, 2021, 4898684. [Google Scholar] [CrossRef]
- Faisal, I.; Saif, R.; Alsulaiman, M.; Natto, Z.S. Shaping ability of 2Shape and NeoNiTi rotary instruments in preparation of curved canals using micro-computed tomography. BMC Oral Health 2021, 21, 595. [Google Scholar] [CrossRef]
- Waly, A.S.; Yamany, I.; Abbas, H.M.; MA, A.A.; RM, F.B.; Bogari, D.F.; Alhazzazi, T.Y. Comparison of two pediatric rotary file systems and hand instrumentation in primary molar: An ex vivo cone-beam computed tomographic study. Niger. J. Clin. Pract. 2021, 24, 1492–1498. [Google Scholar] [CrossRef]
- Zafar, K.; Badar, S.B.; Ghafoor, R.; Khan, F.R. Comparison Of Centering Ability And Transportation Of The Protaper Next And Oneshape File Rotary Systems For Preparing Simulated Curved Canal. J. Ayub. Med. Coll. Abbottabad. 2021, 33, 202–206. [Google Scholar]
- Karkehabadi, H.; Siahvashi, Z.; Shokri, A.; Haji Hasani, N. Cone-beam computed tomographic analysis of apical transportation and centering ratio of ProTaper and XP-endo Shaper NiTi rotary systems in curved canals: An in vitro study. BMC Oral Health 2021, 21, 277. [Google Scholar] [CrossRef]
- Kuzekanani, M.; Sadeghi, F.; Hatami, N.; Rad, M.; Darijani, M.; Walsh, L.J. Comparison of Canal Transportation, Separation Rate, and Preparation Time between One Shape and Neoniti (Neolix): An In Vitro CBCT Study. Int. J. Dent. 2021, 2021, 6457071. [Google Scholar] [CrossRef]
- Pérez Morales, M.d.l.N.; González Sánchez, J.A.; Olivieri, J.G.; Elmsmari, F.; Salmon, P.; Jaramillo, D.E.; Duran-Sindreu, F. Micro-computed Tomographic Assessment and Comparative Study of the Shaping Ability in Six NiTi files—An In Vitro Study. J. Endod. 2021, 47, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Kolhe, S.J.; Kolhe, P.S.; Gulve, M.N.; Aher, G.B.; Bhadage, C.J.; Mashalkar, S.S. Microcomputed tomographic evaluation of shaping ability of two thermo mechanically treated single-file systems in severely curved roots. J. Conserv. Dent. 2020, 23, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Razcha, C.; Zacharopoulos, A.; Anestis, D.; Mikrogeorgis, G.; Zacharakis, G.; Lyroudia, K. Micro-Computed Tomographic Evaluation of Canal Transportation and Centering Ability of 4 Heat-Treated Nickel-Titanium Systems. J. Endod. 2020, 46, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.O.F.; Freire, L.G.; Iglecias, E.F.; Vieira, B.R.; Zuolo, M.L.; Gavini, G. Assessment of Mechanical Root Canal Preparation with Centric Reciprocating or Eccentric Rotary Kinematics: A Micro–computed Tomographic Study. J. Endod. 2020, 46, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Arıcan Öztürk, B.; Atav Ateş, A.; Fişekçioğlu, E. Cone-Beam Computed Tomographic Analysis of Shaping Ability of XP-endo Shaper and ProTaper Next in Large Root Canals. J. Endod. 2020, 46, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Htun, P.H.; Ebihara, A.; Maki, K.; Kimura, S.; Nishijo, M.; Okiji, T. Cleaning and Shaping Ability of Gentlefile, HyFlex EDM, and ProTaper Next Instruments: A Combined Micro–computed Tomographic and Scanning Electron Microscopic Study. J. Endod. 2020, 46, 973–979. [Google Scholar] [CrossRef]
- Pivoto-João, M.M.B.; Tanomaru-Filho, M.; Pinto, J.C.; Espir, C.G.; Guerreiro-Tanomaru, J.M. Root Canal Preparation and Enlargement Using Thermally Treated Nickel-Titanium Rotary Systems in Curved Canals. J. Endod. 2020, 46, 1758–1765. [Google Scholar] [CrossRef]
- Haupt, F.; Pult, J.R.W.; Hülsmann, M. Micro–computed Tomographic Evaluation of the Shaping Ability of 3 Reciprocating Single-File Nickel-Titanium Systems on Single- and Double-Curved Root Canals. J. Endod. 2020, 46, 1130–1135. [Google Scholar] [CrossRef]
- Kabil, E.; Katić, M.; Anić, I.; Bago, I. Micro–computed Evaluation of Canal Transportation and Centering Ability of 5 Rotary and Reciprocating Systems with Different Metallurgical Properties and Surface Treatments in Curved Root Canals. J. Endod. 2020, 47, 477–484. [Google Scholar] [CrossRef]
- Perez Morales, M.d.l.N.; González Sánchez, J.A.; Olivieri Fernández, J.G.; Laperre, K.; Abella Sans, F.; Jaramillo, D.E.; Terol, F.D.-S. TRUShape Versus XP-endo Shaper: A Micro–computed Tomographic Assessment and Comparative Study of the Shaping Ability—An In Vitro Study. J. Endod. 2020, 46, 271–276. [Google Scholar] [CrossRef]
- van der Vyver, P.J.; Paleker, F.; Vorster, M.; de Wet, F.A. Root Canal Shaping Using Nickel Titanium, M-Wire, and Gold Wire: A Micro–computed Tomographic Comparative Study of One Shape, ProTaper Next, and WaveOne Gold Instruments in Maxillary First Molars. J. Endod. 2019, 45, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Aydın, Z.U.; Keskin, N.B.; Özyürek, T.; Geneci, F.; Ocak, M.; Çelik, H.H. Microcomputed Assessment of Transportation, Centering Ratio, Canal Area, and Volume Increase after Single-file Rotary and Reciprocating Glide Path Instrumentation in Curved Root Canals: A Laboratory Study. J. Endod. 2019, 45, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Nathani, T.I.; Nathani, A.I.; Pawar, A.M.; Khakiani, M.I.; Ruiz, X.-F.; Olivieri, J.G. Canal Transportation and Centering Ability in Long Oval Canals: A Multidimentional Analysis. J. Endod. 2019, 45, 1242–1247. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.; Ebihara, A.; Kimura, S.; Nishijo, M.; Tokita, D.; Okiji, T. Effect of Different Speeds of Up-and-down Motion on Canal Centering Ability and Vertical Force and Torque Generation of Nickel-titanium Rotary Instruments. J. Endod. 2019, 45, 68–72.e1. [Google Scholar] [CrossRef] [PubMed]
