Extracellular Phosphate Modulation and Polyphosphate Accumulation by Corynebacterium matruchotii and Streptococcus mutans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation
2.2. Phosphate and Calcium Uptake Quantification
2.3. Polyphosphate Visualization Using Fluorescence Microscopy
3. Results
3.1. Concentration Changes in Extracellular Orthophosphate and Calcium
3.2. Visualization of PolyP Inclusions
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breiland, A.A.; Flood, B.E.; Nikrad, J.; Bakarich, J.; Husman, M.; Rhee, T.H.; Jones, R.S.; Bailey, J.V. Polyphosphate-accumulating bacteria: Potential contributors to mineral dissolution in the oral cavity. Appl. Environ. Microbiol. 2018, 84, e02440-17. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Mandal, S.; Bailey, J.V.; Flood, B.E.; Jones, R.S. Fluoride and gallein inhibit polyphosphate accumulation by oral pathogen Rothia dentocariosa. Lett. Appl. Microbiol. 2023, 76, ovad017. [Google Scholar] [CrossRef] [PubMed]
- Kornberg, A.; Rao, N.N.; Ault-Riché, D. Inorganic Polyphosphate: A Molecule of Many Functions. Annu. Rev. Biochem. 1999, 68, 89–125. [Google Scholar] [CrossRef] [PubMed]
- Remonsellez, F.; Orell, A.; Jerez, C.A. Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: Possible role of polyphosphate metabolism. Microbiology 2006, 152, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Shankar, M.; Hossain, M.S.; Biswas, I. Pleiotropic Regulation of Virulence Genes in Streptococcus mutans by the Conserved Small Protein SprV. J. Bacteriol. 2017, 199, e00847-16. [Google Scholar] [CrossRef]
- Moye, Z.D.; Son, M.; Rosa-Alberty, A.E.; Zeng, L.; Ahn, S.-J.; Hagen, S.J.; Burne, R.A. Effects of Carbohydrate Source on Genetic Competence in Streptococcus mutans. Appl. Environ. Microbiol. 2016, 82, 4821–4834. [Google Scholar] [CrossRef]
- Klein, M.I.; Hwang, G.; Santos, P.H.S.; Campanella, O.H.; Koo, H. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front. Cell Infect. Microbiol. 2015, 5, 10. [Google Scholar] [CrossRef]
- Marsh, P.D. Are dental diseases examples of ecological catastrophes? Microbiology 2003, 149, 279–294. [Google Scholar] [CrossRef]
- Manning, S.; Xiao, J.; Li, Y.; Saraithong, P.; Paster, B.J.; Chen, G.; Wu, Y.; Wu, T.T. Novel Clustering Methods Identified Three Caries Status-Related Clusters Based on Oral Microbiome in Thai Mother–Child Dyads. Genes 2023, 14, 641. [Google Scholar] [CrossRef]
- Lee, E.; Park, S.; Um, S.; Kim, S.; Lee, J.; Jang, J.; Jeong, H.; Shin, J.; Kang, J.; Lee, S.; et al. Microbiome of Saliva and Plaque in Children According to Age and Dental Caries Experience. Diagnostics 2021, 11, 1324. [Google Scholar] [CrossRef]
- Aas, J.A.; Paster, B.J.; Stokes, L.N.; Olsen, I.; Dewhirst, F.E. Defining the Normal Bacterial Flora of the Oral Cavity. J. Clin. Microbiol. 2005, 43, 5721–5732. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ge, Y.; Saxena, D.; Caufield, P.W. Genetic Profiling of the Oral Microbiota Associated with Severe Early-Childhood Caries. J. Clin. Microbiol. 2007, 45, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Zhi, Q.; Jian, W.; Liu, Z.; Lin, H. The Oral Microbiome Impacts the Link between Sugar Consumption and Caries: A Preliminary Study. Nutrients 2022, 14, 3693. [Google Scholar] [CrossRef] [PubMed]
- Gross, E.L.; Beall, C.J.; Kutsch, S.R.; Firestone, N.D.; Leys, E.J.; Griffen, A.L. Beyond Streptococcus mutans: Dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS ONE 2012, 7, e47722. [Google Scholar] [CrossRef]
- Johansson, I.; Witkowska, E.; Kaveh, B.; Lif Holgerson, P.; Tanner, A.C.R. The Microbiome in Populations with a Low and High Prevalence of Caries. J. Dent. Res. 2015, 95, 80–86. [Google Scholar] [CrossRef]
