Glide Path in Endodontics: A Literature Review of Current Knowledge
Abstract
:1. Introduction
2. Literature Search
3. Discussion
3.1. Centering Ability and/or Root Canal Transportation
3.1.1. Comparison of the Centering Ability and Root Canal Transportation of Two or More Glide Path Rotary Ni-Ti Files
3.1.2. Analyzing the Centering Ability and Root Canal Transportation of Shaping Files after Glide Path Was Established
- Analyzing canal transportation of different shaping files with or without glide path established (n = 8);
- Comparing canal transportation of different shaping files after glide path was established (n = 8);
- Analyzing canal transportation of a shaping file after different glide path files were used (n = 5).
3.1.3. Topic Conclusions
3.2. Cyclic Fatigue Resistance
- In 2018, Özyürek et al. [63] compared the cyclic fatigue resistance of Reciproc (n = 60) and Reciproc Blue (n = 60) files in a simulated canal with a 60° curvature and a radius of 5 mm. Each group had new files (n = 20), files that prepared three root canals of mandibular molars without a glide path (n = 20), and files that prepared three root canals of mandibular molars with a previous glide path achieved with ProGlider (n = 20). The NCF was significantly higher for Reciproc Blue in all groups tested.
- In 2019, Uslu and Inan [64] compared the cyclic fatigue resistance of new WaveOne Primary files (n = 10) with files that previously prepared a J-shape acrylic block with no glide path (n = 10) or with a glide path established by Profile (n = 10) or ProGlider files (n = 10). The cyclic fatigue tests were conducted in a simulated canal with a 60° curvature and a radius of 5 mm and the NCF was recorded. New WaveOne files had significantly greater NCFs (741.36 ± 71.52) than the other three groups with a significant difference between the ProGlider + WaveOne group and the other two groups (668.18 ± 79.10 vs. 644.42 ± 81.97 and 605.28 ± 66.75).
- In 2020, Ates et al. [65] compared the cyclic fatigue resistance of the new XP Shapers (n = 32) at 1000 and 3000 rpm with those used for shaping four 3D printed root canals without a glide path (n = 32) or with a glide path established by #10, #15 and #20 K-files (n = 32). The cyclic fatigue tests were carried out in a simulated canal with a 75° curvature and a radius of 7.5 mm and the NCF and TTF were recorded. The 3000 rpm groups had higher NCFs (p < 0.05), and the 1000 rpm groups higher TTFs. No statistical difference was found between the groups regardless of whether the files were used at 1000 rpm or 3000 rpm with or without a glide path (p > 0.05).
- In 2023, Scherer et al. [66] compared the cyclic fatigue resistance of new WaveOne Gold Primary files (n = 6) with those used to prepare a mandibular molar with a glidepath established by K-files (n = 6) or WaveOne Gold Glider (n = 6). The cyclic fatigue tests were conducted in a simulated canal with a 60° curvature and a radius of 5 mm and the NCFs were recorded. No significant differences were found between groups; thus, they concluded that creating a glide path does not affect the cyclic fatigue resistance of reciprocating instruments.
3.3. Glide Path and Shaping Time
- The time needed to perform a glide path with rotary glide path files versus manual files;
- The time needed to establish a glide path with different rotary glide path files;
- The time of different shaping files to reach working length after different glide paths.
3.4. Tortional Stress Resistance
3.5. Apical Extrusion of Debris and/or Bacteria
3.6. Defects in Dentine Walls
3.7. File Separation
3.8. Postoperative Pain Assessment
3.9. Scouting Ability and Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schilder, H. Cleaning and Shaping the Root Canal. Dent. Clin. North Am. 1974, 18, 269–296. [Google Scholar] [CrossRef] [PubMed]
- PETERS, O. Current Challenges and Concepts in the Preparation of Root Canal Systems: A Review. J. Endod. 2004, 30, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Mullaney, T.P. Instrumentation of Finely Curved Canals. Dent. Clin. N. Am. 1979, 23, 575–592. [Google Scholar] [CrossRef] [PubMed]
- Goerig, A.C.; Michelich, R.J.; Schultz, H.H. Instrumentation of Root Canals in Molar Using the Step-down Technique. J. Endod. 1982, 8, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Roane, J.; Sabala, C.; Duncansonjr, M. The “Balanced Force” Concept for Instrumentation of Curved Canals. J. Endod. 1985, 11, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, F.; Araujo, J.A. Comparison of Three Instruments in the Preparation of Curved Root Canals. Dent. Traumatol. 1997, 13, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Walia, H.; Brantley, W.A.; Gerstein, H. An Initial Investigation of the Bending and Torsional Properties of Nitinol Root Canal Files. J. Endod. 1988, 14, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, E. Preparation of the Root Canal System. In Harty’s Endodontics in Clinical Practice; Chong, B.S., Ed.; Churchill Livingstone, Elsevier: Edinburgh, Scotland, 2017; pp. 23–41. [Google Scholar]
- Berutti, E.; Cantatore, G.; Castellucci, A.; Chiandussi, G.; Pera, F.; Migliaretti, G.; Pasqualini, D. Use of Nickel-Titanium Rotary PathFile to Create the Glide Path: Comparison with Manual Preflaring in Simulated Root Canals. J. Endod. 2009, 35, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Hulsmann, M.; Peters, O.A.; Dummer, P.M.H. Mechanical Preparation of Root Canals: Shaping Goals, Techniques and Means. Endod. Top. 2005, 10, 30–76. [Google Scholar] [CrossRef]
- Spanaki-Voreadi, A.P.; Kerezoudis, N.P.; Zinelis, S. Failure Mechanism of ProTaper Ni–Ti Rotary Instruments during Clinical Use: Fractographic Analysis. Int. Endod. J. 2006, 39, 171–178. [Google Scholar] [CrossRef]
- Martín, B.; Zelada, G.; Varela, P.; Bahillo, J.G.; Magán, F.; Ahn, S.; Rodríguez, C. Factors Influencing the Fracture of Nickel-Titanium Rotary Instruments. Int. Endod. J. 2003, 36, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Peters, O.A.; Peters, C.I.; Schönenberger, K.; Barbakow, F. ProTaper Rotary Root Canal Preparation: Assessment of Torque and Force in Relation to Canal Anatomy. Int. Endod. J. 2003, 36, 93–99. [Google Scholar] [CrossRef]
