Multibraided Fixed Retainers with Different Diameters after Magnetic Resonance Imaging (MRI): In Vitro Study Investigating Temperature Changes and Bonding Efficacy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Temperature Test and MRI
2.2. Shear Bond Strength (SBS) Test
2.3. ARI
2.4. Statistical Analysis
3. Results
3.1. Temperature Test
3.2. SBS Test
3.3. ARI Test
3.4. Linear Regressions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elison, J.M.; Leggitt, V.L.; Thomson, M.; Oyoyo, U.; Wycliffe, N.D. Influence of common orthodontic appliances on the diagnostic quality of cranial magnetic resonance images. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Hasanin, M.; Kaplan, S.E.F.; Hohlen, B.; Lai, C.; Nagshabandi, R.; Zhu, X.; Al-Jewair, T. Effects of orthodontic appliances on the diagnostic capability of magnetic resonance imaging in the head and neck region: A systematic review. Int. Orthod. 2019, 17, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Kucera, J.; Marek, I. Unexpected complications associated with mandibular fixed retainers: A retrospective study. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, H.; Xia, W.; He, F.; Guo, Y. Orthodontic retreatment need and related self-perceived factors among contemporary college freshmen in China. J. Clin. Pediatr. Dent. 2023, 47, 74–84. [Google Scholar] [PubMed]
- Okano, Y.; Yamashiro, M.; Kaneda, T.; Kasai, K. Magnetic resonance imaging diagnosis of the temporomandibular joint in patients with orthodontic appliances. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2003, 95, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Görgülü, S.; Ayyildiz, S.; Kamburoglu, K.; Gökçe, S.; Ozen, T. Effect of orthodontic brackets and different wires on radiofrequency heating and magnetic field interactions during 3-T MRI. Dentomaxillofac. Radiol. 2014, 43, 20130356. [Google Scholar] [CrossRef] [PubMed]
- Dalili Kajan, Z.; Khademi, J.; Alizadeh, A.; Babaei Hemmaty, Y.; Atrkar Roushan, Z. A comparative study of metal artifacts from common metal orthodontic brackets in magnetic resonance imaging. Imaging Sci. Dent. 2015, 45, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Chockattu, S.J.; Suryakant, D.B.; Thakur, S. Unwanted effects due to interactions between dental materials and magnetic resonance imaging: A review of the literature. Restor. Dent. Endod. 2018, 43, e39. [Google Scholar] [CrossRef] [PubMed]
- Shalish, M.; Dykstein, N.; Friedlander-Barenboim, S.; Ben-David, E.; Gomori, J.M.; Chaushu, S. Influence of common fixed retainers on the diagnostic quality of cranial magnetic resonance images. Am. J. Orthod. Dentofac. Orthop. 2015, 147, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Fazal, A.; Khattak, O.; Chaudhary, F.A.; Hyder, M.; Javaid, M.M.; Iqbal, A.; Albhiran, H.M.; Migdadi, F.H.; Ghawanmeh, A.M.; Bader, A.K.; et al. Barriers and challenges faced by orthodontists in providing orthodontic care and implementing new innovative technologies in the field of orthodontics among children and adults: A qualitative study. J. Clin. Pediatr. Dent. 2023, 47, 80–85. [Google Scholar]