- Kanasi, E.; Dewhirst, F.E.; Chalmers, N.I.; Kent, R.; Moore, A.; Hughes, C.V.; Pradhan, N.; Loo, C.Y.; Tanner, A.C.R. Clonal analysis of the microbiota of severe early childhood caries. Caries Res. 2010, 44, 485–497. [Google Scholar] [CrossRef]
- Al-Hebshi, N.N.; Baraniya, D.; Chen, T.; Hill, J.; Puri, S.; Tellez, M.; Hasan, N.A.; Colwell, R.R.; Ismail, A. Metagenome sequencing-based strain-level and functional characterization of supragingival microbiome associated with dental caries in children. J. Oral Microbiol. 2019, 11, 1557986. [Google Scholar] [CrossRef]
- He, J.; Tu, Q.; Ge, Y.; Qin, Y.; Cui, B.; Hu, X.; Wang, Y.; Deng, Y.; Wang, K.; Van Nostrand, J.D.; et al. Taxonomic and Functional Analyses of the Supragingival Microbiome from Caries-Affected and Caries-Free Hosts. Microb. Ecol. 2018, 75, 543–554. [Google Scholar] [CrossRef]
- Richards, V.P.; Alvarez, A.J.; Luce, A.R.; Bedenbaugh, M.; Mitchell, M.L.; Burne, R.A.; Nascimento, M.M. Microbiomes of Site-Specific Dental Plaques from Children with Different Caries Status. Infect. Immun. 2017, 85, e00106-17. [Google Scholar] [CrossRef]
- Norimatsu, Y.; Kawashima, J.; Takano-Yamamoto, T.; Takahashi, N. Nitrogenous compounds stimulate glucose-derived acid production by oral Streptococcus and Actinomyces. Microbiol. Immunol. 2015, 59, 501–506. [Google Scholar] [CrossRef]
- Aas, J.A.; Griffen, A.L.; Dardis, S.R.; Lee, A.M.; Olsen, I.; Dewhirst, F.E.; Leys, E.J.; Paster, B.J. Bacteria of dental caries in primary and permanent teeth in children and young adults. J. Clin. Microbiol. 2008, 46, 1407–1417. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, M.M.; Alvarez, A.J.; Huang, X.; Hanway, S.; Perry, S.; Luce, A.; Richards, V.P.; Burne, R.A. Arginine Metabolism in Supragingival Oral Biofilms as a Potential Predictor of Caries Risk. JDR Clin. Transl. Res. 2019, 4, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, M.M.; Gordan, V.V.; Garvan, C.W.; Browngardt, C.M.; Burne, R.A. Correlations of oral bacterial arginine and urea catabolism with caries experience. Oral Microbiol. Immunol. 2009, 24, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Bonet, A.; Kaufman, G.; Yang, Y.; Wong, C.; Jackson, A.; Huyang, G.; Bowen, R.; Sun, J. Preparation of Dental Resins Resistant to Enzymatic and Hydrolytic Degradation in Oral Environments. Biomacromolecules 2015, 16, 3381–3388. [Google Scholar] [CrossRef] [PubMed]
- Valdebenito, B.; Tullume-Vergara, P.O.; Gonzalez, W.; Kreth, J.; Giacaman, R.A. In silico analysis of the competition between Streptococcus sanguinis and Streptococcus mutans in the dental biofilm. Mol. Oral Microbiol. 2018, 33, 168–180. [Google Scholar] [CrossRef]
- Huang, X.; Palmer, S.R.; Ahn, S.-J.; Richards, V.P.; Williams, M.L.; Nascimento, M.M.; Burne, R.A. A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans. Appl. Environ. Microbiol. 2016, 82, 2187–2201. [Google Scholar] [CrossRef]
- Banas, J.A.; Zhu, M.; Dawson, D.V.; Blanchette, D.R.; Drake, D.R.; Gu, H.; Frost, R.; McCaulley, G.; Levy, S.M. Acidogenicity and acid tolerance of Streptococcus oralis and Streptococcus mitis isolated from plaque of healthy and incipient caries teeth. J. Oral Microbiol. 2016, 8, 32940. [Google Scholar] [CrossRef]
- Philip, N.; Suneja, B.; Walsh, L.J. Ecological Approaches to Dental Caries Prevention: Paradigm Shift or Shibboleth? Caries Res. 2018, 52, 153–165. [Google Scholar] [CrossRef]
- Wilson, R.F.; Ashley, F.P. The relationship between the biochemical composition of dental plaque from both approximal and free smooth surfaces of teeth and subsequent 3-year caries increment in adolescents. Arch. Oral Biol. 1990, 35, 933–937. [Google Scholar] [CrossRef]