- Kobayashi, C.; Yoshioka, T.; Suda, H. A New Engine-Driven Canal Preparation System with Electronic Canal Measuring Capability. J. Endod. 1997, 23, 751–754. [Google Scholar] [CrossRef] [PubMed]
- Berutti, E.; Negro, A.; Lendini, M.; Pasqualini, D. Influence of Manual Preflaring and Torque on the Failure Rate of ProTaper Rotary Instruments. J. Endod. 2004, 30, 228–230. [Google Scholar] [CrossRef]
- West, J. Endodontic Update 2006. J. Esthet. Restor. Dent. 2006, 18, 280–300. [Google Scholar] [CrossRef]
- de Oliveira Alves, V.; da Silveira Bueno, C.E.; Cunha, R.S.; Pinheiro, S.L.; Fontana, C.E.; de Martin, A.S. Comparison among Manual Instruments and PathFile and Mtwo Rotary Instruments to Create a Glide Path in the Root Canal Preparation of Curved Canals. J. Endod. 2012, 38, 117–120. [Google Scholar] [CrossRef]
- Coelho, M.S.; Fontana, C.E.; Kato, A.S.; de Martin, A.S.; da Silveira Bueno, C.E. Effects of Glide Path on the Centering Ability and Preparation Time of Two Reciprocating Instruments. Iran. Endod. J. 2016, 11, 33–37. [Google Scholar] [PubMed]
- Gunes, B.; Yesildal Yeter, K. Effects of Different Glide Path Files on Apical Debris Extrusion in Curved Root Canals. J. Endod. 2018, 44, 1191–1194. [Google Scholar] [CrossRef] [PubMed]
- Bürklein, S.; Schäfer, E. Critical Evaluation of Root Canal Transportation by Instrumentation. Endod. Top. 2013, 29, 110–124. [Google Scholar] [CrossRef]
- West, J.D. The Endodontic Glidepath: “Secret to Rotary Safety”. Dent. Today 2010, 29, 86, 88, 90–93. [Google Scholar]
- Van der Vyver, P. Creating a Glide Path for Rotary NiTi Instruments: Part One. Int. Dent. SA 2010, 13, 46–53. [Google Scholar]
- Bergmans, L.; Van Cleynenbreugel, J.; Wevers, M.; Lambrechts, P. Mechanical Root Canal Preparation with NiTi Rotary Instruments: Rationale, Performance and Safety. Status Report for the American Journal of Dentistry. Am. J. Dent. 2001, 14, 324–333. [Google Scholar] [PubMed]
- Paleker, F.; van der Vyver, P.J. Comparison of Canal Transportation and Centering Ability of K-Files, ProGlider File, and G-Files: A Micro-Computed Tomography Study of Curved Root Canals. J. Endod. 2016, 42, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, n71, 372. [Google Scholar]
- Pasqualini, D.; Bianchi, C.C.; Paolino, D.S.; Mancini, L.; Cemenasco, A.; Cantatore, G.; Castellucci, A.; Berutti, E. Computed Micro-Tomographic Evaluation of Glide Path with Nickel-Titanium Rotary PathFile in Maxillary First Molars Curved Canals. J. Endod. 2012, 38, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Ajuz, N.C.C.; Armada, L.; Gonçalves, L.S.; Debelian, G.; Siqueira, J.F. Glide Path Preparation in S-Shaped Canals with Rotary Pathfinding Nickel-Titanium Instruments. J. Endod. 2013, 39, 534–537. [Google Scholar] [CrossRef] [PubMed]
- D’Amario, M.; Baldi, M.; Petricca, R.; De Angelis, F.; El Abed, R.; D’Arcangelo, C. Evaluation of a New Nickel-Titanium System to Create the Glide Path in Root Canal Preparation of Curved Canals. J. Endod. 2013, 39, 1581–1584. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, A. Modifications in Canal Anatomy of Curved Canals of Mandibular First Molars by Two Glide Path Instruments Using C BCT. J. Clin. Diagnostic Res. 2014, 11, ZC13. [Google Scholar] [CrossRef] [PubMed]
- Kirchhoff, A.L.; Chu, R.; Mello, I.; Garzon, A.D.P.; dos Santos, M.; Cunha, R.S. Glide Path Management with Single- and Multiple-Instrument Rotary Systems in Curved Canals: A Micro-Computed Tomographic Study. J. Endod. 2015, 41, 1880–1883. [Google Scholar] [CrossRef] [PubMed]
- Alfayate, R.P.; Mercade, M.; Rojas, J.V.; Luaña, R.E.; Pereda, A.A.; Algar, J.; Cabello, R.C. Comparison of PathFile and ProFinder Systems to Create a Glide Path in Curved Root Canals. Eur. Endod. J. 2018, 3, 61–65. [Google Scholar]
- Shalan, L.A.; Al-Huwaizi, H.F. Evaluation of Canal Transportation after Using Different Types Rotary Glide Path Files. Iran. Endod. J. 2018, 13, 565–568. [Google Scholar] [PubMed]
- van der Vyver, P.J.; Paleker, F.; Vorster, M.; de Wet, F.A. Micro-Computed Tomographic Evaluation of Two Single Rotary Glide Path Systems. Int. Endod. J. 2019, 52, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Nazari Moghadam, K.; Farajian Zadeh, N.; Labbaf, H.; Kavosi, A.; Farajian Zadeh, H. Negotiation, Centering Ability and Transportation of Three Glide Path Files in Second Mesiobuccal Canals of Maxillary Molars: A CBCT Assessment. Iran. Endod. J. 2019, 14, 47–51. [Google Scholar] [PubMed]
- Htun, P.H.; Ebihara, A.; Maki, K.; Kimura, S.; Nishijo, M.; Tokita, D.; Okiji, T. Comparison of Torque, Force Generation and Canal Shaping Ability between Manual and Nickel-Titanium Glide Path Instruments in Rotary and Optimum Glide Path Motion. Odontology 2020, 108, 188–193. [Google Scholar] [CrossRef]
- Aydın, Z.U.; Keskin, N.B.; Özyürek, T.; Geneci, F.; Ocak, M.; Çelik, H.H. Microcomputed Assessment of Transportation, Centering Ratio, Canal Area, and Volume Increase after Single-File Rotary and Reciprocating Glide Path Instrumentation in Curved Root Canals: A Laboratory Study. J. Endod. 2019, 45, 791–796. [Google Scholar] [CrossRef]
- Česaitienė, G.; Venskutonis, T.; Mačiulskienė, V.; Cicėnas, V.; Samaitis, V.; Jasiūnienė, E. Micro-Computed Tomography (Micro-CT) Evaluation of Effects of Different Rotary Glide Path Techniques on Canal Transportation and Centering in Curved Root Canals. Med. Sci. Monit. 2019, 25, 6351–6358. [Google Scholar] [CrossRef] [PubMed]
- Htun, P.H.; Ebihara, A.; Maki, K.; Kimura, S.; Nishijo, M.; Kyaw, M.S.; Okiji, T. Comparison of Torque, Screw-in Force, and Shaping Ability of Glide Path Instruments in Continuous Rotation and Optimum Glide Path Motion. J. Endod. 2021, 47, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Aflaki, S.; Boyerahmadi, E.; Talaei, A.; Safari, M.R.; Mohammadpour, M.; Mohammadi, N.; Adel, M. In Vitro Transportation of Curved Canals Following Glide Path Preparation by Path File and Scout RaCe Rotary Systems versus Manual Instrumentation Using Cone-Beam Computed Tomography. Front. Dent. 2020, 17, 30. [Google Scholar]