- Filizola de Oliveira, D.J.; Leoni, G.B.; da Silva Goulart, R.; Sousa-Neto, M.D.d.; Silva Sousa, Y.T.C.; Silva, R.G. Changes in Geometry and Transportation of Root Canals with Severe Curvature Prepared by Different Heat-treated Nickel-titanium Instruments: A Micro–computed Tomographic Study. J. Endod. 2019, 45, 768–773. [Google Scholar] [CrossRef]
- Vorster, M.; van der Vyver, P.J.; Paleker, F. Canal Transportation and Centering Ability of WaveOne Gold in Combination with and without Different Glide Path Techniques. J. Endod. 2018, 44, 1430–1435. [Google Scholar] [CrossRef]
- Kyaw Moe, M.M.; Ha, J.H.; Jin, M.U.; Kim, Y.K.; Kim, S.K. Root Canal Shaping Effect of Instruments with Offset Mass of Rotation in the Mandibular First Molar: A Micro–computed Tomographic Study. J. Endod. 2018, 44, 822–827. [Google Scholar] [CrossRef]
- Kataia, M.M.; Roshdy, N.N.; Nagy, M.M. Comparative analysis of canal transportation using reciproc blue and wavo one gold in simulated root canals using different kinematics. Future Dent. J. 2018, 4, 156–159. [Google Scholar] [CrossRef]
- Hasheminia, S.M.; Farhad, A.; Sheikhi, M.; Soltani, P.; Hendi, S.S.; Ahmadi, M. Cone-beam Computed Tomographic Analysis of Canal Transportation and Centering Ability of Single-file Systems. J. Endod. 2018, 44, 1788–1791. [Google Scholar] [CrossRef]
- Staffoli, S.; Özyürek, T.; Hadad, A.; Lvovsky, A.; Solomonov, M.; Azizi, H.; Itzhak, J.B.; Bossù, M.; Grande, N.M.; Plotino, G.; et al. Comparison of shaping ability of ProTaper Next and 2Shape nickel–titanium files in simulated severe curved canals. Giornale Ital. Endod. 2018, 32, 52–56. [Google Scholar] [CrossRef]
- Saberi, E.A.; Mollashahi, N.F.; Farahi, F. Canal transportation caused by one single-file and two multiple-file rotary systems: A comparative study using cone-beam computed tomography. Giornale Ital. Endod. 2018, 32, 57–62. [Google Scholar] [CrossRef]
- Yuan, G.; Yang, G. Comparative evaluation of the shaping ability of single-file system versus multi-file system in severely curved root canals. J. Dent. Sci. 2018, 13, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Marks Duarte, P.; Barcellos da Silva, P.; Alcalde, M.P.; Vivan, R.R.; Rosa, R.A.d.; Duarte, M.A.H.; Só, M.V.R. Canal Transportation, Centering Ability, and Cyclic Fatigue Promoted by Twisted File Adaptive and Navigator EVO Instruments at Different Motions. J. Endod. 2018, 44, 1425–1429. [Google Scholar] [CrossRef] [PubMed]
- Belladonna, F.G.; Carvalho, M.S.; Cavalcante, D.M.; Fernandes, J.T.; de Carvalho Maciel, A.C.; Oliveira, H.E.; Lopes, R.T.; Silva, E.J.N.L.; De-Deus, G. Micro–computed Tomography Shaping Ability Assessment of the New Blue Thermal Treated Reciproc Instrument. J. Endod. 2018, 44, 1146–1150. [Google Scholar] [CrossRef]
- Ferrara, G.; Taschieri, S.; Corbella, S.; Ceci, C.; Del Fabbro, M.; Machtou, P. Comparative evaluation of the shaping ability of two different nickel-titanium rotary files in curved root canals of extracted human molar teeth. J. Investig. Clin. Dent. 2017, 8, e12187. [Google Scholar] [CrossRef]
- Alemam, A.A.H.; Dummer, P.M.H.; Farnell, D.J.J. A Comparative Study of ProTaper Universal and ProTaper Next Used by Undergraduate Students to Prepare Root Canals. J. Endod. 2017, 43, 1364–1369. [Google Scholar] [CrossRef]
- D’Amario, M.; De Angelis, F.; Mancino, M.; Frascaria, M.; Capogreco, M.; D’Arcangelo, C. Canal shaping of different single-file systems in curved root canals. J. Dent. Sci. 2017, 12, 328–332. [Google Scholar] [CrossRef]
- Özyürek, T.; Yılmaz, K.; Uslu, G. Shaping Ability of Reciproc, WaveOne GOLD, and HyFlex EDM Single-file Systems in Simulated S-shaped Canals. J. Endod. 2017, 43, 805–809. [Google Scholar] [CrossRef]
- Zanesco, C.; Só, M.V.R.; Schmidt, S.; Fontanella, V.R.C.; Grazziotin-Soares, R.; Barletta, F.B. Apical Transportation, Centering Ratio, and Volume Increase after Manual, Rotary, and Reciprocating Instrumentation in Curved Root Canals: Analysis by Micro-computed Tomographic and Digital Subtraction Radiography. J. Endod. 2017, 43, 486–490. [Google Scholar] [CrossRef]
- Venino, P.M.; Citterio, C.L.; Pellegatta, A.; Ciccarelli, M.; Maddalone, M. A Micro–computed Tomography Evaluation of the Shaping Ability of Two Nickel-titanium Instruments, HyFlex EDM and ProTaper Next. J. Endod. 2017, 43, 628–632. [Google Scholar] [CrossRef]
- Shi, L.; Wagle, S. Comparing the Centering Ability of Different Pathfinding Systems and Their Effect on Final Instrumentation by Hyflex CM. J. Endod. 2017, 43, 1868–1871. [Google Scholar] [CrossRef] [PubMed]
- da Silva Limoeiro, A.G.; dos Santos, A.H.B.; De Martin, A.S.; Kato, A.S.; Fontana, C.E.; Gavini, G.; Freire, L.G.; da Silveira Bueno, C.E. Micro-Computed Tomographic Evaluation of 2 Nickel-Titanium Instrument Systems in Shaping Root Canals. J. Endod. 2016, 42, 496–499. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Gu, L.; Liu, W.; Wei, X.; Ling, J. The shaping and cleaning abilities of self-adjusting files in the preparation of canals with isthmuses after glidepath enlargement with ISO or ProTaper Universal NiTi files. J. Dent. Sci. 2016, 11, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Paleker, F.; van der Vyver, P.J. Comparison of Canal Transportation and Centering Ability of K-files, ProGlider File, and G-Files: A Micro-Computed Tomography Study of Curved Root Canals. J. Endod. 2016, 42, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