- Degrazia, F.W.; Genari, B.; Ferrazzo, V.A.; Santos-Pinto, A.D.; Grehs, R.A. Enamel Roughness Changes after Removal of Orthodontic Adhesive. Dent. J. 2018, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Sfondrini, M.F.; Preda, L.; Calliada, F.; Carbone, L.; Lungarotti, L.; Bernardinelli, L.; Gandini, P.; Scribante, A. Magnetic Resonance Imaging and Its Effects on Metallic Brackets and Wires: Does It Alter the Temperature and Bonding Efficacy of Orthodontic Devices? Materials 2019, 12, 3971. [Google Scholar] [CrossRef]
- Wylezinska, M.; Pinkstone, M.; Hay, N.; Scott, A.D.; Birch, M.J.; Miquel, M.E. Impact of orthodontic appliances on the quality of craniofacial anatomical magnetic resonance imaging and real-time speech imaging. Eur. J. Orthod. 2015, 37, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Miyata, K.; Abe, Y.; Ishigami, T. Radiofrequency heating of metallic dental devices during 3.0 T MRI. Dentomaxillofac. Radiol. 2013, 42, 20120234. [Google Scholar] [CrossRef] [PubMed]
- Regier, M.; Kemper, J.; Kaul, M.G.; Feddersen, M.; Adam, G.; Kahl-Nieke, B.; Klocke, A. Radiofrequency-induced heating near fixed orthodontic appliances in high field MRI systems at 3.0 Tesla. J. Orofac. Orthop. 2009, 70, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Sfondrini, M.F.; Gallo, S.; Pascadopoli, M.; Rizzi, C.; Boldrini, A.; Santagostini, S.; Anemoni, L.; Gorone, M.S.P.; Preda, L.; Gandini, P.; et al. Effect of Magnetic Resonance Imaging at 1.5 T and 3 T on Temperature and Bond Strength of Orthodontic Bands with Welded Tubes: An In Vitro Study. Materials 2023, 16, 651. [Google Scholar] [CrossRef] [PubMed]
- Juerchott, A.; Roser, C.J.; Saleem, M.A.; Nittka, M.; Lux, C.J.; Heiland, S.; Bendszus, M.; Hilgenfeld, T. Diagnostic compatibility of various fixed orthodontic retainers for head/neck MRI and dental MRI. Clin. Oral Investig. 2023, 27, 2375–2384. [Google Scholar] [CrossRef] [PubMed]
- Roser, C.J.; Hilgenfeld, T.; Saleem, M.A.; Rückschloß, T.; Heiland, S.; Bendszus, M.; Lux, C.J.; Juerchott, A. In vivo assessment of artefacts in MRI images caused by conventional twistflex and various fixed orthodontic CAD/CAM retainers. J. Orofac. Orthop. 2024, 85, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, K.; Nayak, R.; Ginjupalli, K. Comparative evaluation of a bioactive restorative material with resin modified glass ionomer for calcium-ion release and shear bond strength to dentin of primary teeth-an in vitro study. J. Clin. Pediatr. Dent. 2022, 46, 25–32. [Google Scholar] [PubMed]
- Scribante, A.; Sfondrini, M.F.; Broggini, S.; D’Allocco, M.; Gandini, P. Efficacy of Esthetic Retainers: Clinical Comparison between Multistranded Wires and Direct-Bond Glass Fiber-Reinforced Composite Splints. Int. J. Dent. 2011, 2011, 548356. [Google Scholar] [CrossRef] [PubMed]
- Sfondrini, M.F.; Cacciafesta, V.; Scribante, A.; De Angelis, M.; Klersy, C. Effect of blood contamination on shear bond strength of brackets bonded with conventional and self-etching primers. Am. J. Orthod. Dentofac. Orthop. 2004, 125, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Eliades, T.; Brantley, W.A. The inappropriateness of conventional orthodontic bond strength assessment protocols. Eur. J. Orthod. 2000, 22, 13–23. [Google Scholar] [CrossRef]
