The Flexural Strength and the Effect of the Autoclave Sterilization of Polypropylene/Natural Rubber Blended Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Flexural Strength Testing
2.3. Autoclave Sterilization
2.4. The Data’s Statistical Assessment
3. Results
4. Discussion
5. Conclusions
- 1.
- The lower NR content in PP/NR blends resulted in significantly higher flexural strength.
- 2.
- Autoclave sterilization had an effect on the flexural strength of PP/NR blends. After autoclave sterilization, the 90/10 ratio showed flexural strength comparable to pure PP. However, the 90/10 and 80/20 ratios exhibited flexural strength with an acceptable range for customized rubber dam clamps. This implied that the 90/10 PP/NR blend is suitable as a candidate for developing rubber dam clamps.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- e Cunha, A.F.F.; Madalena, I.R.; Küchler, E.C.; Pereira, T.L.; Honorato, R.; Lepri, C.P. Polyethylene terephthalate clamps: Optimization in endodontic and restorative practices. J. Clin. Exp. Dent. 2022, 14, e621–e624. [Google Scholar] [CrossRef] [PubMed]
- Zahran, S.; Patel, S.; Koller, G.; Mannocci, F. The impact of an enhanced infection control protocol on molar root canal treatment outcome-a randomized clinical trial. Int. Endod. J. 2021, 54, 1993–2005. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, R.G., III. Best practices: Restorative complications. In Avoiding and Treating Dental Complications: Best Practices in Dentistry; Wiley: Hoboken, NJ, USA, 2016; pp. 1–28. [Google Scholar]
- Mendes, A.C.B.; Restrepo, M.; Azevedo, E.R.; Cordeiro, R.D.C.L.; Santos-Pinto, L.; Zuanon, A.C.C. Effect of rubber dam clamps on demineralized cervical enamel of permanent teeth. J. Dent. Child. 2018, 85, 3–7. [Google Scholar]
- Chhabra, M.; Greenwell, A.L. Effect of Repeated Sterilization on the Tensile Strength of Rubber Dam Clamps. Pediatr. Dent. 2018, 40, 220–223. [Google Scholar] [PubMed]
- Mackenzie, L.; Waplington, M.; Bonsor, S. Splendid isolation: A practical guide to the use of rubber dam Part 1. Dent. Update 2020, 47, 548–558. [Google Scholar] [CrossRef]
- Eskibağlar, M.; Erdem, S.; Kaman, M.O. Evaluation of the effect of different rubber dam clamps on the mandibular first molar with Finite element analysis. Comput. Methods Biomech. Biomed. Eng. 2023, 27, 1704–1713. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Liu, Y.; Peng, B.; Chen, M.; Liu, Z.; Li, Z.; Kuang, H.; Gong, B.; Li, Z.; Sun, H. PEEK for oral applications: Recent advances in mechanical and adhesive properties. Polymers 2023, 15, 386. [Google Scholar] [CrossRef] [PubMed]
- Bendjaouahdou, C.; Bensaad, S. Aging studies of a polypropylene and natural rubber blend. Int. J. Ind. Chem. 2018, 9, 345–352. [Google Scholar] [CrossRef]
- Mohamad, N.; Zainol, N.S.; Rahim, F.F.; Ab Maulod, H.E.; Abd Rahim, T.; Shamsuri, S.R.; Azam, M.; Yaakub, M.; Abdollah, M.F.B.; Abd Manaf, M.E. Mechanical and morphological properties of polypropylene/epoxidized natural rubber blends at various mixing ratio. Procedia Eng. 2013, 68, 439–445. [Google Scholar] [CrossRef]
- Saowapark, T.; Amphaiphan, U.; Chaichana, E.; Wongwitthayakool, P. Enhancing properties of deproteinized natural rubber with rice husk ash silica for use as a dental material. Key Eng. Mater. 2016, 675–676, 564–568. [Google Scholar] [CrossRef]
- Hashim, A.S.; Ong, S.K. Natural Rubber and Its Derivatives; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Phinyocheep, P.; Tessanan, W. Natural rubber-based mechanical modifiers for poly (lactic acid). Int. J. Sci. Innov. Technol. 2020, 3, 86–94. [Google Scholar]
- Wissamitanan, T.; Dechwayukul, C.; Kalkornsurapranee, E.; Thongruang, W. Proper blends of biodegradable polycaprolactone and natural rubber for 3D printing. Polymers 2020, 12, 2416. [Google Scholar] [CrossRef] [PubMed]
- Lendvai, L. A novel preparation method of polypropylene/natural rubber blends with improved toughness. Polym. Int. 2021, 70, 298–307. [Google Scholar] [CrossRef]
- ASTM D790; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2003.