- Neto, F.; Ginjeira, A. Comparative analysis of simulated root canals shaping, using ProTaper Universal, Next and Gold. Rev. Port. Estomatol. Med. Dent. Cir. Maxilofac. 2016, 57, 82–86. [Google Scholar] [CrossRef]
- Peters, O.A.; Arias, A.; Paqué, F. A Micro–computed Tomographic Assessment of Root Canal Preparation with a Novel Instrument, TRUShape, in Mesial Roots of Mandibular Molars. J. Endod. 2015, 41, 1545–1550. [Google Scholar] [CrossRef]
- Gagliardi, J.; Versiani, M.A.; de Sousa-Neto, M.D.; Plazas-Garzon, A.; Basrani, B. Evaluation of the Shaping Characteristics of ProTaper Gold, ProTaper NEXT, and ProTaper Universal in Curved Canals. J. Endod. 2015, 41, 1718–1724. [Google Scholar] [CrossRef]
- Silva, E.J.N.L.; Tameirão, M.D.N.; Belladonna, F.G.; Neves, A.A.; Souza, E.M.; De-Deus, G. Quantitative Transportation Assessment in Simulated Curved Canals Prepared with an Adaptive Movement System. J. Endod. 2015, 41, 1125–1129. [Google Scholar] [CrossRef]
- Saleh, A.M.; Vakili Gilani, P.; Tavanafar, S.; Schäfer, E. Shaping Ability of 4 Different Single-file Systems in Simulated S-shaped Canals. J. Endod. 2015, 41, 548–552. [Google Scholar] [CrossRef]
- Pasqualini, D.; Alovisi, M.; Cemenasco, A.; Mancini, L.; Paolino, D.S.; Bianchi, C.C.; Roggia, A.; Scotti, N.; Berutti, E. Micro–Computed Tomography Evaluation of ProTaper Next and BioRace Shaping Outcomes in Maxillary First Molar Curved Canals. J. Endod. 2015, 41, 1706–1710. [Google Scholar] [CrossRef]
- de Carvalho, G.M.; Sponchiado Junior, E.C.; Garrido, A.D.B.; Lia, R.C.C.; Roberti Garcia, L.d.F.; Franco Marques, A.A. Apical Transportation, Centering Ability, and Cleaning Effectiveness of Reciprocating Single-file System Associated with Different Glide Path Techniques. J. Endod. 2015, 41, 2045–2049. [Google Scholar] [CrossRef] [PubMed]
- Al-Manei, K.K.; Al-Hadlaq, S.M.S. Evaluation of the root canal shaping ability of two rotary nickel–titanium systems. Int. Endod. J. 2014, 47, 974–979. [Google Scholar] [CrossRef] [PubMed]
- Elnaghy, A.M.; Elsaka, S.E. Evaluation of root canal transportation, centering ratio, and remaining dentin thickness associated with ProTaper Next instruments with and without glide path. J. Endod. 2014, 40, 2053–2056. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.; Sidow, S.J.; Lindsey, K.; Chuang, A.; McPherson, J.C. Evaluation of a New Filing System’s Ability to Maintain Canal Morphology. J. Endod. 2014, 40, 867–870. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Shen, Y.; Peng, B.; Haapasalo, M. Root Canal Preparation of Mandibular Molars with 3 Nickel-Titanium Rotary Instruments: A Micro–Computed Tomographic Study. J. Endod. 2014, 40, 1860–1864. [Google Scholar] [CrossRef]
- Hwang, Y.-H.; Bae, K.-S.; Baek, S.-H.; Kum, K.-Y.; Lee, W.; Shon, W.-J.; Chang, S.W. Shaping Ability of the Conventional Nickel-Titanium and Reciprocating Nickel-Titanium File Systems: A Comparative Study Using Micro–Computed Tomography. J. Endod. 2014, 40, 1186–1189. [Google Scholar] [CrossRef]
- Nazarimoghadam, K.; Daryaeian, M.; Ramazani, N. An in vitro comparison of root canal transportation by reciproc file with and without glide path. J. Dent. 2014, 11, 554–559. [Google Scholar]
- Marzouk, A.M.; Ghoneim, A.G. Computed Tomographic Evaluation of Canal Shape Instrumented by Different Kinematics Rotary Nickel-Titanium Systems. J. Endod. 2013, 39, 906–909. [Google Scholar] [CrossRef]
- Zarei, M.; Javidi, M.; Erfanian, M.; Lomee, M.; Afkhami, F. Comparison of air-driven vs electric torque control motors on canal centering ability by ProTaper NiTi rotary instruments. J. Contemp. Dent. Pract. 2013, 14, 71–75. [Google Scholar] [CrossRef]
- Burroughs, J.R.; Bergeron, B.E.; Roberts, M.D.; Hagan, J.L.; Himel, V.T. Shaping ability of three nickel-titanium endodontic file systems in simulated S-shaped root canals. J. Endod. 2012, 38, 1618–1621. [Google Scholar] [CrossRef]
- Yamamura, B.; Cox, T.C.; Heddaya, B.; Flake, N.M.; Johnson, J.D.; Paranjpe, A. Comparing Canal Transportation and Centering Ability of EndoSequence and Vortex Rotary Files by Using Micro–Computed Tomography. J. Endod. 2012, 38, 1121–1125. [Google Scholar] [CrossRef] [PubMed]
- Aydin, C.; Inan, U.; Gultekin, M. Comparison of the shaping ability of Twisted Files with ProTaper and RevoS nickel-titanium instruments in simulated canals. J. Dent. Sci. 2012, 7, 283–288. [Google Scholar] [CrossRef]
- Duran-Sindreu, F.; García, M.; Olivieri, J.G.; Mercadé, M.; Morelló, S.; Roig, M. A Comparison of Apical Transportation between FlexMaster and Twisted Files Rotary Instruments. J. Endod. 2012, 38, 993–995. [Google Scholar] [CrossRef] [PubMed]
- Hashem, A.A.R.; Ghoneim, A.G.; Lutfy, R.A.; Foda, M.Y.; Omar, G.A.F. Geometric Analysis of Root Canals Prepared by Four Rotary NiTi Shaping Systems. J. Endod. 2012, 38, 996–1000. [Google Scholar] [CrossRef] [PubMed]
- García, M.; Duran-Sindreu, F.; Mercadé, M.; Bueno, R.; Roig, M. A Comparison of Apical Transportation between ProFile and RaCe Rotary Instruments. J. Endod. 2012, 38, 990–992. [Google Scholar] [CrossRef]
- Stern, S.; Patel, S.; Foschi, F.; Sherriff, M.; Mannocci, F. Changes in centring and shaping ability using three nickel–titanium instrumentation techniques analysed by micro-computed tomography (μCT). Int. Endod. J. 2012, 45, 514–523. [Google Scholar] [CrossRef]