- Sfondrini, M.F.; Cacciafesta, V.; Scribante, A.; Klersy, C. Plasma arc versus halogen light curing of orthodontic brackets: A 12-month clinical study of bond failures. Am. J. Orthod. Dentofac. Orthop. 2004, 125, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Noorollahian, S.; Zarei, Z.; Sadeghalbanaei, L.; Pakzamir, K. The Effect of Bonding Surface Design on Shear Bond Strength of 3D-Printed Orthodontic Attachments. Int. J. Dent. 2023, 2023, 6697178. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, R.R.; Rafeeq, R.A. Evaluation of the Shear Bond Strength of Chitosan Nanoparticles-Containing Orthodontic Primer: An In Vitro Study. Int. J. Dent. 2023, 2023, 9246297. [Google Scholar] [CrossRef] [PubMed]
- Artun, J.; Bergland, S. Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am. J. Orthod. 1984, 85, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Poorsattar-Bejeh Mir, A.; Rahmati-Kamel, M. Should the orthodontic brackets always be removed prior to magnetic resonance imaging (MRI)? J. Oral Biol. Craniofac. Res. 2016, 6, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Ottl, P.; Lauer, H.C. Temperature response in the pulpal chamber during ultrahigh-speed tooth preparation with diamond burs of different grit. J. Prosthet. Dent. 1998, 80, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, A.; Dionysopoulos, D.; Strakas, D.; Kouros, P.; Kolokitha, O.E.; Tolidis, K. Temperature changes in the pulp chamber and bleaching gel during tooth bleaching assisted by diode laser (445 nm) using different power settings. Lasers Med. Sci. 2023, 38, 209. [Google Scholar] [CrossRef] [PubMed]
- Samson, R.S.; Varghese, E.; Uma, E.; Chandrappa, P.R. Evaluation of Bond Strength and Load Deflection Rate of Multi-stranded Fixed Retainer Wires: An In-Vitro Study. Contemp. Clin. Dent. 2018, 9, 10–14. [Google Scholar] [PubMed]
- Finnema, K.J.; Ozcan, M.; Post, W.J.; Ren, Y.; Dijkstra, P.U. In-vitro orthodontic bond strength testing: A systematic review and meta-analysis. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 615–622.e3. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, I.R. A Review of Direct Orthodontic Bonding. Br. J. Orthod. 1975, 2, 171–178. [Google Scholar] [CrossRef]
- Klocke, A.; Kemper, J.; Schulze, D.; Adam, G.; Kahl-Nieke, B. Magnetic field interactions of orthodontic wires during magnetic resonance imaging (MRI) at 1.5 Tesla. J. Orofac. Orthop. 2005, 66, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Klocke, A.; Kahl-Nieke, B.; Adam, G.; Kemper, J. Magnetic forces on orthodontic wires in high field magnetic resonance imaging (MRI) at 3 tesla. J. Orofac. Orthop. 2006, 67, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Różyło-Kalinowska, I.; Walawska, B.; Predko-Engel, A.; Jurkiewicz, E.; Urbanik, A. Magnetic resonance imaging in orthodontic patients: Guidelines of the Polish Orthodontic Society (PTO), the Polish Medical Radiological Society (PLTR), and the Polish Dental Association (PTS). J. Stomatol. 2019, 72, 1–3. [Google Scholar]
- Dobai, A.; Dembrovszky, F.; Vízkelety, T.; Barsi, P.; Juhász, F.; Dobó-Nagy, C. MRI compatibility of orthodontic brackets and wires: Systematic review article. BMC Oral Health. 2022, 22, 298. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.L.; Appenzeller, S.; Yasuda, C.L.; Pereira, F.R.; Zanardi, V.A.; Cendes, F. Artifacts in brain magnetic resonance imaging due to metallic dental objects. Med. Oral Patol. Oral Cir. Bucal. 2009, 14, E278–E282. [Google Scholar]