- Liu, J.-Y.; Zhou, Z.-X.; Tseng, W.-J.; Karabucak, B. Comparison of Canal Transportation and Centering Ability of Manual K-Files and Reciprocating Files in Glide Path Preparation: A Micro-Computed Tomography Study of Constricted Canals. BMC Oral Health 2021, 21, 83. [Google Scholar] [CrossRef]
- Aminsobhani, M.; Hamidzadeh, F.; Rezaei Avval, A.; Merrikhi, F.; Sadri, E. Evaluation of the Canal Transportation Following Glide Path Preparation with Different Rotary Systems: A Comparative Study. Sci. World J. 2022, 2022, 8087378. [Google Scholar] [CrossRef]
- Yeniçeri Özata, M.; Falakaloğlu, S.; Keleş, A.; Adıgüzel, Ö.; Gündoğar, M. Evaluation of Shaping Ability of Different Glide Path Instruments: A Micro-Computed Tomography Study. BMC Oral Health 2023, 23, 780. [Google Scholar] [CrossRef] [PubMed]
- Uroz-Torres, D.; González-Rodríguez, M.P.; Ferrer-Luque, C.M. Effectiveness of a Manual Glide Path on the Preparation of Curved Root Canals by Using Mtwo Rotary Instruments. J. Endod. 2009, 35, 699–702. [Google Scholar] [CrossRef]
- Berutti, E.; Paolino, D.S.; Chiandussi, G.; Alovisi, M.; Cantatore, G.; Castellucci, A.; Pasqualini, D. Root Canal Anatomy Preservation of WaveOne Reciprocating Files with or without Glide Path. J. Endod. 2012, 38, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Nazarimoghadam, K.; Daryaeian, M.; Ramazani, N. An in Vitro Comparison of Root Canal Transportation by Reciproc File with and without Glide Path. J. Dent. 2014, 11, 554–559. [Google Scholar]
- Zanette, F.; Grazziotin-Soares, R.; Flores, M.E.; Camargo Fontanella, V.R.; Gavini, G.; Barletta, F.B. Apical Root Canal Transportation and Remaining Dentin Thickness Associated with ProTaper Universal with and without PathFile. J. Endod. 2014, 40, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Elnaghy, A.M.; Elsaka, S.E. Evaluation of Root Canal Transportation, Centering Ratio, and Remaining Dentin Thickness Associated with ProTaper Next Instruments with and without Glide Path. J. Endod. 2014, 40, 2053–2056. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, A.; Nagar, N.; Sapra, V. Influence of the Glide Path on Various Parameters of Root Canal Prepared with WaveOne Reciprocating File Using Cone Beam Computed Tomography. Dent. Res. J. 2015, 12, 534–540. [Google Scholar]
- Yilmaz, A.; Kucukay, E.S.; Istektepe, M.; Sisli, S.N.; Ersev, H.; Karagoz-Kucukay, I. Comparison of the Shaping Ability of WaveOne Reciprocating Files with or without Glide Path in Simulated Curved S-Shaped Root Canals. J. Int. Soc. Prev. Community Dent. 2017, 7, S13–S17. [Google Scholar] [CrossRef] [PubMed]
- Keskin, C.; Sarıyılmaz, E.; Demiral, M. Shaping Ability of Reciproc Blue Reciprocating Instruments with or without Glide Path in Simulated S-Shaped Root Canals. J. Dent. Res. Dent. Clin. Dent. Prospect. 2018, 12, 63–67. [Google Scholar] [CrossRef]
- Bürklein, S.; Poschmann, T.; Schäfer, E. Shaping Ability of Different Nickel-Titanium Systems in Simulated S-Shaped Canals with and without Glide Path. J. Endod. 2014, 40, 1231–1234. [Google Scholar] [CrossRef]
- Hage, W.; Zogheib, C.; Bukiet, F.; Sfeir, G.; Khalil, I.; Gergi, R.; Naaman, A. Canal Transportation and Centring Ability of Reciproc and Reciproc Blue with or without Use of Glide Path Instruments: A CBCT Study. Eur. Endod. J. 2020, 5, 118–122. [Google Scholar] [PubMed]
- Biasillo, V.; Castagnola, R.; Colangeli, M.; Panzetta, C.; Minciacchi, I.; Plotino, G.; Staffoli, S.; Marigo, L.; Grande, N.M. Comparison of Shaping Ability of the Reciproc Blue and One Curve with or without Glide Path in Simulated S-Shaped Root Canals. Restor. Dent. Endod. 2022, 47, e3. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, O.; AbuMostafa, A. Effect of Glide Path and Coronal Flaring on the Centering Ability and Transportation of Root Canals: Micro-CT In Vitro Study. J. Contemp. Dent. Pract. 2021, 22, 1471–1476. [Google Scholar] [CrossRef] [PubMed]
- Falakaloğlu, S.; Iriboz, E. Comparison of Shaping Ability of T-Endo MUST and WaveOne Gold with Glide Path Instruments: An In Vitro Study. Turk. Klin. J. Dent. Sci. 2022, 28, 390–395. [Google Scholar] [CrossRef]
- Alovisi, M.; Pasqualini, D.; Scotti, N.; Carpegna, G.; Comba, A.; Bernardi, M.; Tutino, F.; Dioguardi, M.; Berutti, E. Micro-CT Evaluation of Rotary and Reciprocating Glide Path and Shaping Systems Outcomes in Maxillary Molar Curved Canals. Odontology 2022, 110, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Yang, Y.; Wan, J.; Xie, W.; Yang, R.; Yao, Y. Shaping Ability of Rotary and Reciprocating Single-File Systems in Combination with and without Different Glide Path Techniques in Simulated Curved Canals. J. Dent. Sci. 2022, 17, 1520–1527. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, G.M.; Sponchiado Junior, E.C.; Garrido, A.D.B.; Lia, R.C.C.; Garcia, L.D.F.R.; Marques, A.A.F. Apical Transportation, Centering Ability, and Cleaning Effectiveness of Reciprocating Single-File System Associated with Different Glide Path Techniques. J. Endod. 2015, 41, 2045–2049. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Wagle, S. Comparing the Centering Ability of Different Pathfinding Systems and Their Effect on Final Instrumentation by Hyflex CM. J. Endod. 2017, 43, 1868–1871. [Google Scholar] [CrossRef] [PubMed]
- Vorster, M.; van der Vyver, P.J.; Paleker, F. Canal Transportation and Centering Ability of WaveOne Gold in Combination with and without Different Glide Path Techniques. J. Endod. 2018, 44, 1430–1435. [Google Scholar] [CrossRef]
- Zheng, L.; Ji, X.; Li, C.; Zuo, L.; Wei, X. Comparison of Glide Paths Created with K-Files, PathFiles, and the ProGlider File, and Their Effects on Subsequent WaveOne Preparation in Curved Canals. BMC Oral Health 2018, 18, 152. [Google Scholar] [CrossRef]
- Alovisi, M.; Cemenasco, A.; Mancini, L.; Paolino, D.; Scotti, N.; Bianchi, C.C.; Pasqualini, D. Micro-CT Evaluation of Several Glide Path Techniques and ProTaper Next Shaping Outcomes in Maxillary First Molar Curved Canals. Int. Endod. J. 2017, 50, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Özyürek, T.; Uslu, G.; Yılmaz, K.; Gündoğar, M. Effect of Glide Path Creating on Cyclic Fatigue Resistance of Reciproc and Reciproc Blue Nickel-Titanium Files: A Laboratory Study. J. Endod. 2018, 44, 1033–1037. [Google Scholar] [CrossRef] [PubMed]
