Gingival Enlargement Associated with Orthodontics Appliance Increases Protein Carbonylation and Alters Phosphorylation of Salivary Proteome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Donors
- ○
- Young subjects between 17 and 22 years old.
- ○
- Subjects with orthodontic appliances.
- ○
- Subjects presenting some degree of gingival enlargement.
- ○
- Young subjects between 17 and 25 years old.
- ○
- Subjects without orthodontic appliances.
- ○
- Subjects without gingival enlargement.
- ○
- Current or recent use of medications, such as anticonvulsants (e.g., phenytoin), immunosuppressants (e.g., cyclosporine), and calcium channel blockers.
- ○
- Alcohol consumption.
- ○
- Salivary dysfunctions.
- ○
- O’Leary index greater than 20%.
2.2. Saliva Collection
2.3. Extraction and Quantification of Salivary Proteins
2.4. Determination of Phosphorylated Proteins’ Profiles
2.5. Quantitation of Carbonylated Proteins
2.6. Identification of Phosphorylated Proteins by LC-MS
2.7. Statistical Analysis
3. Results
3.1. Determination of Phosphorylated Proteins’ Profiles
3.2. Quantitation of Carbonyl Index by Dot Blot
3.3. Identification of Phosphorylated Proteins
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agrawal, A.A. Gingival enlargements: Differential diagnosis and review of literature. World J. Clin. Cases 2018, 57, 342–351. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sabarudin, M.A.; Taib, H.; Wan Mohamad, W.M. Refining the Mechanism of Drug-Influenced Gingival Enlargement and Its Management. Cureus 2022, 14, e25009. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ragaei, A.; Abd, R. Gingival Overgrowth: Drug-induced versus Hereditary and Idiopathic. Cosmetol. Oro Facial Surg. 2017, 3, 1–7. [Google Scholar]
- Zanatta, F.B.; Ardenghi, T.M.; Antoniazzi, R.P.; Pinto, T.M.P.; Rösing, C.K. Association between gingivitis and anterior gingival enlargement in subjects undergoing fixed orthodontic treatment. Dent. Press J. Orthod. 2014, 19, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Orozco-Páez, J.; Rodríguez-Cavallo, E.; Díaz-Caballero, A.; Méndez-Cuadro, D. Quantification of matrix metalloproteinases MMP-8 and MMP-9 in gingival overgrowth. Saudi Dent. J. 2021, 33, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Drăghici, E.C.; Crăiţoiu, Ş.; Mercuţ, V.; Scrieciu, M.; Popescu, S.M.; Diaconu, O.A.; Oprea, B.; Pascu, R.M.; CrăiŢoiu, M.M. Local cause of gingival overgrowth. Clinical and histological study. Rom. J. Morphol. Embryol. 2016, 57, 427–435. [Google Scholar]
- Osna, N.A.; Carter, W.G.; Ganesan, M.; Kirpich, I.A.; McClain, C.J.; Petersen, D.R.; Shearn, C.T.; Tomasi, M.L.; Kharbanda, K.K. Aberrant post-translational protein modifications in the pathogenesis of alcohol-induced liver injury. World J. Gastroenterol. 2016, 22, 6192–6200. [Google Scholar] [CrossRef]
- Dutta, H.; Jain, N. Post-translational modifications and their implications in cancer. Front. Oncol. 2023, 13, 1240115. [Google Scholar] [CrossRef] [PubMed]
- Aryal, B.; Rao, V.A. Specific protein carbonylation in human breast cancer tissue compared to adjacent healthy epithelial tissue. PLoS ONE 2018, 13, e0194164. [Google Scholar] [CrossRef]
- Salih, E.; Siqueira, W.L.; Helmerhorst, E.J.; Oppenheim, F.G. Large-scale phosphoproteome of human whole saliva using disulfide-thiol interchange covalent chromatography and mass spectrometry. Anal. Biochem. 2010, 407, 19–33. [Google Scholar] [CrossRef]