- Cury, J.A.; Rebello, M.A.B.; Del Bel Cury, A.A. In situ Relationship between Sucrose Exposure and the Composition of Dental Plaque. Caries Res. 1997, 31, 356–360. [Google Scholar] [CrossRef]
- Nautiyal Shekhar, C. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Luoma, H. Uptake of phosphate by caries-active and caries-inactive streptococci. Arch. Oral Biol. 1968, 13, 1331-IN9. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.M.A.; Markowitz, V.M.; Chu, K.; Palaniappan, K.; Szeto, E.; Pillay, M.; Ratner, A.; Huang, J.; Andersen, E.; Huntemann, M.; et al. IMG/M: Integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 2017, 45, D507–D516. [Google Scholar] [CrossRef] [PubMed]
- Dewhirst, F.E.; Chen, T.; Izard, J.; Paster, B.J.; Tanner, A.C.R.; Yu, W.-H.; Lakshmanan, A.; Wade, W.G. The human oral microbiome. J. Bacteriol. 2010, 192, 5002–5017. [Google Scholar] [CrossRef] [PubMed]
- Sulyanto, R.M.; Thompson, Z.A.; Beall, C.J.; Leys, E.J.; Griffen, A.L. The Predominant Oral Microbiota Is Acquired Early in an Organized Pattern. Sci. Rep. 2019, 9, 10550. [Google Scholar] [CrossRef]
- Herrero, E.R.; Slomka, V.; Bernaerts, K.; Boon, N.; Hernandez-Sanabria, E.; Passoni, B.B.; Quirynen, M.; Teughels, W. Antimicrobial effects of commensal oral species are regulated by environmental factors. J. Dent. 2016, 47, 23–33. [Google Scholar] [CrossRef]
- Hansen, H.P.; Koroleff, E. Determination of Nutrients; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Tijssen, J.P.F.; Beekes, H.W.; Van Steveninck, J. Localization of polyphosphates in Saccharomyces fragilis, as revealed by 4′,6-diamidino-2-phenylindole fluorescence. BBA Mol. Cell Res. 1982, 721, 394–398. [Google Scholar] [CrossRef]
- Simón-Soro, A.; Guillen-Navarro, M.; Mira, A. Metatranscriptomics reveals overall active bacterial composition in caries lesions. J. Oral Microbiol. 2014, 6, 25443. [Google Scholar] [CrossRef]
- Van Veen, H.W.; Abee, T.; Kortstee, G.J.J.; Konings, W.N.; Zehnder, A.J.B. Mechanism and energetics of the secondary phosphate transport system of Acinetobacter johnsonii 210A. J. Biol. Chem. 1993, 268, 19377–19383. [Google Scholar] [CrossRef]
- Mino, T.; van Loosdrecht, M.C.M.; Heijnen, J.J. Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res. 1998, 32, 3193–3207. [Google Scholar] [CrossRef]
- Bailey, J.V.; Joye, S.B.; Kalanetra, K.M.; Flood, B.E.; Corsetti, F.A. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature 2006, 445, 198. [Google Scholar] [CrossRef] [PubMed]
- Goldhammer, T.; Brüchert, V.; Ferdelman, T.G.; Zabel, M. Microbial sequestration of phosphorus in anoxic upwelling sediments. Nat. Geosci. 2010, 3, 557. [Google Scholar] [CrossRef]
- Rao, N.N.; Gómez-García, M.R.; Kornberg, A. Inorganic Polyphosphate: Essential for Growth and Survival. Annu. Rev. Biochem. 2009, 78, 605–647. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, M.P.; Eagles, L.; Hooley, P.; Brown, M.R.W. Most bacteria synthesize polyphosphate by unknown mechanisms. Microbiology 2014, 160, 829–831. [Google Scholar] [CrossRef]
- Loesche, W.J. Chemotherapy of dental plaque infections. Oral Sci. Rev. 1976, 9, 65–107. [Google Scholar]
- Banas, J.A. Walter loesche-a maverick in translational research in dentistry. J. Dent. Res. 2009, 88, 1092–1095. [Google Scholar] [CrossRef]
- Loesche, W.J. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 1986, 50, 353–380. [Google Scholar] [CrossRef]
- Brown, M.R.W.; Kornberg, A. Inorganic polyphosphate in the origin and survival of species. Proc. Natl. Acad. Sci. USA 2004, 101, 16085–16087. [Google Scholar] [CrossRef]