- Uslu, G.; İnan, U. Effect of Glide Path Preparation with PathFile and ProGlider on the Cyclic Fatigue Resistance of WaveOne Nickel-Titanium Files. Restor. Dent. Endod. 2019, 44, e22. [Google Scholar] [CrossRef] [PubMed]
- Ates, A.A.; Arican, B.; Ounsi, H.F. Influence of Rotational Speed and Glide Path on Cyclic Fatigue Resistance of XP-Endo Shaper. Niger. J. Clin. Pract. 2020, 23, 1443–1448. [Google Scholar] [CrossRef] [PubMed]
- Scherer, A.S.; Bier, C.A.S.; Vanni, J.R. Effect of Glide Path Instruments in Cyclic Fatigue Resistance of Reciprocating Instruments after Three Uses. Braz. Dent. J. 2023, 34, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.W.; Ha, J.-H.; Lee, C.-J.; El Abed, R.; Abu-Tahun, I.H.; Kim, H.-C. Effects of Pitch Length and Heat Treatment on the Mechanical Properties of the Glide Path Preparation Instruments. J. Endod. 2016, 42, 788–792. [Google Scholar] [CrossRef]
- Gambarini, G.; Plotino, G.; Sannino, G.; Grande, N.M.; Giansiracusa, A.; Piasecki, L.; da Silva Neto, U.X.; Al-Sudani, D.; Testarelli, L. Cyclic Fatigue of Instruments for Endodontic Glide Path. Odontology 2015, 103, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Sung, S.Y.; Ha, J.-H.; Kwak, S.-W.; Abed, R.E.; Byeon, K.; Kim, H.-C. Torsional and Cyclic Fatigue Resistances of Glide Path Preparation Instruments: G-File and PathFile. Scanning 2014, 36, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Capar, I.D.; Kaval, M.E.; Ertas, H.; Sen, B.H. Comparison of the Cyclic Fatigue Resistance of 5 Different Rotary Pathfinding Instruments Made of Conventional Nickel-Titanium Wire, M-Wire, and Controlled Memory Wire. J. Endod. 2015, 41, 535–538. [Google Scholar] [CrossRef]
- Uslu, G.; Özyürek, T.; İnan, U. Comparison of Cyclic Fatigue Resistance of ProGlider and One G Glide Path Files. J. Endod. 2016, 42, 1555–1558. [Google Scholar] [CrossRef]
- Özyürek, T.; Uslu, G.; İnan, U. A Comparison of the Cyclic Fatigue Resistance of Used and New Glide Path Files. J. Endod. 2017, 43, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Uslu, G.; Özyürek, T.; Yılmaz, K.; Gündoğar, M. Cyclic Fatigue Resistance of R-Pilot, HyFlex EDM and PathFile Nickel-Titanium Glide Path Files in Artificial Canals with Double (S-Shaped) Curvature. Int. Endod. J. 2018, 51, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, K.; Uslu, G.; Özyürek, T. In Vitro Comparison of the Cyclic Fatigue Resistance of HyFlex EDM, One G, and ProGlider Nickel Titanium Glide Path Instruments in Single and Double Curvature Canals. Restor. Dent. Endod. 2017, 42, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Özyürek, T.; Uslu, G.; Gündoğar, M.; Yılmaz, K.; Grande, N.M.; Plotino, G. Comparison of Cyclic Fatigue Resistance and Bending Properties of Two Reciprocating Nickel-Titanium Glide Path Files. Int. Endod. J. 2018, 51, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Topçuoğlu, H.S.; Topçuoğlu, G.; Kafdağ, Ö.; Arslan, H. Cyclic Fatigue Resistance of New Reciprocating Glide Path Files in 45- and 60-Degree Curved Canals. Int. Endod. J. 2018, 51, 1053–1058. [Google Scholar] [CrossRef]
- Serefoglu, B.; Kaval, M.E.; Micoogullari Kurt, S.; Çalişkan, M.K. Cyclic Fatigue Resistance of Novel Glide Path Instruments with Different Alloy Properties and Kinematics. J. Endod. 2018, 44, 1422–1424. [Google Scholar] [CrossRef] [PubMed]
- Keskin, C.; İnan, U.; Demiral, M.; Keleş, A. Cyclic Fatigue Resistance of R-Pilot, WaveOne Gold Glider, and ProGlider Glide Path Instruments. Clin. Oral Investig. 2018, 22, 3007–3012. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, K.; Uslu, G.; Gündoğar, M.; Özyürek, T.; Grande, N.M.; Plotino, G. Cyclic Fatigue Resistances of Several Nickel-Titanium Glide Path Rotary and Reciprocating Instruments at Body Temperature. Int. Endod. J. 2018, 51, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Nishijo, M.; Ebihara, A.; Tokita, D.; Doi, H.; Hanawa, T.; Okiji, T. Evaluation of Selected Mechanical Properties of NiTi Rotary Glide Path Files Manufactured from Controlled Memory Wires. Dent. Mater. J. 2018, 37, 549–554. [Google Scholar] [CrossRef]
- Topçuoğlu, H.S.; Topçuoğlu, G.; Düzgün, S. Resistance to Cyclic Fatigue of PathFile, ScoutRaCe and ProGlider Glide Path Files in an S-Shaped Canal. Int. Endod. J. 2018, 51, 509–514. [Google Scholar] [CrossRef]
- Kırıcı, D.; Kuştarcı, A. Cyclic Fatigue Resistance of the WaveOne Gold Glider, ProGlider, and the One G Glide Path Instruments in Double-Curvature Canals. Restor. Dent. Endod. 2019, 44, e36. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Kwak, S.W.; Ha, J.-H.; Abu-Tahun, I.H.; Kim, H.-C. Mechanical Properties of Various Glide Path Preparation Nickel-Titanium Rotary Instruments. J. Endod. 2019, 45, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Seo, J.-Y.; Lee, J.-E.; Kim, H.-J.; Jang, J.-H.; Chang, S.W. Evaluation of Design, Mechanical Properties, and Torque/Force Generation of Heat-Treated NiTi Glide Path Instruments. BMC Oral Health 2022, 22, 528. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.N.R.; Marques, D.; Vasconcelos, I.; Arantes-Oliveira, S.; Caramês, J.; Braz Fernandes, F.M. Multimethod Assessment of the Cyclic Fatigue Strength of ProGlider, Edge Glide Path and R-Pilot Endodontic Instruments. Dent. J. 2022, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Paleker, F.; van der Vyver, P.J. Glide Path Enlargement of Mandibular Molar Canals by Using K-Files, the ProGlider File, and G-Files: A Comparative Study of the Preparation Times. J. Endod. 2017, 43, 609–612. [Google Scholar] [CrossRef]
- D’Agostino, A.; Cantatore, G. Glide-Path: Comparison between Manual Instruments, First Generation Rotary Instruments and M-Wire New Generation Rotary Instruments. G. Ital. Di Endod. 2014, 28, 36–40. [Google Scholar] [CrossRef]