- Rendevski, V.; Aleksovski, B.; Mihajlovska Rendevska, A.; Hadzi-Petrushev, N.; Manusheva, N.; Shuntov, B.; Gjorgoski, I. Inflammatory and oxidative stress markers in intracerebral hemorrhage: Relevance as prognostic markers for quantification of the edema volume. Brain Pathol. 2023, 33, e13106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mnatsakanyan, R.; Shema, G.; Basik, M.; Batist, G.; Borchers, C.H.; Sickmann, A.; Zahedi, R.P. Detecting post-translational modification signatures as potential biomarkers in clinical mass spectrometry. Expert Rev. Proteom. 2018, 15, 515–535. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y.; Liu, H.; Che, Y.; Xu, Y.; E, L. Age-related variations of protein carbonyls in human saliva and plasma: Is saliva protein carbonyls an alternative biomarker of aging? Age 2015, 37, 45. [Google Scholar] [CrossRef] [PubMed]
- Choromańska, M.; Klimiuk, A.; Kostecka-Sochoń, P.; Wilczyńska, K.; Kwiatkowski, M.; Okuniewska, N.; Waszkiewicz, N.; Zalewska, A.; Maciejczyk, M. Antioxidant defence, oxidative stress and oxidative damage in saliva, plasma and erythrocytes of dementia patients. Can salivary AGE be a marker of dementia? Int. J. Mol. Sci. 2017, 18, 2205. [Google Scholar] [CrossRef] [PubMed]
- Buczko, P.; Zalewska, A.; Szarmach, I. Salivaand oxidative stress in oral cavity and in some systemic disorders. J. Physiol. Pharmacol. 2015, 66, 3–9. [Google Scholar] [PubMed]
- Ellis, J.S.; Seymour, R.A.; Robertson, P.; Butler, T.J.; Thomason, J.M. Photographic scoring of gingival overgrowth. J. Clin. Periodontol. 2001, 28, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ni, M.; Niu, C.; Zhu, X.; Zhao, T.; Zhu, Z.; Xuan, Y.; Cong, W. Simple detection of phosphoproteins in SDS-PAGE by quercetin. EuPA Open Proteom. 2014, 4, 156–164. [Google Scholar] [CrossRef]
- Wehr, N.B.; Levine, R.L. Quantitation of protein carbonylation by dot blot. Anal. Biochem. 2012, 423, 241–245. [Google Scholar] [CrossRef]
- Rodríguez-Cavallo, E.; Guarnizo-Méndez, J.; Yépez-Terrill, A.; Cárdenas-Rivero, A.; Díaz-Castillo, F.; Méndez-Cuadro, D. Protein carbonylation is a mediator in larvicidal mechanisms of Tabernaemontana cymosa ethanolic extract. J. King Saud. Univ.-Sci. 2019, 31, 464–471. [Google Scholar] [CrossRef]
- Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.G.; Ahn, B.W.; Shaltiel, S.; Stadtman, E.R. Determination of Carbonyl Content in Oxidatively Modified Proteins. Methods Enzymol. 1990, 186, 464–478. [Google Scholar] [PubMed]
- Sechi, S.; Chait, B.T. Modification of cysteine residues by alkylation. A tool in peptide mapping and protein identification. Anal. Chem. 1998, 70, 5150–5158. [Google Scholar] [CrossRef] [PubMed]
- Schulenberg, B.; Aggeler, R.; Beechem, J.M.; Capaldi, R.A.; Patton, W.F. Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J. Biol. Chem. 2003, 278, 27251–27255. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Low, T.Y.; Choong, L.Y.; Ray, R.S.; Tan, Y.L.; Toy, W.; Lin, Q.; Ang, B.K.; Wong, C.H.; Lim, S.; et al. Phosphoproteomics identified Endofin, DCBLD2, and KIAA0582 as novel tyrosine phosphorylation targets of EGF signaling and Iressa in human cancer cells. Proteomics 2007, 7, 2384–2397. [Google Scholar] [CrossRef]
- Abronzo, L.S.D.; Ghosh, P.M. eIF4E Phosphorylation in Prostate Cancer. Neoplasia 2018, 20, 563–573. [Google Scholar] [CrossRef]
- Walker, L.A.; Fullerton, D.A.; Buttrick, P.M. Contractile protein phosphorylation predicts human heart disease phenotypes. Am. J. Physiol. Circ. Physiol. 2013, 304, H1644–H1650. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Banks, A.S.; Estall, J.L.; Kajimura, S.; Bostrom, P.; Laznik, D.; Ruas, J.L.; Chalmers, M.J.; Kamenecka, T.M.; Bluher, M.; et al. Obesity-linked phosphorylation of PPARγ by cdk5 is a direct target of the anti-diabetic PPARγ ligands. Nature 2010, 466, 451–456. [Google Scholar] [CrossRef]