- Yang, G.; Yuan, G.; Yun, X.; Zhou, X.; Liu, B.; Wu, H. Effects of Two Nickel-Titanium Instrument Systems, Mtwo versus ProTaper Universal, on Root Canal Geometry Assessed by Micro–Computed Tomography. J. Endod. 2011, 37, 1412–1416. [Google Scholar] [CrossRef]
- Ounsi, H.F.; Franciosi, G.; Paragliola, R.; Al Huzaimi, K.; Salameh, Z.; Tay, F.R.; Ferrari, M.; Grandini, S. Comparison of Two Techniques for Assessing the Shaping Efficacy of Repeatedly Used Nickel-Titanium Rotary Instruments. J. Endod. 2011, 37, 847–850. [Google Scholar] [CrossRef]
- Freire, L.G.; Gavini, G.; Branco-Barletta, F.; Sanches-Cunha, R.; dos Santos, M. Microscopic computerized tomographic evaluation of root canal transportation prepared with twisted or ground nickel-titanium rotary instruments. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2011, 112, e143–e148. [Google Scholar] [CrossRef]
- Franco, V.; Fabiani, C.; Taschieri, S.; Malentacca, A.; Bortolin, M.; Del Fabbro, M. Investigation on the Shaping Ability of Nickel-Titanium Files When Used with a Reciprocating Motion. J. Endod. 2011, 37, 1398–1401. [Google Scholar] [CrossRef]
- Setzer, F.C.; Kwon, T.-K.; Karabucak, B. Comparison of Apical Transportation between Two Rotary File Systems and Two Hybrid Rotary Instrumentation Sequences. J. Endod. 2010, 36, 1226–1229. [Google Scholar] [CrossRef] [PubMed]
- Karabucak, B.; Gatan, A.J.; Hsiao, C.; Iqbal, M.K. A Comparison of Apical Transportation and Length Control between EndoSequence and Guidance Rotary Instruments. J. Endod. 2010, 36, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Madureira, R.G.; Forner Navarro, L.; Llena, M.C.; Costa, M. Shaping ability of nickel-titanium rotary instruments in simulated S-shaped root canals. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2010, 109, e136–e144. [Google Scholar] [CrossRef] [PubMed]
- Gergi, R.; Rjeily, J.A.; Sader, J.; Naaman, A. Comparison of Canal Transportation and Centering Ability of Twisted Files, Pathfile-ProTaper System, and Stainless Steel Hand K-Files by Using Computed Tomography. J. Endod. 2010, 36, 904–907. [Google Scholar] [CrossRef]
- Yin, X.; Cheung, G.S.-P.; Zhang, C.; Masuda, Y.M.; Kimura, Y.; Matsumoto, K. Micro-computed Tomographic Comparison of Nickel-Titanium Rotary versus Traditional Instruments in C-Shaped Root Canal System. J. Endod. 2010, 36, 708–712. [Google Scholar] [CrossRef]
- Cai, H.X.; Cheng, H.L.; Song, J.W.; Chen, S.Y. Comparison of Hero 642 and K3 rotary nickel-titanium files in curved canals of molars and a systematic review of the literature. Exp. Ther. Med. 2014, 8, 1047–1054. [Google Scholar] [CrossRef]
- Kirkevang, L.L.; Hörsted-Bindslev, P.; Orstavik, D.; Wenzel, A. A comparison of the quality of root canal treatment in two Danish subpopulations examined 1974-75 and 1997-98. Int. Endod. J. 2001, 34, 607–612. [Google Scholar] [CrossRef]
- Bjørndal, L.; Laustsen, M.H.; Reit, C. Root canal treatment in Denmark is most often carried out in carious vital molar teeth and retreatments are rare. Int. Endod. J. 2006, 39, 785–790. [Google Scholar] [CrossRef]
- de Oliveira Alves, V.; da Silveira Bueno, C.E.; Cunha, R.S.; Pinheiro, S.L.; Fontana, C.E.; de Martin, A.S. Comparison among Manual Instruments and PathFile and Mtwo Rotary Instruments to Create a Glide Path in the Root Canal Preparation of Curved Canals. J. Endod. 2012, 38, 117–120. [Google Scholar] [CrossRef]
- Berutti, E.; Paolino, D.S.; Chiandussi, G.; Alovisi, M.; Cantatore, G.; Castellucci, A.; Pasqualini, D. Root canal anatomy preservation of WaveOne reciprocating files with or without glide path. J. Endod. 2012, 38, 101–104. [Google Scholar] [CrossRef]
- Gambill, J.M.; Alder, M.; del Rio, C.E. Comparison of nickel-titanium and stainless steel hand-file instrumentation using computed tomography. J. Endod. 1996, 22, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Rödig, T.; Hülsmann, M.; Mühge, M.; Schäfers, F. Quality of preparation of oval distal root canals in mandibular molars using nickel-titanium instruments. Int. Endod. J. 2002, 35, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.K.; Maggiore, F.; Suh, B.; Edwards, K.R.; Kang, J.; Kim, S. Comparison of Apical Transportation in Four Ni-Ti Rotary Instrumentation Techniques. J. Endod. 2003, 29, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Javaheri, H.H.; Javaheri, G.H. A Comparison of Three Ni-Ti Rotary Instruments in Apical Transportation. J. Endod. 2007, 33, 284–286. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, M.D.B.; Marceliano, M.F.; Silva E Souza, P.R.d.A. Evaluation of apical deviation in root canals instrumented with K3 and ProTaper systems. J. Appl. Oral Sci. Rev. FOB 2006, 14, 460–464. [Google Scholar] [CrossRef]
- Mouyen, F.; Benz, C.; Sonnabend, E.; Lodter, J.P. Presentation and physical evaluation of RadioVisioGraphy. Oral Surg. Oral Med. Oral Pathol. 1989, 68, 238–242. [Google Scholar] [CrossRef]
- Abou-Rass, M.; Frank, A.L.; Glick, D.H. The anticurvature filing method to prepare the curved root canal. J. Am. Dent. Assoc. 1980, 101, 792–794. [Google Scholar] [CrossRef]
- Bramante, C.M.; Berbert, A.; Borges, R.P. A methodology for evaluation of root canal instrumentation. J. Endod. 1987, 13, 243–245. [Google Scholar] [CrossRef]
- Dowker, S.E.P.; Davis, G.R.; Elliott, J.C. X-ray microtomography: Nondestructive three-dimensional imaging for in vitro endodontic studies. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 1997, 83, 510–516. [Google Scholar] [CrossRef]