- Gambarini, G.; Galli, M.; Cicconetti, A.; Di Nardo, D.; Seracchiani, M.; Obino, F.V.; Miccoli, G.; Testarelli, L. Operative Torque Analysis to Evaluate Cutting Efficiency of Two Nickel-Titanium Rotary Instruments for Glide Path: An In Vitro Comparison. J. Contemp. Dent. Pract. 2021, 22, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Hou, X.-M. Glide Path Enlargement of Curved Molar Canals Using HyFlex EDM Glide Path File versus PathFile: A Comparative Study of Preparation Time and Postoperative Pain. BMC Oral Health 2021, 21, 150. [Google Scholar] [CrossRef]
- Alcalde, M.P.; Duarte, M.A.H.; Calefi, P.H.S.; Cruz, V.D.M.; Vasconcelos, B.C.D.; Só, M.V.R.; Vivan, R.R. Evaluation of Type of Kinematics on Glide Path Procedures and Torsional Fatigue Resistance after Preparation of Moderately Curved Canals. Braz. Oral Res. 2021, 35, e064. [Google Scholar] [CrossRef]
- Vorster, M.; van der Vyver, P.J.; Paleker, F. Influence of Glide Path Preparation on the Canal Shaping Times of WaveOne Gold in Curved Mandibular Molar Canals. J. Endod. 2018, 44, 853–855. [Google Scholar] [CrossRef]
- Berutti, E.; Alovisi, M.; Pastorelli, M.A.; Chiandussi, G.; Scotti, N.; Pasqualini, D. Energy Consumption of ProTaper Next X1 after Glide Path with PathFiles and ProGlider. J. Endod. 2014, 40, 2015–2018. [Google Scholar] [CrossRef] [PubMed]
- Adıguzel, M.; Tufenkci, P. Comparison of the Ability of Reciproc and Reciproc Blue Instruments to Reach the Full Working Length with or without Glide Path Preparation. Restor. Dent. Endod. 2018, 43, e41. [Google Scholar] [CrossRef] [PubMed]
- Ramyadharshini, T.; Sherwood, I.A.; Vigneshwar, V.S.; Ernest Prince, P.; Vaanjay, M. Influence of Glide Path Size and Operating Kinetics on Time to Reach Working Length and Fracture Resistance of Twisted File Adaptive and Endostar E3 Nickel-Titanium File Systems. Restor. Dent. Endod. 2020, 45, e22. [Google Scholar] [CrossRef] [PubMed]
- Jena, D.; Bansal, N.; Batra, D.; Arora, A.; Gupta, R.; Dudulwar, D.G. Assessment of Different File Systems for Working Time Based on Glide Path, Operating Kinetics, and the Fracture Resistance. J. Contemp. Dent. Pract. 2021, 22, 69–72. [Google Scholar] [PubMed]
- Kwak, S.-W.; Ha, J.-H.; Lee, W.; Kim, S.-K.; Kim, H.-C. Buckling Resistance, Bending Stiffness, and Torsional Resistance of Various Instruments for Canal Exploration and Glide Path Preparation. Restor. Dent. Endod. 2014, 39, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Arias, A.; Singh, R.; Peters, O.A. Differences in Torsional Performance of Single- and Multiple-Instrument Rotary Systems for Glide Path Preparation. Odontology 2016, 104, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Al Raeesi, D.; Kwak, S.W.; Ha, J.-H.; Sulaiman, S.; El Abed, R.; Kim, H.-C. Mechanical Properties of Glide Path Preparation Instruments with Different Pitch Lengths. J. Endod. 2018, 44, 864–868. [Google Scholar] [CrossRef] [PubMed]
- Gavini, G.; Akisue, E.; Kawakami, D.A.S.; Caldeira, C.L.; Candeiro, G.T.D.M.; Vivan, R.R.; Calefi, P.H.S.; Alcalde, M.P.; Duarte, M.A.H. Optimum Glide Path Motion Is Safer than Continuous Rotation of Files in Glide Path Preparation. Aust. Endod. J. 2021, 47, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.B.; Simões-Carvalho, M.; Perez, R.; Vieira, V.T.L.; Antunes, H.S.; Cavalcante, D.F.; De-Deus, G.; Silva, E.J.N.L. Torsional Fatigue Resistance of R-Pilot and WaveOne Gold Glider NiTi Glide Path Reciprocating Systems. Int. Endod. J. 2019, 52, 874–879. [Google Scholar] [CrossRef]
- Lopes, W.S.P.; Vieira, V.T.L.; Silva, E.J.N.L.; Silva, M.C.D.; Alves, F.R.F.; Lopes, H.P.; Pires, F.R. Bending, Buckling and Torsional Resistance of Rotary and Reciprocating Glide Path Instruments. Int. Endod. J. 2020, 53, 1689–1695. [Google Scholar] [CrossRef]
- Sivas Yilmaz, Ö.; Keskin, C.; Aydemir, H. Comparison of the Torsional Resistance of 4 Different Glide Path Instruments. J. Endod. 2021, 47, 970–975. [Google Scholar] [CrossRef] [PubMed]
- İnan, U.; Keskin, C. Torsional Resistance of ProGlider, Hyflex EDM, and One G Glide Path Instruments. J. Endod. 2019, 45, 1253–1257. [Google Scholar] [CrossRef] [PubMed]
- Arias, A.; de Vasconcelos, R.A.; Hernández, A.; Peters, O.A. Torsional Performance of ProTaper Gold Rotary Instruments during Shaping of Small Root Canals after 2 Different Glide Path Preparations. J. Endod. 2017, 43, 447–451. [Google Scholar] [CrossRef]
- Abu-Tahun, I.H.; Kwak, S.W.; Ha, J.-H.; Sigurdsson, A.; Kayahan, M.B.; Kim, H.-C. Effective Establishment of Glide-Path to Reduce Torsional Stress during Nickel-Titanium Rotary Instrumentation. Materials 2019, 12, 493. [Google Scholar] [CrossRef] [PubMed]
- Dagna, A.; El Abed, R.; Hussain, S.; Abu-Tahun, I.H.; Visai, L.; Bertoglio, F.; Bosco, F.; Beltrami, R.; Poggio, C.; Kim, H.-C. Comparison of Apical Extrusion of Intracanal Bacteria by Various Glide-Path Establishing Systems: An in Vitro Study. Restor. Dent. Endod. 2017, 42, 316–323. [Google Scholar] [CrossRef]
- Low, N.; Zhen Jie, S.; Bhatia, S.; Davamani, F.; Nagendrababu, V. Comparison of Apical Extrusion of Bacteria After Glide Path Preparation Between Manual K File, One G Rotary, and WaveOne Gold Glider Reciprocation Preparations. Eur. Endod. J. 2021, 6, 221–225. [Google Scholar]
- Ha, J.-H.; Kim, S.K.; Kwak, S.W.; El Abed, R.; Bae, Y.C.; Kim, H.-C. Debris Extrusion by Glide-Path Establishing Endodontic Instruments with Different Geometries. J. Dent. Sci. 2016, 11, 136–140. [Google Scholar] [CrossRef]
- Keskin, C.; Sivas Yilmaz, Ö.; Inan, U. Apically Extruded Debris Produced during Glide Path Preparation Using R-Pilot, WaveOne Gold Glider and ProGlider in Curved Root Canals. Aust. Endod. J. 2020, 46, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Topçuoğlu, H.S.; Düzgün, S.; Akpek, F.; Topçuoğlu, G.; Aktı, A. Influence of a Glide Path on Apical Extrusion of Debris during Canal Preparation Using Single-File Systems in Curved Canals. Int. Endod. J. 2016, 49, 599–603. [Google Scholar] [CrossRef]
- Kırıcı, D.; Koç, S.; Kuştarcı, A. Effects of Different Glide Path Techniques on the Amount of Extruded Debris and Preparation Times during Root Canal Preparation. J. Dent. Res. Dent. Clin. Dent. Prospect. 2020, 14, 187–190. [Google Scholar] [CrossRef]