- Huq, N.L.; Myroforidis, H.; Cross, K.J.; Stanton, D.P.; Veith, P.D.; Ward, B.R.; Reynolds, E.C. The interactions of CPP-ACP with saliva. Int. J. Mol. Sci. 2016, 17, 915. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Podzimek, S.; Vondrackova, L.; Duskova, J.; Janatova, T.; Broukal, Z. Salivary Markers for Periodontal and General Diseases. Dis. Markers 2016, 2016, 9179632. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharma, A.; Pradeep, A.R.; Raghavendra, N.M.; Arjun, P.; Kathariya, R. Gingival crevicular fluid and serum cystatin c levels in periodontal health and disease. Dis. Markers 2012, 32, 101–107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pateel, D.G.S.; Gunjal, S.; Fong, L.F.; Hanapi, N.S.M. Association of Salivary Statherin, Calcium, and Proline-Rich Proteins on Oral Hygiene: A Cross-Sectional Study. Int. J. Dent. 2021, 2021, 1982083. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Topalov, N.E.; Mayr, D.; Scherer, C.; Chelariu-Raicu, A.; Beyer, S.; Hester, A.; Kraus, F.; Zheng, M.; Kaltofen, T.; Kolben, T.; et al. Actin Beta-Like 2 as a New Mediator of Proliferation and Migration in Epithelial Ovarian Cancer. Front. Oncol. 2021, 11, 713026. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghazanfar, S.; Fatima, I.; Aslam, M.; Musharraf, S.G.; Sherman, N.E.; Moskaluk, C.; Fox, J.W.; Akhtar, M.W.; Sadaf, S. Identification of actin beta-like 2 (ACTBL2) as novel, upregulated protein in colorectal cancer. J. Proteom. 2017, 152, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Wood, H. LONRF2 exerts protein quality control in ageing neurons. Nat. Rev. Neurol. 2023, 19, 573. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Johmura, Y.; Morimoto, S.; Doi, M.; Nakanishi, K.; Ozawa, M.; Tsunekawa, Y.; Inoue-Yamauchi, A.; Naruse, H.; Matsukawa, T.; et al. LONRF2 is a protein quality control ubiquitin ligase whose deficiency causes late-onset neurological deficits. Nat. Aging 2023, 3, 1001–1019. [Google Scholar] [CrossRef] [PubMed]
- Tóthová, L.; Celec, P. Oxidative stress and antioxidants in the diagnosis and therapy of periodontitis. Front. Physiol. 2017, 8, 1055. [Google Scholar] [CrossRef] [PubMed]
- Gümüş, P.; Emingil, G.; Öztürk, V.-Ö.; Belibasakis, G.N.; Bostanci, N. Oxidative stress markers in saliva and periodontal disease status: Modulation during pregnancy and postpartum. BMC Infect. Dis. 2015, 15, 261. [Google Scholar] [CrossRef]
- Tóthová, L.; Kamodyová, N.; Červenka, T.; Celec, P. Salivary markers of oxidative stress in oral diseases. Front. Cell. Infect. Microbiol. 2015, 5, 73. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Sousa, M.C.; Vieira, R.B.; Dos Santos, D.S.; Carvalho, C.A.; Camargo, S.E.; Mancini, M.N.; de Oliveira, L.D. Antioxidants and biomarkers of oxidative damage in the saliva of patients with Down’s syndrome. Arch. Oral Biol. 2015, 60, 600–605. [Google Scholar] [CrossRef]
- Tarboush, N.A.; Al Masoodi, O.; Al Bdour, S.; Sawair, F.; Hassona, Y. Antioxidant capacity and biomarkers of oxidative stress in saliva of khat-chewing patients: A case-control study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 127, 49–54. [Google Scholar] [CrossRef]
- Sezer, U.; Çiçek, Y.; Çanakçi, C.F. Increased salivary levels of 8-hydroxydeoxyguanosine may be a marker for disease activity for periodontitis. Dis. Markers 2012, 32, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Orozco-Páez, J.; Méndez-Rodríguez, M.A.; Rodríguez-Cavallo, E.; Díaz-Caballero, A.; Méndez-Cuadro, D. Protein carbonylation associated with nickel liberation in orthodontic gingival overgrowth. Arch. Oral Biol. 2021, 125, 105103. [Google Scholar] [CrossRef] [PubMed]