- Backman, C.A.; Oswald, R.J.; Pitts, D.L. A radiographic comparison of two root canal instrumentation techniques. J. Endod. 1992, 18, 19–24. [Google Scholar] [CrossRef]
- Hülsmann, M.; Stryga, F. Comparison of root canal preparation using different automated devices and hand instrumentation. J. Endod. 1993, 19, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Ounsi, H.F.; Franciosi, G.; Paragliola, R.; Goracci, C.; Grandini, S. Effect of repeated use on the shaping ability of Protaper Universal rotary files. Int. Dent. SA 2010, 12, 30–35. [Google Scholar]
- Maggiore, F. Endodontic Preparation of Curved Root Canals Using the Mac Files: Evaluation Using a Radiographic Method and a Computerized Analysis. Master’s Thesis, University of Rome, Rome, Italy, 1993–1994. [Google Scholar]
- Bahia, M.G.; Buono, V.T. Decrease in the fatigue resistance of nickel-titanium rotary instruments after clinical use in curved root canals. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2005, 100, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Marceliano-Alves, M.F.V.; Sousa-Neto, M.D.; Fidel, S.R.; Steier, L.; Robinson, J.P.; Pécora, J.D.; Versiani, M.A. Shaping ability of single-file reciprocating and heat-treated multifile rotary systems: A micro-CT study. Int. Endod. J. 2015, 48, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.; Fitz-Walter, P.; Parashos, P. A micro-computed tomographic evaluation of apical root canal preparation using three instrumentation techniques. Int. Endod. J. 2009, 42, 1057–1064. [Google Scholar] [CrossRef]
- Dufresne, T.; Chmielewski, P.; Borah, B.; Laib, A. Microcomputed tomography and its applications. In Encyclopaedia of Biomaterials and Biomedical Engineering; Marcel Dekker Inc.: Boca Raton, USA, 2004; pp. 94–1003. [Google Scholar]
- Marciano, M.; Duarte, M.; Ordinola-Zapata, R.; Del Carpio-Perochena, A.; Cavenago, B.; Villas Bôas, M.; Minotti, P.G.; Bramante, C.; Moraes, I.G. Applications of micro-computed tomography in endodontic research. Curr. Microsc. Contrib. Adv. Sci. Technol. 2012, 2, 782–788. [Google Scholar]
- Liang, X.; Zhang, Z.; Gu, J.; Wang, Z.; Vandenberghe, B.; Jacobs, R.; Yang, J.; Ma, G.; Ling, H.; Ma, X. Comparison of micro-CT and cone beam CT on the feasibility of assessing trabecular structures in mandibular condyle. Dentomaxillofac. Radiol. 2017, 46, 20160435. [Google Scholar] [CrossRef]
- Borna, Z.; Rahimi, S.; Shahi, S.; Zand, V. Mandibular second premolars with three root canals: A review and 3 case reports. Iran. Endod. J. 2011, 6, 179–182. [Google Scholar]
- Fan, B.; Pan, Y.; Gao, Y.; Fang, F.; Wu, Q.; Gutmann, J.L. Three-dimensional morphologic analysis of isthmuses in the mesial roots of mandibular molars. J. Endod. 2010, 36, 1866–1869. [Google Scholar] [CrossRef]
- Peters, O.A.; Paqué, F. Root canal preparation of maxillary molars with the self-adjusting file: A micro-computed tomography study. J. Endod. 2011, 37, 53–57. [Google Scholar] [CrossRef]
- Nielsen, R.B.; Alyassin, A.M.; Peters, D.D.; Carnes, D.L.; Lancaster, J. Microcomputed tomography: An advanced system for detailed endodontic research. J. Endod. 1995, 21, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Peters, O.A.; Laib, A.; Göhring, T.N.; Barbakow, F. Changes in root canal geometry after preparation assessed by high-resolution computed tomography. J. Endod. 2001, 27, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Stavileci, M.; Hoxha, V.; Görduysus, Ö.; Tatar, I.; Laperre, K.; Hostens, J.; Küçükkaya, S.; Berisha, M. Effects of preparation techniques on root canal shaping assessed by micro-computed tomography. Med. Sci. Monit. Basic Res. 2013, 19, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Gundappa, M.; Bansal, R.; Khoriya, S.; Mohan, R. Root canal centering ability of rotary cutting nickel titanium instruments: A meta-analysis. J. Conserv. Dent. 2014, 17, 504–509. [Google Scholar] [CrossRef]
- Peyrin, F.; Dong, P.; Pacureanu, A.; Langer, M. Micro- and nano-CT for the study of bone ultrastructure. Curr. Osteoporos. Rep. 2014, 12, 465–474. [Google Scholar] [CrossRef]
- Ahmed, H.M. Nano-computed tomography: Current and future perspectives. Restor. Dent. Endod. 2016, 41, 236–238. [Google Scholar] [CrossRef]
- Saber, S.E.D.M.; El Sadat, S.M.A. Effect of Altering the Reciprocation Range on the Fatigue Life and the Shaping Ability of WaveOne Nickel-Titanium Instruments. J. Endod. 2013, 39, 685–688. [Google Scholar] [CrossRef]
- Rhodes, J.S.; Ford, T.R.P.; Lynch, J.A.; Liepins, P.J.; Curtis, R.V. Micro-computed tomography: A new tool for experimental endodontology. Int. Endod. J. 1999, 32, 165–170. [Google Scholar] [CrossRef]
- Gluskin, A.H.; Brown, D.C.; Buchanan, L.S. A reconstructed computerized tomographic comparison of Ni–Ti rotary GT™ files versus traditional instruments in canals shaped by novice operators. Int. Endod. J. 2001, 34, 476–484. [Google Scholar] [CrossRef]
- Patel, S.; Kanagasingam, S.; Mannocci, F. Cone beam computed tomography (CBCT) in endodontics. Dent. Update 2010, 37, 373–379. [Google Scholar] [CrossRef]
- Patel, S.; Dawood, A.; Ford, T.P.; Whaites, E. The potential applications of cone beam computed tomography in the management of endodontic problems. Int. Endod. J. 2007, 40, 818–830. [Google Scholar] [CrossRef] [PubMed]
- Cohenca, N.; Shemesh, H. Clinical applications of cone beam computed tomography in endodontics: A comprehensive review. Quintessence Int. 2015, 46, 465–480. [Google Scholar] [PubMed]