- Pawar, A.M.; Pawar, M.; Kfir, A.; Thakur, B.; Mutha, P.; Banga, K.S. Effect of Glide Path Preparation on Apical Extrusion of Debris in Root Canals Instrumented with Three Single-File Systems: An Ex Vivo Comparative Study. J. Conserv. Dent. 2017, 20, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Thu, M.; Ebihara, A.; Maki, K.; Kimura, S.; Kyaw, M.-S.; Kasuga, Y.; Nishijo, M.; Okiji, T. Dynamic Torque and Screw-in Force of Four Different Glide Path Instruments Assessed in Simulated Single- and Double-Curved Canals: An in Vitro Study. J. Dent. Sci. 2023, 18, 1598–1603. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.W.; Ha, J.-H.; Shen, Y.; Haapasalo, M.; Kim, H.-C. Comparison of the Effects from Coronal Pre-Flaring and Glide-Path Preparation on Torque Generation during Root Canal Shaping Procedure. Aust. Endod. J. 2022, 48, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.W.; Ha, J.-H.; Cheung, G.S.-P.; Kim, H.-C.; Kim, S.K. Effect of the Glide Path Establishment on the Torque Generation to the Files during Instrumentation: An In Vitro Measurement. J. Endod. 2018, 44, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Topçuoğlu, H.S.; Düzgün, S.; Akpek, F.; Topçuoğlu, G. Effect of Glide Path and Apical Preparation Size on the Incidence of Apical Crack during the Canal Preparation Using Reciproc, WaveOne, and ProTaper Next Systems in Curved Root Canals: A Stereomicroscope Study. Scanning 2016, 38, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Aktemur Türker, S.; Uzunoğlu, E. Influence of a Glide Path on the Dentinal Crack Formation of ProTaper Next System. Restor. Dent. Endod. 2015, 40, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Saber, S.E.D.M.; Schäfer, E. Incidence of Dentinal Defects after Preparation of Severely Curved Root Canals Using the Reciproc Single-File System with and without Prior Creation of a Glide Path. Int. Endod. J. 2016, 49, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Bürklein, S.; Werneke, M.; Schäfer, E. Impact of Glide Path Preparation on the Incidence of Dentinal Defects after Preparation of Severely Curved Root Canals. Quintessence Int. 2018, 49, 607–613. [Google Scholar] [PubMed]
- Jonker, C.H.; Van der Vyver, P.J.; De Wet, F.A. The Influence of Glide Path Preparation on the Failure Rate of WaveOne Reciprocating Instruments. South Afr. Dent. J. 2014, 69, 266–269. [Google Scholar]
- Ehrhardt, I.C.; Zuolo, M.L.; Cunha, R.S.; De Martin, A.S.; Kherlakian, D.; de Carvalho, M.C.C.; Bueno, C.E.D.S. Assessment of the Separation Incidence of Mtwo Files Used with Preflaring: Prospective Clinical Study. J. Endod. 2012, 38, 1078–1081. [Google Scholar] [CrossRef]
- Barbosa Machado, A.L.; Machado, A.G.; Silveira Bueno, C.E. Surface Changes of WaveOneTM and Reciproc® Instruments after Using Three Times for Preparation of Simulated Curved Canals with and without Glide Path. Iran. Endod. J. 2019, 14, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Türker, S.A.; Sağlam, B.C.; Koçak, M.M.; Koçak, S. The Effect of Glide Path on the Surface Quality of New and Used Rotary and Reciprocating Single Files: OneShape versus WaveOne. Scanning 2014, 36, 608–613. [Google Scholar] [CrossRef]
- Pasqualini, D.; Mollo, L.; Scotti, N.; Cantatore, G.; Castellucci, A.; Migliaretti, G.; Berutti, E. Postoperative Pain after Manual and Mechanical Glide Path: A Randomized Clinical Trial. J. Endod. 2012, 38, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Keskin, C.; Sivas Yilmaz, Ö.; Inan, U.; Özdemir, Ö. Postoperative Pain after Glide Path Preparation Using Manual, Reciprocating and Continuous Rotary Instruments: A Randomized Clinical Trial. Int. Endod. J. 2019, 52, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Adıgüzel, M.; Yılmaz, K.; Tüfenkçi, P. Comparison of Postoperative Pain Intensity after Using Reciprocating and Continuous Rotary Glide Path Systems: A Randomized Clinical Trial. Restor. Dent. Endod. 2019, 44, e9. [Google Scholar] [CrossRef]
- Tufenkci, P.; Adiguzel, M.; Yilmaz, K. Intraoperative Pain During Glide Path Creation with the Use of a Rotary or Reciprocating System. Cumhur. Dent. J. 2019, 22, 66–73. [Google Scholar] [CrossRef]
- De-Deus, G.; Belladonna, F.G.; Souza, E.M.; de Oliveira Alves, V.; Silva, E.J.N.L.; Rodrigues, E.; Versiani, M.A.; da Silveira Bueno, C.E. Scouting Ability of 4 Pathfinding Instruments in Moderately Curved Molar Canals. J. Endod. 2016, 42, 1540–1544. [Google Scholar] [CrossRef]
- Pedullà, E.; Leanza, G.; La Rosa, G.R.M.; Gueli, A.M.; Pasquale, S.; Plotino, G.; Rapisarda, E. Cutting Efficiency of Conventional and Heat-Treated Nickel-Titanium Rotary or Reciprocating Glide Path Instruments. Int. Endod. J. 2020, 53, 376–384. [Google Scholar] [CrossRef]
- Pereira, R.P.; Alcalde, M.P.; Duarte, M.A.H.; Vivan, R.R.; Bueno, C.E.S.; Duque, J.A.; Calefi, P.H.S.; Bramante, C.M. A Laboratory Study of the Scouting Ability of Two Reciprocating Glide Path Instruments in Mesial Root Canals of Extracted Mandibular Molars. Int. Endod. J. 2021, 54, 1166–1174. [Google Scholar] [CrossRef]
- Campos, D.S.; Rodrigues, E.A.; Bueno, C.E.D.S.; Fontana, C.E.; da Silva, E.J.N.L.; de Lima, C.O.; De Martin, A.S. The Ability of Reciprocating Glide Path Instruments to Reach the Full Root Canal Working Length. Aust. Endod. J. 2021, 47, 487–492. [Google Scholar] [CrossRef]
Author/Year | Specimen | Comparison Groups | Methods for Evaluation | Conclusions |
---|---|---|---|---|
de Oliveira Alves et al., 2012 [17] | Mesial canals of mandibular molars (n = 45) | Group 1—K-file Group 2—first 3 files of MTwo system Group 3—PathFile | Superimposed X-rays | No apical transportation observed in any group |
Pasqualini et al., 2012 [26] | Buccal root canals of upper first molars (n = 16) | Group 1—Pathfile Group 2—K-file | Cone beam geometry system | Pathfile does a better job in preserving the original canal anatomy and tend to cause less canal aberrations |
Natasha C.C. Ajuz et al., 2013 [27] | S-shaped training blocks (n = 60) | Group 1—K-file Group 2—Pathfile Group 3—Scout RaCe | Superimposed stereomicroscopic images |
|