- Lettrichová, I.; Tóthová, L.; Hodosy, J.; Behuliak, M.; Celec, P. Variability of salivary markers of oxidative stress and antioxidant status in young healthy individuals. Redox Rep. 2016, 21, 24–30. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tóthová, L.; Celecová, V.; Celec, P. Salivary markers of oxidative stress and their relation to periodontal and dental status in children. Dis. Markers 2013, 34, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.A.; Manzano, C.; Alves, T.M.; Fiais, G.A.; Freitas, R.N.; de Lima Coutinho Mattera, M.S.; Dornelles, R.C.M.; Matsushita, D.H.; de Melo Stevanato Nakamune, A.C.; Chaves-Neto, A.H. Assessment of redox state and biochemical parameters of salivary glands in streptozotocin-induced diabetic male rats treated with mate tea (Ilex paraguariensis). Arch. Oral Biol. 2022, 143, 105551. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Gornitsky, M.; Geng, G.; Velly, A.M.; Chertkow, H.; Schipper, H.M. Diurnal variations in salivary protein carbonyl levels in normal and cognitively impaired human subjects. Age 2008, 30, 1–9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
N° | Master Protein Accessions | Master Protein Descriptions | Gel Band | Start–End | Phospho-Residue | Other Modification | Function * |
---|---|---|---|---|---|---|---|
A. Phosphoptides from healthy subjects | |||||||
1 | P04745; P19961 | Alpha-amylase 1/Alpha-amylase 2B | 9 | 319–352 | GHGAGGASILTFWDARLY(351)KMAVGFMLAHPYGFTR | 1xOxidation [M25] | Hydrolysis of (1→4)-alpha-D-glucosidic bonds in polysaccharides comprising three or more (1→4)-alpha-linked D-glucose units |
2 | Q1L5Z9 | LON peptidase N-terminal domain and RING finger protein 2 | 6 | 490–497 | LS(491)ELLASR | 1xPhospho [S2(100)] | It is believed to activate protein ligase activity. It is estimated to be located in the cytoplasm |
3 | Q8NHR7 | Telomere repeats-binding bouquet formation protein 2 | 6 | 184–214 | KFLGELHDFIPGTSGYLAYHVQNEINMSAIK | 2xPhospho [T/S/Y] | Meiosis-specific telomeres are associated with proteins located in meiotic telomeres and the inner nucleus; this is an important step in homologous synthesis and synapsis |
4 | Q9Y694 | Solute carrier family 22 member 7 | 6 | 49–71 | CALPGAPANFS(59)HQDVWLEAHLPR | 1xCarbamidomethyl [C1]; 1xPhospho [S11(100)] | Isoform 2 acts as a bidirectional multispecific transporter independent of Na+ |
5 | Q01518 | Adenylyl cyclase-associated protein 1 | 9 | 295–312 | SGPKPFSAPKPQTSPSPK | 1xPhospho [S/T] | It directly controls filament strength and plays a role in many developmental processes and morphologies, including mRNA localization and establishment of cell polarity |
B. Phosphoptides from subject with GE | |||||||
6 | P04745; P19961 | Alpha-amylase 1/Alpha-amylase 2B | 4 | 1–35 | MKFFLLLFTIGFCWAQYSPNTQQGRTSIVHLFEWR | 1xAcetyl [N-Term]; 1xCarbamidomethyl [C13]; 1xPhospho [T/S/Y]; 1xOxidation [M1] | Hydrolysis of (1→4)-alpha-D-glucosidic bonds in polysaccharides with three or more (1→4)-linked D-glucose units |
7 | P60712; P68032 | Actin, cytoplasmic 1/Actin, alpha cardiac muscle 1 | 5 | 51–61 | DSY(54)VGDEAQSK | Actin is a protein that is highly conserved and polymerizes to form filamentous networks within the cytoplasm of cells | |
8 | Q562R1 | Beta-actin-like protein 2 | 6, 10 | 317–327 | EIIT(320)LAPSTMK | 1xPhospho [T4]; 1xOxidation [M10] | Actin is a versatile protein that plays an important role in many cellular processes and is found in all eukaryotic cells |
9 | Q07973 | 1,25-dihydroxyvitamin D(3) 24-hydroxylase, mitochondrial | 1 | 252–280 | MMVT(255)PVELHKSL(262)NT(264)KVWQDHT(271)LAWDTIFK | 4xPhospho [T4; S11; T14; T21]; 2xOxidation [M1; M2] | Cytochrome P450 monooxygenase, vital for catabolism and vitamin D without calcium homeostasis |