- Hartmann, M.S.M.; Barletta, F.B.; Camargo Fontanella, V.R.; Vanni, J.R. Canal Transportation after Root Canal Instrumentation: A Comparative Study with Computed Tomography. J. Endod. 2007, 33, 962–965. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, A.; Banerjee, S.; Yadav, V.; Aggarwal, N. Canal Shaping with ProTaper Next and ProTaper Universal: A Comparative Study. Ann. Dent. Res. 2014, 4, 6–14. [Google Scholar]
- Jain, A.; Asrani, H.; Singhal, A.C.; Bhatia, T.K.; Sharma, V.; Jaiswal, P. Comparative evaluation of canal transportation, centering ability, and remaining dentin thickness between WaveOne and ProTaper rotary by using cone beam computed tomography: An in vitro study. J. Conserv. Dent. 2016, 19, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Pires, M.; Martins, J.N.R.; Pereira, M.R.; Vasconcelos, I.; Costa, R.P.D.; Duarte, I.; Ginjeira, A. Diagnostic value of cone beam computed tomography for root canal morphology assessment—A micro-CT based comparison. Clin. Oral Investig. 2024, 28, 201. [Google Scholar] [CrossRef]
- Peters, O.A.; Schönenberger, K.; Laib, A. Effects of four Ni-Ti preparation techniques on root canal geometry assessed by micro computed tomography. Int. Endod. J. 2001, 34, 221–230. [Google Scholar] [CrossRef]
- Nemtoi, A.; Czink, C.; Haba, D.; Gahleitner, A. Cone beam CT: A current overview of devices. Dentomaxillofac. Radiol. 2013, 42, 20120443. [Google Scholar] [CrossRef]
- Oliveira, C.A.P.; Meurer, M.I.; Pascoalato, C.; Silva, S.R.C. Cone-beam computed tomography analysis of the apical third of curved roots after mechanical preparation with different automated systems. Braz. Dent. J. 2009, 20, 376–381. [Google Scholar] [CrossRef]
No. | Year | Author/Reference | Endodontic Sample Type(s) | Evaluation Method | Evaluation Parameters |
---|---|---|---|---|---|
1 | 2024 | Shaimaa S El-Desouky [11] | Upper primary anterior teeth | CBCT | Canal transportation and centering ability |
2 | 2024 | S Swathi [12] | Premolars | High-Precision Nano-CT | Canal centering |
3 | 2024 | Bollineni A Swetha [13] | Mandibular molars | DSLR Camera | Centering capability |
4 | 2024 | Qi Zhu [14] | Maxillary first molars | MCT | Canal transportation and centering ability |
5 | 2023 | Anbarasu Subramanian [15] | Mandibular first molars | CBCT | Canal transportation and centering ability |
6 | 2023 | Tanisha Singh [16] | Mandibular molars | Cone-Beam Computed Tomography | Canal transportation and centering ability |
7 | 2023 | Simar Kaur Manocha [17] | Mandibular molars | Cone-Beam Computed Tomography | Canal transportation and centering ability |
8 | 2023 | Nadine Hawi [18] | Mandibular molars | Micro-Computed Tomography | Canal transportation and centering ability |
9 | 2022 | Vincenzo Biasillo [19] | Simulated resin blocks | Double Digital Images (Photographs) and AutoCAD | Centering ability |
10 | 2022 | Wania Christina Figueiredo Dantas [20] | Mandibular molars | Micro-Computed Tomography | Canal transportation and centering ability |
11 | 2022 | Eduardo Hideki Suzuki [21] | Mandibular molars | Cone-Beam Computed Tomography | Canal transportation and centering ability |
12 | 2022 | Selvakumar Haridoss [22] | Mandibular molars | Cone-Beam Computed Tomography | Canal transportation and centering ability |
13 | 2022 | Lu Shi [23] | Simulated resin blocks | Double Digital Images (Photographs) and Adobe Photoshop | Canal transportation and centering ability |
14 | 2021 | Thamires C de Medeiros [24] | Mandibular molars | Micro-Computed Tomography | Canal transportation and centering ability |
15 | 2021 | Mohammed Mustafa [25] | Mandibular molars | Cone-Beam Computed Tomography | Canal transportation and centering ability |
16 | 2021 | Shiva Shojaeian [26] | Mandibular molars | Micro-Computed Tomography | Canal transportation and centering ratio |
17 | 2021 | Ibrahim Faisal [27] | Mandibular molars | Micro-Computed Tomography | Canal transportation and centering ability |
18 | 2021 | A S Waly [28] | Mandibular molars | Cone-Beam Computed Tomography | Canal transportation and centering ability |
19 | 2021 | Kamil Zafar [29] | Simulated resin blocks | Double Digital Images (Photographs) and Adobe Photoshop | Canal transportation and centering ability |
20 | 2021 | Hamed Karkehabadi [30] | Mandibular molars | Cone-Beam Computed Tomography | Canal transportation and centering ratio |
21 | 2021 | Maryam Kuzekanani [31] | Maxillary and Mandibular Molars | Cone-Beam Computed Tomography | Canal transportation |
22 | 2021 | María de las Nieves Pérez Morales [32] | Mandibular molars | Micro-Computed Tomography | Canal transportation and centering ability |
23 | 2020 | Swapnil Kolhe [33] | Mandibular first molars | Micro-Compute Tomography | Canal transportation and centering ability |
24 | 2020 | Christina Razcha [34] | Mandibular molars | Micro-Computed Tomography | Canal transportation and centering ability |
25 | 2020 | P. O. F. Fernandes [35] | Mandibular molars | Micro-Computed Tomography | Canal transportation |
26 | 2020 | Burçin Arıcan Öztürk [36] | Single rooted | Cone-Beam Computed Tomography | Canal transportation and centering ability |
27 | 2020 | P. H. Htun [37] | Mandibular premolars | Micro-Computed Tomography | Canal transportation |
28 | 2020 | Mariana Mena Barreto Pivoto-João [38] | Mandibular molars | Micro-Computed Tomography | Centering ability |