- Neela, P.K.; Tatikonda, V.K.; Syed, M.W.; Mamillapalli, P.K.; Sesham, V.M.; Keesara, S. Influence of orthodontic brackets and permanent retainers on the diagnostic image quality of MRI scans: A preliminary study. Dent. Med. Probl. 2021, 58, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Sonesson, M.; Al-Qabandi, F.; Månsson, S.; Abdulraheem, S.; Bondemark, L.; Hellén-Halme, K. Orthodontic appliances and MR image artefacts: An exploratory in vitro and in vivo study using 1.5-T and 3-T scanners. Imaging Sci. Dent. 2021, 51, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Wezel, J.; Kooij, B.J.; Webb, A.G. Assessing the MR compatibility of dental retainer wires at 7 Tesla. Magn. Reson. Med. 2014, 72, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
Group | Wire Diameter (“) | MRI Exposure |
---|---|---|
1 | 0.032 | Control (No MRI) |
2 | 0.032 | 1.5 T |
3 | 0.032 | 3 T |
4 | 0.040 | Control (No MRI) |
5 | 0.040 | 1.5 T |
6 | 0.040 | 3 T |
7 | 0.048 | Control (No MRI) |
8 | 0.048 | 1.5 T |
9 | 0.048 | 3 T |
1.5 T Parameters | T2-TSE Transverse | T1-TSE Transverse | T2-TSE Coronal | T1-TSE Transverse_ warp | T2-TSE Transverse_ warp | T2-FL 2D Hemo Transverse | Ep2d diff 7b-Value Transverse | T2-FLAIR Transverse | T1-VIBE 3D FS Transverse |
---|---|---|---|---|---|---|---|---|---|
FOV (mm) | 240 | 240 | 180 | 240 | 240 | 210 | 340 | 240 | 240 |
Voxel size (mm) | 0.5 × 0.5 × 3.0 | 0.5 × 0.5 × 3.0 | 0.6 × 0.6 × 2 | 0.5 × 0.5 × 3.0 | 0.5 × 0.5 × 3.0 | 0.5 × 0.5 × 3.0 | 1.1 × 1.1 × 4.0 | 0.5 × 0.5 × 3.0 | 0.6 × 0.6 × 0.6 |
Slice thickness | 3.0 | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | 4.0 | 3.0 | 0.6 |
Slices | 60 | 60 | 48 | 60 | 60 | 45 | 30 | 20 | / |
TE (ms) | 108 | 8.6 | 79 | 8.6 | 110 | 25 | 81 | 94 | 2.46 |
TR (ms) | 5640 | 739.0 | 8830 | 739.0 | 6280 | 1440 | 9700 | 4860 | 5.35 |
Scan time (min:s) | 03:36 | 02:16 | 02:49 | 02:16 | 04:00 | 06:29 | 09:03 | 07:27 | 04:32 |
3 T Parameters | T2-TSE Transverse | T1-TSE Axial | T1-TSE Coronal | T2-FL 2D Hemo Axial | Ep2d diff 7b-Value Transverse | T2-TSE Transverse_ warp | T1-TSE Transverse_ warp | T2-FLAIR Axial | T1-VIBE 3D FS Axial |
---|---|---|---|---|---|---|---|---|---|
FOV (mm) | 240 | 240 | 180 | 240 | 230 | 240 | 240 | 240 | 240 |
Voxel size (mm) | 0.5 × 0.5 × 3.0 | 0.3 × 0.3 × 3.0 | 0.6 × 0.6 × 2 | 0.5 × 0.5 × 3.0 | 1.1 × 1.1 × 4.0 | 0.8 × 0.8 × 3.0 | 0.5 × 0.5 × 3.0 | 0.5 × 0.5 × 3.0 | 0.6 × 0.6 × 0.6 |
Slice thickness | 3.0 | 3.0 | 2.0 | 3.0 | 4.0 | 3.0 | 3.0 | 3.0 | 0.6 |
Slices | 52 | 52 | 39 | 45 | 20 | 52 | 52 | 40 | |
TE (ms) | 104 | 10 | 75 | 12 | 58 | 94 | 8.1 | 90 | 2.48 |
TR (ms) | 6260 | 689 | 7630 | 801 | 3300 | 5550 | 541 | 8000 | 530 |
TIR (ms) | / | / | / | / | / | / | / | 2368 | |
Scan time (min:s) | 03:09 | 02:52 | 02:26 | 03:11 | 03:02 | 03:21 | 02:19 | 02:56 | 04:26 |
Diameter (“) | Power | Time | Mean | SD | Min | Mdn | Max | Significance * |
---|---|---|---|---|---|---|---|---|
0.032 | 1.5 T | T0 | 23.34 | 0.26 | 23.20 | 23.20 | 23.80 | A,B,C,E |
T1 | 23.70 | 0.26 | 23.30 | 23.80 | 24.00 | A,B,C,E | ||
3 T | T0 | 23.84 | 0.05 | 23.80 | 23.80 | 23.90 | A,B,E,F | |
T1 | 25.02 | 0.28 | 24.60 | 25.10 | 25.30 | G | ||
0.040 | 1.5 T | T0 | 23.38 | 0.31 | 23.00 | 23.30 | 23.70 | A,B,C,D,E |
T1 | 23.78 | 0.28 | 23.50 | 23.80 | 24.10 | A,E | ||
3 T | T0 | 23.28 | 0.19 | 23.00 | 23.30 | 23.50 | A,C | |
T1 | 24.40 | 0.34 | 23.90 | 24.60 | 24.70 | F | ||
0.048 | 1.5 T | T0 | 23.34 | 0.23 | 23.00 | 23.50 | 23.50 | A,B,C,E |
T1 | 23.88 | 0.24 | 23.50 | 24.00 | 24.10 | E,F | ||