D’Amario et al., 2013 [28] | Mesial canals of mandibular molars (n = 45) | Group 1—G-file Group 2—Pathfile Group 3—K-file | Digital double X-ray technique | No significant differences found between groups |
Anil Dhingra and Nayasha Manchanda, 2014 [29] | Curved mesial roots of mandibular first molars (n = 100) | Group 1—Pathfile Group 2—VGP2 | CBCT | Pathfiles caused significantly less transportation at all levels |
Kirchhoff et al., 2015 [30] | Curved mesial canals of mandibular molars (n = 40) | Group 1—ProGlider Group 2—Pathfile | Micro CT-scan | Similar apical transportation observed in both groups |
Paleker and van der Vyver, 2016 [24] | Separate mesiobuccal and mesiolingual canals with 25–30° curvature (n = 90) | Group 1—K-file Group 2—G-file 1 and 2 Group 3—ProGlider | Micro CT |
|
Alfayate et al., 2018 [31] | Mesiobuccal root canals of mandibular molars with curvature between 11–82° (n = 60) | Group 1a—11–38° Pathfile Group 1b—11–38° ProFinder Group 2a—39–82° Pathfile Group 2b—39–82° ProFinder | Digital X-rays | Both systems were effective in maintaining original root canal anatomy |
Shalan and Al-Huwaizi, 2018 [32] | Resin blocks with L-shaped canal (n = 40) | Group 1—WOGG Group 2—ProGlider Group 3—Pathfile Group 4—K-file | Superimposed digital photographic images |
|
van der Vyver et al., 2018 [33] | Mesiobuccal root canals of maxillary molars (n = 135) | Group 1—K-file Group 2—One-G Group 3—ProGlider | Micro-CT scans | One-G and ProGlider showed less canal transportation on all levels examined |
Nazari Moghadam et al., 2018 [34] | Maxillary molars with separate MB2 (n = 66) | Group 1—ProGlider Group 2—Scout Race Group 3—M3 pro Glide path | CBCT scan | ProGlider showed less transportation in apical third |
Htun et al., 2019 [35] | Mandibular incisors (n = 30) | Group 1—HyFlex EDM in OGM Group 2—Hyflex EDM in CR Group 3—K-files | Micro-CT scans | Canal transportation at 1 and 3 mm from the apex was insignificant between groups |
Aydın et al., 2019 [36] | Mandibular first molars with 2 separate mesial canals (n = 24) | Group 1—ProGlider Group 2—WOGG Group 3—R-Pilot | Micro-CT analysis | R-pilot and WOGG had less transportation in coronal and middle third |
G. Česaitienė et al., 2019 [37] | Mesio and distobuccal canals of maxillary molars and mesiobuccal and lingual canals of mandibular molars (n = 36) | Group 1—Pathfile 1 and 2 Group 2—Pathfile 2 Group 3—ProGlider | Micro-CT scans | All three groups performed very similar without significant differences |
Htun et al., 2020 [38] | Double-curved resin canals (n = 60) | Group 1—Hyflex EDM #10/05 in CR Group 2—Hyflex EDM #10/05 in OGM Group 3—Hyflex EDM #15/03 in CR Group 4—Hyflex EDM #15/03 in OGM Group 5—MANI Glidepath file #13/04 in CR Group 6—MANI Glidepath file #13/04 in OGM | Micro-CT scan | CR and OGM generated similar transportation in both files used |
Aflaki S et al., 2020 [39] | Mandibular first and second molars | Group 1—K-file Group 2—Pathfile Group 3—Scout RaCe | CBCT |
|
Liu et al., 2021 [40] | Mesial root canals of mandibular molars (n = 30) | Group 1—K-files Group 2—MANI Mechanical Glide Path files in OGM | Micro-CT scan | Group 2 showed significantly lower canal transportation |
M. Aminsobhani et al., 2022 [41] | S-Shaped canal simulator blocks (n = 100) | Group 1—Scout RaCe Group 2—One-G Group 3—Pathfile Group 4—Neolix GPS Group 5—K-file | Superimposed photos in Photoshop |
|
Yeniçeri Özata et al., 2023 [42] | Mandibular molars with separate mesial canals | Group 1—TRN-G Group 2—WOGG Group 3—ProGlider | Micro-CT Scan | TRN-G showed significantly greater transportation than the other instruments |
Author/Year | Specimen | Comparison Groups | Methods for Evaluation | Conclusions |
---|---|---|---|---|
Uroz-Torres et al., 2009 [43] | Mesiobuccal canals of mandibular molars (n = 40) | Group 1—MC-K-file + Mtwo Group 2—MC-Mtwo Group 3—SC-K-file + Mtwo Group 4—SC-Mtwo | Superimposed X-rays | Creating a manual glidepath did not influence apical transportation of Mtwo instruments |
Berutti et al., 2012 [44] | Endo training blocks (n = 30) | Group 1—Pathfile + WaveOne Group 2—WaveOne | Superimposed digital images | Canal transportation significantly reduced with glide path |
Nazarimoghadam et al., 2014 [45] | Resin blocks with 60° curvature (n = 30) | Group 1—K-file + Reciproc Group 2—Reciproc | Superimposed digital images | Glide path reduced transportation in apical third |
Zanette et al., 2014 [46] | Mesiobuccal roots of maxillary molars (n = 40) | Group 1—Pathfiles + PTU Group 2—PTU | Superimposed X-rays | Glidepath did not influence apical transportation |
Elnaghy and Elsaka, 2014 [47] | Mesiobuccal canals of mandibular first molars (n = 60) | Group 1—ProGlider + PTN Group 2—Profile + PTN Group 3—PTN | CBCT | The first group showed significantly lower transportation |
Dhingra et al., 2015 [48] | Mandibular first molars (n = 100) | Group 1—WaveOne Group 2—Pathfile + WaveOne | CBCT | Group 2 showed significantly reduced canal transportation |
Yilmaz et al., 2017 [49] | S-shaped endo training blocks (n = 40) | Group 1—Pathfile + WaveOne Group 2—WaveOne | Superimposed digital images | Glide path has been shown to improve the centering ability of WaveOne and reduced the incidents of canal aberrations |
Keskin et al., 2018 [50] | S-shaped blocks (n = 30) | Group 1—ProGlider + Reciproc Blue Group 2—Reciproc Blue | Superimposed digital images | Group 2 showed significantly greater transportation |
Author/Year | Specimen | Comparison Groups | Methods for Evaluation | Conclusions |
---|---|---|---|---|
Bȕrklein et al., 2014 [51] | S-shaped canals in resin blocks (n = 120) | Group 1—Reciproc R25 Group 2—Reciproc R25+ PF Group 3—WaveOne 25 Group 4—WaveOne 25 + PF Group 5—Hyflex CM Group 6—Hyflex CM + PF Group 7—F360 Group 8—F360 + PF Group 9—OneShape Group 10—OneShape + PF | Superimposed digital images |
|
Coelho et al., 2016 [18] | Mandibular molars with separate canals in mesial root (n = 60) | Group 1—WaveOne Group 2—WaveOne + K-file Group 3—Reciproc Group 4—Reciproc + K-file | Superimposed X-rays | Glide path had no influence in the centering ability of those systems |