29 | 2020 | Franziska Haupt [39] | Mandibular molars | Micro-Computed Tomography | Canal transportation and centering ability |
30 | 2020 | Emina Kabil [40] | Maxillary molars | Micro-Computed Tomography | Canal transportation and centering ability |
31 | 2020 | Maria de las Nieves Perez Morales [41] | Maxillary premolars | Micro-Computed Tomography | Canal transportation and centering ratio |
32 | 2019 | Peet J. van der Vyver [42] | Maxillary molars | Micro-Computed Tomography | Canal transportation and centering ratio |
33 | 2019 | Zeliha Uğur Aydın [43] | Mandibular molars | Micro-Computed Tomography | Canal transportation and centering ability |
34 | 2019 | Yousif Iqbal Nathani [44] | Mandibular premolars | Cone-Beam Computed Tomography | Canal transportation and centering ability |
35 | 2019 | Keiichiro Maki [45] | Simulated resin blocks | Double Digital Images (Photographs) and Adobe Photoshop | Centering ability |
36 | 2019 | Daniel José Filizola de Oliveira [46] | Mandibular molars | Micro-Computed Tomography | Canal transportation |
37 | 2018 | Martin Vorster [47] | Mandibular molars | Micro-Computed Tomography | Canal transportation and centering ability |
38 | 2018 | M. M. Kyaw Moe [48] | Mandibular molars | Micro-Computed Tomography | Canal transportation and centering ratio |
39 | 2018 | Mohamed Medhat Kataia [49] | Simulated resin blocks | Double Digital Images (Photographs) and Adobe Photoshop | Canal transportation |
40 | 2018 | Seyed Mohsen Hasheminia [50] | Mandibular molars | Cone-Beam Computed Tomography | Canal transportation and centering ability |
41 | 2018 | Simone Staffoli [51] | Simulated blocks | Double Digital Images (Photographs) and Adobe Photoshop | Centering ability |
42 | 2018 | E. A. Saberi [52] | Mandibular molars | Cone-Beam Computed Tomography | Canal transportation |
43 | 2018 | Guohua Yuan [53] | Mandibular molars | Micro-Computed Tomography | Canal transportation |
44 | 2018 | Pedro Marks Duarte [54] | Maxillary molars | Micro-Computed Tomography | Canal transportation and centering ability |
45 | 2018 | Felipe Gonçalves Belladonna [55] | Mandibular molars | Micro-Computed Tomography | Canal transportation |
46 | 2017 | Giulia Ferrara [56] | Mandibular and maxillary molars | Double Digital Images (Radiographs) and Adobe Photoshop | Canal transportation |
47 | 2017 | Amin A. H. Alemam [57] | Simulated resin blocks | Double Digital Images (Photographs) and Image-Pro Plus | Canal transportation |
48 | 2017 | Maurizio D’Amario [58] | Mandibular molars | Double Digital Images (Radiographs) and AutoCad | Canal transportation |
49 | 2017 | Taha Özyürek [59] | Simulated resin blocks | Double Digital Images (Photographs) and AutoCad | Canal transportation |
50 | 2017 | Caroline Zanesco [60] | Maxillary molars | Micro-Computed Tomography and Digital Radiograph | Canal transportation and centering ratio |
51 | 2017 | Pier Matteo Venino [61] | Max./Mand. molars, premolars and canine | Micro-Computed Tomography | Canal transportation and centering ratio |
52 | 2017 | Lu Shi [62] | Simulated resin blocks | Double Digital Images (Photographs) and Adobe Photoshop | Centering ability |
53 | 2016 | Ana Grasiela da Silva Limoeiro [63] | Mandibular molars | Micro-Computed Tomography | Canal transportation and centering ability |
54 | 2016 | Zhaohui Liu [64] | Premolars | Micro-Computed Tomography | Canal transportation |
55 | 2016 | Farzana Paleker [65] | Mandibular molars | Micro-Computed Tomography | Canal transportation and centering ability |
56 | 2016 | Ranya Faraj Elemam [10] | Simulated resin blocks | Double Digital Images (Photographs) and AutoCad | Canal transportation |
57 | 2016 | Filipa Neto [66] | Simulated resin blocks | Double Digital Images (Photographs) and Adobe Photoshop | Canal transportation |
58 | 2015 | Ove A. Peters [67] | Mandibular molars | Micro-Computed Tomography | Canal transportation |
59 | 2015 | Jason Gagliardi [68] | Mandibular molars | Micro-Computed Tomography | Canal transportation and centering ability |
60 | 2015 | Emmanuel João Nogueira Leal Silva [69] | Simulated resin blocks | Double Digital Images (Photographs) and Fiji | Canal transportation |
61 | 2015 | Abdulrahman Mohammed Saleh [70] | Simulated resin blocks | Double Digital Images (Photographs) and Adobe Photoshop | Canal transportation |
62 | 2015 | Damiano Pasqualini [71] | Mandibular molars | Micro-Computed Tomography | Canal transportation and centering ability |
63 | 2015 | Guilherme Moreira de Carvalho [72] | Mandibular molars | Cone-Beam Computed Tomography | Canal transportation and centering ability |
64 | 2014 | K. K. Al-Manei [73] | Mandibular molars | Double Digital Images (Photographs) and AutoCad | Canal transportation |
65 | 2014 | Amr M. Elnaghy [74] | Mandibular molars | Cone-Beam Computed Tomography | Canal transportation and centering ability |
66 | 2014 | Matthew Thompson [75] | Simulated resin blocks | Double Digital Images (Photographs) and Adobe Photoshop | Centering ability |
67 | 2014 | Dan Zhao [76] | Mandibular molars | Micro-Computed Tomography | Canal transportation |
68 | 2014 | Young-Hye Hwang [77] | Maxillary molars | Micro-Computed Tomography | Canal transportation |
69 | 2014 | Nazarimoghadam K [78] | Simulated resin blocks | Double Digital Images (Photographs) and AutoCad | Canal transportation |
70 | 2013 | Abeer M. Marzouk [79] | Mandibular molars | Cone-Beam Computed Tomography | Canal transportation |