3 T | T0 | 23.12 | 0.16 | 23.00 | 23.00 | 23.30 | C | |
T1 | 23.92 | 0.43 | 23.40 | 24.00 | 24.50 | E,F |
Diameter (“) | Mean | SD | Min | Mdn | Max | Significance * | p Value |
---|---|---|---|---|---|---|---|
0.032 | 0.77 | 0.53 | 0.00 | 0.75 | 1.50 | A | |
0.040 | 0.76 | 0.46 | 0.20 | 0.65 | 1.60 | A | |
0.048 | 0.67 | 0.30 | 0.30 | 0.55 | 1.20 | A | 0.96 |
Power | Mean | SD | Min | Mdn | Max | Significance * | p Value |
---|---|---|---|---|---|---|---|
1.5 T | 0.433 | 0.244 | 0 | 0.50 | 0.90 | A | |
3 T | 1.033 | 0.358 | 0.4 | 1.10 | 1.60 | B | <0.0001 |
Group | Diameter (“) | Power | Mean | SD | Min | Mdn | Max | Significance * |
---|---|---|---|---|---|---|---|---|
1 | 0.032 | Control | 16.01 | 6.47 | 5.92 | 13.39 | 29.17 | A |
2 | 0.032 | 1.5 T | 18.36 | 6.83 | 6.94 | 18.42 | 28.08 | A |
3 | 0.032 | 3 T | 15.89 | 7.37 | 5.62 | 15.56 | 27.86 | A |
4 | 0.040 | Control | 15.52 | 5.80 | 6.94 | 12.91 | 28.36 | A |
5 | 0.040 | 1.5 T | 20.21 | 10.62 | 7.45 | 17.81 | 53.09 | A |
6 | 0.040 | 3 T | 18.05 | 5.47 | 7.79 | 18.44 | 26.42 | A |
7 | 0.048 | Control | 19.77 | 6.73 | 8.95 | 20.15 | 33.55 | A |
8 | 0.048 | 1.5 T | 17.53 | 5.32 | 7.92 | 17.73 | 26.56 | A |
9 | 0.048 | 3 T | 15.04 | 5.85 | 4.74 | 15.99 | 24.10 | A |
Diameter (“) | Power | ARI = 0 | ARI = 1 | ARI = 2 | ARI = 3 |
---|---|---|---|---|---|
0.032 | No MR | 8 | 9 | 1 | 2 |
0.032 | 1.5 T | 11 | 7 | 1 | 1 |
0.032 | 3 T | 16 | 4 | 0 | 0 |
0.040 | No MR | 11 | 6 | 3 | 0 |
0.040 | 1.5 T | 14 | 5 | 1 | 0 |
0.040 | 3 T | 12 | 8 | 0 | 0 |
0.048 | No MR | 13 | 6 | 0 | 1 |
0.048 | 1.5 T | 14 | 4 | 2 | 0 |
0.048 | 3 T | 16 | 4 | 0 | 0 |
Dependent Variable | Independent Variable | p Value |
---|---|---|
Temperature | Diameter | 0.0224 * |
Time | <0.0001 * | |
Power | 0.0137 * | |
Temperature variation | Power | <0.0001 * |
Shear bond strength | Power | 0.497 |
Diameter | 0.653 | |
Temperature variation | 0.417 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sfondrini, M.F.; Pascadopoli, M.; Gandini, P.; Preda, L.; Sfondrini, D.; Bertino, K.; Rizzi, C.; Scribante, A. Multibraided Fixed Retainers with Different Diameters after Magnetic Resonance Imaging (MRI): In Vitro Study Investigating Temperature Changes and Bonding Efficacy. Dent. J. 2024, 12, 255. https://doi.org/10.3390/dj12080255
Sfondrini MF, Pascadopoli M, Gandini P, Preda L, Sfondrini D, Bertino K, Rizzi C, Scribante A. Multibraided Fixed Retainers with Different Diameters after Magnetic Resonance Imaging (MRI): In Vitro Study Investigating Temperature Changes and Bonding Efficacy. Dentistry Journal. 2024; 12(8):255. https://doi.org/10.3390/dj12080255
Chicago/Turabian StyleSfondrini, Maria Francesca, Maurizio Pascadopoli, Paola Gandini, Lorenzo Preda, Domenico Sfondrini, Karin Bertino, Cinzia Rizzi, and Andrea Scribante. 2024. "Multibraided Fixed Retainers with Different Diameters after Magnetic Resonance Imaging (MRI): In Vitro Study Investigating Temperature Changes and Bonding Efficacy" Dentistry Journal 12, no. 8: 255. https://doi.org/10.3390/dj12080255
APA StyleSfondrini, M. F., Pascadopoli, M., Gandini, P., Preda, L., Sfondrini, D., Bertino, K., Rizzi, C., & Scribante, A. (2024). Multibraided Fixed Retainers with Different Diameters after Magnetic Resonance Imaging (MRI): In Vitro Study Investigating Temperature Changes and Bonding Efficacy. Dentistry Journal, 12(8), 255. https://doi.org/10.3390/dj12080255