- Sastri, V.R. Plastics in Medical Devices: Properties, Requirements, and Applications; William Andrew: Norwich, NY, USA, 2021. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Hamer, S. A simple guide to using dental dam. Br. Dent. J. 2021, 230, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, S.R.; Wehman, T.C.; Lieberman, M.; Lieberman, F. Radiolucent Dental Dam Clamp. U.S. Patent 4,787,849, 29 November 1988. [Google Scholar]
- Jain, A.K.; Gupta, N.K.; Singhal, R.; Nagpal, A. Effect of dynamic crosslinking on crystallization and thermal degradation of polypropylene in polypropylene (PP)/ethylene–propylene DIENE (EPDM) rubber blends. Mater. Manuf. Process. 2002, 17, 415–431. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, G.; Wu, X.; Zhai, Z. The effect of high temperature annealing process on crystallization process of polypropylene, mechanical properties, and surface quality of plastic parts. J. Appl. Polym. Sci. 2015, 132, 42773. [Google Scholar] [CrossRef]
- Yu, W.; Wang, X.; Yin, X.; Ferraris, E.; Zhang, J. The effects of thermal annealing on the performance of material extrusion 3D printed polymer parts. Mater. Des. 2023, 226, 111687. [Google Scholar] [CrossRef]
- Schönhoff, L.M.; Mayinger, F.; Eichberger, M.; Reznikova, E.; Stawarczyk, B. 3D printing of dental restorations: Mechanical properties of thermoplastic polymer materials. J. Mech. Behav. Biomed. Mater. 2021, 119, 104544. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.M.; Howell, A.P. Reusability of autoclaved 3D printed polypropylene compared to a glass filled polypropylene composite. 3D Print. Med. 2021, 7, 20. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rangsantham, P.; Nonthiphalang, T.; Wongwitthayakool, P.; Sirisinha, C.; Krajangta, N.; Phumpatrakom, P. The Flexural Strength and the Effect of the Autoclave Sterilization of Polypropylene/Natural Rubber Blended Materials. Dent. J. 2024, 12, 361. https://doi.org/10.3390/dj12110361
Rangsantham P, Nonthiphalang T, Wongwitthayakool P, Sirisinha C, Krajangta N, Phumpatrakom P. The Flexural Strength and the Effect of the Autoclave Sterilization of Polypropylene/Natural Rubber Blended Materials. Dentistry Journal. 2024; 12(11):361. https://doi.org/10.3390/dj12110361
Chicago/Turabian StyleRangsantham, Paphavarin, Thitaporn Nonthiphalang, Panjaporn Wongwitthayakool, Chakrit Sirisinha, Nantawan Krajangta, and Panupat Phumpatrakom. 2024. "The Flexural Strength and the Effect of the Autoclave Sterilization of Polypropylene/Natural Rubber Blended Materials" Dentistry Journal 12, no. 11: 361. https://doi.org/10.3390/dj12110361
APA StyleRangsantham, P., Nonthiphalang, T., Wongwitthayakool, P., Sirisinha, C., Krajangta, N., & Phumpatrakom, P. (2024). The Flexural Strength and the Effect of the Autoclave Sterilization of Polypropylene/Natural Rubber Blended Materials. Dentistry Journal, 12(11), 361. https://doi.org/10.3390/dj12110361