Hage et al., 2020 [52] | Maxillary and mandibular premolars (n = 120) | Group 1—R25 Group 2—R25 + PF Group 3—R25 Blue Group 4—R25 Blue + PF | CBCT | When PF was used, less transportation and better centering occurred in both groups |
Biasillo et al., 2021 [53] | S-shaped canals in resin blocks (n = 40) | Group 1—OneCurve + OneG Group 2—OneCurve Group 3—R25 Blue Group 4—R25 Blue + R-pilot | Superimposed digital images |
|
Alqahtani and AbuMostafa, 2021 [54] | Mesiobuccal canals of mandibular molars (n = 48) | Group 1—Race Evo NGP, NCF Group 2—Race Evo GP, NCF Group 3—Race Evo GP, CF Group 4—EdgeSeq NGP, NCF Group 5—EdgeSeq GP, NCF Group 6—EdgeSeq GP, CF | Micro-CT | There were no significant differences regarding transportation and centering ability among the groups tested |
Seda Falakaloğlu et al., 2022 [55] | Resin J-shaped root canals (n = 34) | Group 1—TEM tg + TEM M25 Group 2—WOGG + WOG Primary | Superimposed digital images | Both systems showed respect for the original canal curvature |
Alovisi et al., 2022 [56] | Mesiobuccal canals of maxillary first molars (n = 30) | Group 1—PG + PTN X1, X2 Group 2—WOGG +WOG | Micro-CT | Both systems produce well-centered preparations |
L. Shi, Y. Yang, J. Wan et al., 2022 [57] | J-shaped endo training blocks (n = 80) | Group 1—OneCurve + NGP Group 2—OneCurve + PF Group 3—OneCurve + PG Group 4—OneCurve + WOGG Group 5—R25Blue + NGP Group 6—R25Blue + PF Group 7—R25Blue + PG Group 8—R25Blue + WOGG | Superimposed digital images |
|
Author/Year | Specimen | Comparison Groups | Methods for Evaluation | Conclusions |
---|---|---|---|---|
de Carvalho et al., 2015 [58] | Mesial root canals of mandibular molars (n = 52) | Group 1—R25 + K-file Group 2—R25 + NGP Group 3—R25 + PF Group 4—no preparation | CBCT | All glide path techniques exhibited minimal apical transportation |
Shi and Wagle, 2017 [59] | J-shaped endo training blocks (n = 60) | Group 1—G-file + Hyflex CM Group 2—PF + Hyflex CM Group 3—Hyflex GPF + Hyflex CM | Superimposed digital images | Shaping with Hyflex after glide path preparation produced no significant difference |
Vorster et al., 2018 [60] | Mesiobuccal canals of mandibular molars (n = 60) | Group 1—K-file + PWOG Group 2—PF + PWOG Group 3—WOGG + PWOG Group 4—NGP + PWOG | Micro-CT | PWOG centering ability and transportation was not influenced by GP/NGP |
Zheng et al., 2018 [61] | Mesial canals of mandibular first molars (n = 60) | Group 1—K-file + WaveOne Group 2—PF + WaveOne Group 3—PG + WaveOne | Micro-CT | PG + WaveOne showed the least canal transportation |
Alovisi et al., 2017 [62] | Maxillary first molars (n = 45) | Group 1—PF + PTN X1, X2 Group 2—PG + PTN X1, X2 Group 3—K-file + PTN X1, X2 | Micro-CT | PG + PTN group had minimum transportation values |
Author/Year | Files Compared | Method for Determination | Criteria Researched | Results |
---|---|---|---|---|
Gambarini et al., 2013 [68] | K-file in M4 handpiece/Pathfile | SS canal with 60° curvature and 5 mm radius | TTF | K-file > Pathfile |
Sung et al., 2014 [69] | G-file #1,2/PF #1,2,3 | SS canal with 90° curvature and 3 mm radius | NCF | PF1 > PF2 > G1 > PF3 > G2 |
Capar et al., 2015 [70] | PF/G-file/Scout RaCe/Hyflex GPF/PG | SS canal with 90° curvature and 3 mm radius | NCF | Hyflex > G-files > PG > PF > Scout RaCe |
Uslu et al., 2016 [71] | PG/One G | SS canal with 60° curvature and 5 mm radius | TTF, NCF | TTF PG > One G NCF PG > One G |
Özyürek et al., 2016 [72] | Used and new PF/PG | SS canal with 60° curvature and 5 mm radius | NCF | PF > PG New > used (p > 0.05) |
Uslu et al., 2017 [73] | R-pilot/Hyflex EDM/PF | SS double-curved canal | NCF | R-pilot > Hyflex > PF |
Yilmaz et al., 2017 [74] | Hyflex EDM/One G/PG | SS canal with 60° curvature and 5 mm radius, 1 and 2 curves | NCF | 1 curve > 2 curves Hyflex > PG > One G in both curves |
Özyürek et al., 2018 [75] | R-pilot/WOGG | SS canal with 60° curvature and 5 mm radius | TTF | R-pilot > WOGG |
Topçuoğlu et al., 2018 [76] | R-pilot/WOGG | SS canal with 45° and 60° curvature and 5 mm radius | TTF | 45° no difference 60° WOGG > R-pilot |
Serefoglu et al., 2018 [77] | WOGG/R-pilot/PG | SS canal with 90° curvature and 3 mm radius | NCF | WOGG > R-pilot > PG |
Keskin et al., 2018 [78] | R-pilot/WOGG/PG | SS canal with 60° curvature and 5 mm radius | TTF | WOGG > R-pilot > PG |
Yilmaz et al., 2018 [79] | One G/PG/Hyflex EDM/R-pilot | SS canal with 60° curvature and 5 mm radius | TTF | R-pilot > Hyflex > PG > One G |
Nishijo et al., 2018 [80] | Hyflex EDM/Hyflex GPF | SS canal with 60° curvature and 5 mm radius | TTF | Hyflex EDM > Hyflex GPF |
Topçuoğlu et al., 2018 [81] | PF/Scout RaCe/PG | SS double-curved canal | NCF | PG > PF and Scout RaCe |
Kırıcı and Kuştarcı, 2019 [82] | WOGG/PG/One G | SS double-curved canal | NCF | WOGG > PG > One G |
Lee et al., 2019 [83] | PG/One G/Edge glidepath | SS canal with 90° curvature and 3 mm radius | TTF | Edge > PG > One G |
S Oh et al., 2022 [84] | TRN glider/V taper 2H/Hyflex EDM | SS canal with 60° curvature and 1.5 mm radius | NCF | V taper > TRN and Hyflex |
JNR Martins et al., 2022 [85] | PG/Edge glidepath/R-pilot | SS canal with 86° curvature and 6 mm radius | TTF | R-pilot > PG > Edge |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lup, V.M.; Malvicini, G.; Gaeta, C.; Grandini, S.; Ciavoi, G. Glide Path in Endodontics: A Literature Review of Current Knowledge. Dent. J. 2024, 12, 257. https://doi.org/10.3390/dj12080257
Lup VM, Malvicini G, Gaeta C, Grandini S, Ciavoi G. Glide Path in Endodontics: A Literature Review of Current Knowledge. Dentistry Journal. 2024; 12(8):257. https://doi.org/10.3390/dj12080257
Chicago/Turabian StyleLup, Vlad Mircea, Giulia Malvicini, Carlo Gaeta, Simone Grandini, and Gabriela Ciavoi. 2024. "Glide Path in Endodontics: A Literature Review of Current Knowledge" Dentistry Journal 12, no. 8: 257. https://doi.org/10.3390/dj12080257
APA StyleLup, V. M., Malvicini, G., Gaeta, C., Grandini, S., & Ciavoi, G. (2024). Glide Path in Endodontics: A Literature Review of Current Knowledge. Dentistry Journal, 12(8), 257. https://doi.org/10.3390/dj12080257