71 | 2013 | Mina Zarei [80] | Mandibular molars | Double Digital Images (Photographs) and Adobe Photoshop | Canal transportation and centering ability |
72 | 2012 | Jeffrey R Burroughs [81] | Simulated resin blocks | Double Digital Images (Photographs) and Adobe Photoshop | Canal transportation |
73 | 2012 | Brandon Yamamura [82] | Mandibular molars | Micro-Computed Tomography | Canal transportation and centering ability |
74 | 2012 | Cumhur Aydin [83] | Simulated resin blocks | Double Digital Images (Photographs) and Adobe Photoshop | Canal transportation |
75 | 2012 | Fernando Duran-Sindreu [84] | Mandibular molars | Double Digital Images (Radiographs) and AutoCad | Canal transportation |
76 | 2012 | Ahmed Abdel Rahman Hashem [85] | Mandibular molars | Cone-Beam Computed Tomography | Canal transportation and centering ability |
77 | 2012 | Marc García [86] | Mandibular molars | Double Digital Images (Radiographs) and AutoCad | Canal transportation |
78 | 2012 | Stern S [87] | Mandibular molars | Micro-Computed Tomography | Canal transportation and centering ratio |
79 | 2011 | Guobin Yang [88] | Mandibular molars | Micro-Computed Tomography | Canal transportation and centering ability |
80 | 2011 | Hani F. Ounsi [89] | Simulated resin blocks | Double Digital Images (Photographs) and AutoCad | Canal transportation |
81 | 2011 | Laila Gonzales Freire [90] | Mandibular molars | Micro-Computed Tomography | canal transportation and centering ability |
82 | 2011 | Vittorio Franco [91] | Simulated resin blocks | Double Digital Images (Photographs) and Adobe Photoshop | Canal transportation |
83 | 2010 | Frank C. Setzer [92] | Mandibular molars | Double Digital Images (Radiographs) and AutoCad | Canal transportation |
84 | 2010 | Bekir Karabucak [93] | Mandibular molars | Double Digital Images (Radiographs) and AutoCad | Canal transportation |
85 | 2010 | Rui Gonçalves Madureira [94] | Simulated resin blocks | Double Digital Images (Radiographs) and Adobe Photoshop | Canal transportation |
86 | 2010 | Richard Gergi [95] | Mandibular molars | Cone-Beam Computed Tomography | Canal transportation and centering ratio |
87 | 2010 | Mian K. Iqbal [9] | Mandibular molars | Double Digital Images (Radiographs) and AutoCad | Canal transportation |
Parameters: Endodontic Sample Type Evaluation Method | Canal Transportation | Canal Transportation and Centering Ability | Canal Transportation and Centering Ratio | Centering Ability | Total |
---|---|---|---|---|---|
Mandibular and maxillary molars | 2 | 2 | |||
Cone-Beam Computed Tomography | 1 | 1 | |||
Double Digital Images (Radiographs) and Adobe Photoshop | 1 | 1 | |||
Mandibular molars | 16 | 30 | 4 | 1 | 51 |
Cone-Beam Computed Tomography | 2 | 12 | 2 | 16 | |
Double Digital Images (Photographs) and Adobe Photoshop | 1 | 1 | |||
Double Digital Images (Photographs) and AutoCad | 1 | 1 | |||
Double Digital Images (Radiographs) and AutoCad | 6 | 6 | |||
Micro-Computed Tomography | 6 | 18 | 2 | 1 | 27 |
Digital single-lens reflex camera | 1 | 1 | |||
Mandibular premolars | 1 | 1 | 2 | ||
Cone-Beam Computed Tomography | 1 | 1 | |||
Micro-Computed Tomography | 1 | 1 | |||
Max./Mand. molars, premolars and canine | 1 | 1 | |||
Micro-Computed Tomography | 1 | 1 | |||
Maxillary molars | 1 | 3 | 2 | 6 | |
Micro-Computed Tomography | 1 | 2 | 1 | 4 | |
Micro-Computed Tomography and Digital Radiograph | 1 | 1 | |||
Cone-Beam Computed Tomography | 1 | 1 | |||
Maxillary premolars | 1 | 1 | |||
Micro-Computed Tomography | 1 | 1 | |||
Premolars | 2 | 2 | |||
Micro-Computed Tomography | 1 | 1 | |||
High-Precision Nano-CT | 1 | 1 | |||
Upper primary anterior teeth | 1 | 1 | |||
Cone-Beam Computed Tomography | 1 | 1 | |||
Simulated blocks | 1 | 1 | |||
Double Digital Images (Photographs) and Adobe Photoshop | 1 | 1 | |||
Simulated resin blocks | 13 | 2 | 4 | 19 | |
Double Digital Images (Photographs) and Adobe Photoshop | 6 | 2 | 3 | 11 | |
Double Digital Images (Photographs) and AutoCad | 3 | 1 | 4 | ||
Double Digital Images (Photographs) and Fiji | 1 | 1 | |||
Double Digital Images (Photographs) and Image-Pro Plus | 1 | 1 | |||
Double Digital Images (Photographs), Matlab, and Adobe Photoshop | 1 | 1 | |||
Double Digital Images (Radiographs) and Adobe Photoshop | 1 | 1 | |||
Single rooted | 1 | 1 | |||
Cone-Beam Computed Tomography | 1 | 1 | |||
TOTAL | 35 | 39 | 7 | 6 | 87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elemam, R.F.; Azul, A.M.; Dias, J.; El Sahli, K.; de Toledo Leonardo, R. In Vitro Research Methods Used to Evaluate Shaping Ability of Rotary Endodontic Files—A Literature Review. Dent. J. 2024, 12, 334. https://doi.org/10.3390/dj12100334
Elemam RF, Azul AM, Dias J, El Sahli K, de Toledo Leonardo R. In Vitro Research Methods Used to Evaluate Shaping Ability of Rotary Endodontic Files—A Literature Review. Dentistry Journal. 2024; 12(10):334. https://doi.org/10.3390/dj12100334
Chicago/Turabian StyleElemam, Ranya F., Ana Mano Azul, João Dias, Khaled El Sahli, and Renato de Toledo Leonardo. 2024. "In Vitro Research Methods Used to Evaluate Shaping Ability of Rotary Endodontic Files—A Literature Review" Dentistry Journal 12, no. 10: 334. https://doi.org/10.3390/dj12100334
APA StyleElemam, R. F., Azul, A. M., Dias, J., El Sahli, K., & de Toledo Leonardo, R. (2024). In Vitro Research Methods Used to Evaluate Shaping Ability of Rotary Endodontic Files—A Literature Review. Dentistry Journal, 12(10), 334. https://doi.org/10.3390/dj12100334