10 | Q7RTU9 | Stereocilin OS=Homo sapiens | 1 | 913–927 | SLVNQSVQDGEEQVR | 1xPhospho [S] | It is necessary for the development of bilateral connections between the stereocilia of outer hair follicles that are involved in cell function, biogenesis, and response to stimuli |
11 | Q8IZL9 | Cyclin-dependent kinase 20 | 1 | 94–113 | HAQRPLAQAQVKS(106)Y(107)LQMLLK | Together with TBC1D32, it regulates primary ciliary formation by connecting the ciliary membrane assembly to the axoneme and makes GLI2 productive in response to SHH signaling. It also plays a role in cell growth and activates CDK2, a key kinase in cell regulation, through phosphorylation of the threonine residue ‘Thr-160′ | |
12 | Q12906 | Interleukin enhancer-binding factor 3 | 4 | 128–143 | VADNLAIQLAAVT(140)EDK | RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs). Participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3′-UTR of target mRNAs | |
13 | Q9NTX9 | Protein FAM217B OS=Homo sapiens | 4 | 300–316 | ST(301)KLQRWDLS(309)GSGSSSK | N/A | |
C. Phosphoptides from both subject groups | |||||||
14 | P04745; P19961 | Alpha-amylase 1/Alpha-amylase 2B | 1, 3, 4, 8, 9 | 158–173 | TGSGDIENY(166)NDATQVR | RNA binding proteins are crucial for RNA biogenesis (circRNA) and participate in various transcriptional and post-transcriptional processes. It binds to poly-U elements and AU-rich elements (AREs) found in the 3′ UTR of mRNAs | |
15 | 2, 3, 4, 8, 9 | 108–139 | IYVDAVINHMSGNAVSAGTSSTCGSYFNPGSR | 1xCarbamidomethyl [C23]; 1xPhospho [T/S]; 1xOxidation [M10] | |||
16 | P13796 | Plastin-2 | 1, 2, 6, 7 | 4–15 | GS(5)VSDEEMoMoELR | 2xOxidation [M8; M9] | An actin-binding protein involved in activating T-cells in response to co-stimulation via TCR/CD3, CD2, or CD28. It regulates the cell surface expression of IL2RA/CD25 and CD69 |
17 | P42680 | Tyrosine-protein kinase Tec | 3, 4, 8, 9 | 569–580 | YTNYEVVTMVTR | 1xPhospho [Y/T]; 1xOxidation [M9] | A non-receptor tyrosine kinase involved in signal transduction from various receptors, contributing to multiple downstream pathways, including the regulation of the actin cytoskeleton |
18 | P60712; P68032 | Adenylyl cyclase-associated protein 1 | 5, 10 | 360–372 | QEYDESGPSIVHR | 1xPhospho [Y/S] | Directly influences filament dynamics and is involved in numerous intricate developmental and morphological processes, such as mRNA localization and the establishment of cell polarity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez Arrieta, Z.; Rodríguez-Cavallo, E.; Méndez-Cuadro, D. Gingival Enlargement Associated with Orthodontics Appliance Increases Protein Carbonylation and Alters Phosphorylation of Salivary Proteome. Dent. J. 2024, 12, 208. https://doi.org/10.3390/dj12070208
Lopez Arrieta Z, Rodríguez-Cavallo E, Méndez-Cuadro D. Gingival Enlargement Associated with Orthodontics Appliance Increases Protein Carbonylation and Alters Phosphorylation of Salivary Proteome. Dentistry Journal. 2024; 12(7):208. https://doi.org/10.3390/dj12070208
Chicago/Turabian StyleLopez Arrieta, Zulieth, Erika Rodríguez-Cavallo, and Darío Méndez-Cuadro. 2024. "Gingival Enlargement Associated with Orthodontics Appliance Increases Protein Carbonylation and Alters Phosphorylation of Salivary Proteome" Dentistry Journal 12, no. 7: 208. https://doi.org/10.3390/dj12070208
APA StyleLopez Arrieta, Z., Rodríguez-Cavallo, E., & Méndez-Cuadro, D. (2024). Gingival Enlargement Associated with Orthodontics Appliance Increases Protein Carbonylation and Alters Phosphorylation of Salivary Proteome. Dentistry Journal, 12(7), 208. https://doi.org/10.3390/dj12070208