- Liebsch, C.; Pitchika, V.; Pink, C.; Samietz, S.; Kastenmüller, G.; Artati, A.; Suhre, K.; Adamski, J.; Nauck, M.; Völzke, H.; et al. The Saliva Metabolome in Association to Oral Health Status. J. Dent. Res. 2019, 98, 642–651. [Google Scholar] [CrossRef]
- Ennever, J. Intracellular Calcification by Oral Filamentous Microorganisms. J. Periodontol. 1960, 31, 304–307. [Google Scholar] [CrossRef]
- Barrett, S.L.; Cookson, B.T.; Carlson, L.C.; Bernard, K.A.; Coyle, M.B. Diversity within reference strains of Corynebacterium matruchotii includes Corynebacterium durum and a novel organism. J. Clin. Microbiol. 2001, 39, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Takazoe, I.; Itoyama, T. Analytical Electron Microscopy of Bacterionema matruchotii Calcification. J. Dent. Res. 1980, 59, 1090–1094. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.P.; Torell, J.A.; Hunter, R.E. Bacterial Associated Porcine Heterograft Heart Valve Calcification. Am. J. Cardiol. 1984, 53, 370–372. [Google Scholar] [CrossRef] [PubMed]
- Boyan, B.D.; Landis, W.J.; Knight, J.; Dereszewski, G.; Zeagler, J. Microbial hydroxyapatite formation as a model of proteolipid-dependent membrane-mediated calcification. Scanning Electron Microsc. 1984, 1793–1800. [Google Scholar]
- Moorer, W.R.; Ten Cate, J.M.; Buijs, J.F. Calcification of a Cariogenic Streptococcus and of Corynebacterium (Bacterionema) matruchotii. J. Dent. Res. 1993, 72, 1021–1026. [Google Scholar] [CrossRef]
- Ooi, S.W.; Smillie, A.C.; Kardos, T.B. Intracellular mineralization of Bacterionema matruchotii. Can. J. Microbiol. 1981, 27, 267–270. [Google Scholar] [CrossRef]
- Rose, R.K.; Dibdin, G.H. Calcium and water diffusion in single-species model bacterial plaques. Arch. Oral Biol. 1995, 40, 385–391. [Google Scholar] [CrossRef]
- Oliverio, A.M.; Bissett, A.; McGuire, K.; Saltonstall, K.; Turner, B.L.; Fierer, N. The Role of Phosphorus Limitation in Shaping Soil Bacterial Communities and Their Metabolic Capabilities. MBio 2020, 11, 01718-20. [Google Scholar] [CrossRef]
- Gangola, P.; Rosen, B.P. Maintenance of intracellular calcium in Escherichia coli. J. Biol. Chem. 1987, 262, 12570–12574. [Google Scholar] [CrossRef]
- McCleary, W.R. Molecular Mechanisms of Phosphate Homeostasis in Escherichia coli. In Escherichia coli-Recent Advances on Physiology, Pathogenesis and Biotechnological Applications; Samie, A., Ed.; IntechOpen: Rijeka, Croatia, 2017; pp. 333–335. ISBN 978-953-51-3330-8. [Google Scholar]
- Akbari, A.; Wang, Z.; He, P.; Wang, D.; Lee, J.; Han, I.L.; Li, G.; Gu, A.Z. Unrevealed roles of polyphosphate-accumulating microorganisms. Microb. Biotechnol. 2021, 14, 82–87. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghose, D.; Jones, R.S. Extracellular Phosphate Modulation and Polyphosphate Accumulation by Corynebacterium matruchotii and Streptococcus mutans. Dent. J. 2024, 12, 366. https://doi.org/10.3390/dj12110366
Ghose D, Jones RS. Extracellular Phosphate Modulation and Polyphosphate Accumulation by Corynebacterium matruchotii and Streptococcus mutans. Dentistry Journal. 2024; 12(11):366. https://doi.org/10.3390/dj12110366
Chicago/Turabian StyleGhose, Debarati, and Robert S. Jones. 2024. "Extracellular Phosphate Modulation and Polyphosphate Accumulation by Corynebacterium matruchotii and Streptococcus mutans" Dentistry Journal 12, no. 11: 366. https://doi.org/10.3390/dj12110366
APA StyleGhose, D., & Jones, R. S. (2024). Extracellular Phosphate Modulation and Polyphosphate Accumulation by Corynebacterium matruchotii and Streptococcus mutans. Dentistry Journal, 12(11), 366. https://doi.org/10.3390/dj12110366