Color Stability Assessment of Single- and Multi-Shade Composites Following Immersion in Staining Food Substances
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
- –
- There were differences in color variations between the two materials;
- –
- Curing time does not influence the color stability of the tested materials.
5. Conclusions
- Single-shade resin composites in turmeric solution, energy drink, and soy sauce showed more color changes than multi-shade systems;
- The whiteness index decreased over time, regardless of the type of composite and the staining substance;
- The curing time did not influence the color variations of both composite groups.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, Y.K. Criteria for clinical translucency evaluation of direct esthetic restorative materials. Restor. Dent. Endod. 2016, 41, 159–166. [Google Scholar]
- Ismail, E.H.; Paravina, R.D. Color adjustment potential of resin composites: Optical illusion or physical reality, a comprehensive overview. J. Esthet. Restor. Dent. 2022, 34, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Ersoz, B.; Oktay, A.E.; Aydin, N.; Karaoglanoglu, S. Does hot coffee or cold coffee cause more discoloration on resin based composite materials? Eur. Oral Res. 2023, 57, 103–107. [Google Scholar] [PubMed]
- Barros, M.S.; Damasceno Silva, P.F.; Carregosa Santana, M.L.; Fontes Bragança, R.M.; Faria-E-Silva, A.L. Background and surrounding colors affect the color blending of a single-shade composite. Braz. Oral Res. 2023, 37, e035. [Google Scholar] [CrossRef] [PubMed]
- Duramd, L.B.; Ruiz-López, J.; Perez, B.G.; Ionescu, A.M.; Carrillo-Pérez, F.; Ghinea, R.; Pérez, M.M. Color, lightness, chroma, hue, and translucency adjustement potential of resin composites using CIEDE2000 color difference formula. J. Esthet. Rest. Dent. 2021, 33, 836–843. [Google Scholar] [CrossRef]
- Cruz da Silva, E.T.; de Farias Charamba, L.C.; Miranda, S.B.; Santos, M.E.; Saeger Meireles, S.; Maciel de Andrade, A.K.; Resende Montes, M.A.J. Evaluation of Single-Shade Composite Resin Color Matching on Extracted Human Teeth. Sci. World J. 2023, 2023, 4376545. [Google Scholar]
- Villarroel, M.; Fahl, N.; De Sousa, A.M.; De Oliveira, O.B., Jr. Direct esthetic restorations based on translucency and opacity of composite resins. J. Esthet. Restor. Dent. 2011, 23, 73–87. [Google Scholar]
- de Abreu, J.L.B.; Sampaio, C.S.; Benalcázar Jalkh, E.B.; Hirata, R. Analysis of the color matching of universal resin composites in anterior restorations. J. Esthet. Restor. Dent. 2021, 33, 269–276. [Google Scholar]
- Gupta, S.; Sayed, M.E.; Gupta, B.; Patel, A.; Mattoo, K.; Alotaibi, N.T.; Alnemi, S.I.; Jokhadar, H.F.; Mashhor, B.M.; Othman, M.A.; et al. Comparison of Composite Resin (Duo-Shade) Shade Guide with Vita Ceramic Shades Before and After Chemical and Autoclave Sterilization. Med. Sci. Monit. 2023, 29, e940949. [Google Scholar]
- Alharbi, A.; Ardu, S.; Bortolotto, T.; Krejci, I. Stain susceptibility of composite and ceramic CAD/CAM blocks versus direct resin composites with different resinous matrices. Odontology 2017, 105, 162–169. [Google Scholar]
- Güler, A.U.; Güler, E.; Cağin Yücel, A.; Ertaş, E. Effects of polishing procedures on color stability of composite resins. J. Appl. Oral Sci. 2009, 17, 108–112. [Google Scholar]
- Chen, S.; Zhu, J.; Yu, M.; Jin, C.; Huang, C. Effect of aging and bleaching on the color stability and surface roughness of a recently introduced single-shade composite resin. J. Dent. 2024, 143, 104917. [Google Scholar] [PubMed]
- Gujjari, A.K.; Bhatnagar, V.M.; Basavaraju, R.M. Color stability and flexural strength of poly (methyl methacrylate) and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to beverages and food dye: An in vitro study. Indian J. Dent. Res. 2013, 24, 172–177. [Google Scholar]
- Arocha, M.A.; Mayoral, J.R.; Lefever, D.; Mercade, M.; Basilio, J.; Roig, M. Color stability of siloranes versus methacrylate-based composites after immersion in staining solutions. Clin. Oral Investig. 2013, 17, 1481–1487. [Google Scholar] [CrossRef]
- Bagheri, R.; Burrow, M.F.; Tyas, M. Influence of food-simulating solutions and surface finish on susceptibility to staining of aesthetic restorative materials. J. Dent. 2005, 33, 389–398. [Google Scholar]
- Sarrett, D.C.; Coletti, D.P.; Peluso, A.R. The effects of alcoholic beverages on composite wear. Dent. Mater. 2000, 16, 62–67. [Google Scholar] [CrossRef]
- Sarafianou, A.; Iosifidou, S.; Papadopoulos, T.; Eliades, G. Color stability and degree of cure of direct composite restoratives after accelerated aging. Oper. Dent. 2007, 32, 406–411. [Google Scholar] [PubMed]
- Curtin, J.A.; Lu, H.; Milledge, J.T.; Hong, L.; Peterson, J. In vitro staining of resin composites by liquids ingested by children. Pediatr. Dent. 2008, 30, 317–322. [Google Scholar] [PubMed]
- Ludovichetti, F.S.; Lucchi, P.; Zambon, G.; Pezzato, L.; Bertolini, R.; Zerman, N.; Stellini, E.; Mazzoleni, S. Depth of Cure, Hardness, Roughness and Filler Dimension of Bulk-Fill Flowable, Conventional Flowable and High-Strength Universal Injectable Composites: An In Vitro Study. Nanomaterials 2022, 12, 1951. [Google Scholar] [CrossRef]
- Ozan, G.; Sar-Sancakli, H.; Tiryaki, M.; Bayrak, I. Effect of Light Curing Modes on the Color Stability of a Nanohybrid Composite Immersed in Different Beverages. Int. J. Dent. Sci. 2020, 22, 72–83. [Google Scholar]
- Gonder, H.Y.; Fidan, M. Effect of different polymerization times on color change, translucency parameter, and surface hardness of bulk-fill resin composites. Niger. J. Clin. Pract. 2022, 25, 1751–1757. [Google Scholar]
- Musanje, L.; Darvell, B.W. Curing-light attenuation in filled-resin restorative materials. Dent. Mater. 2006, 22, 804–1722. [Google Scholar] [CrossRef]
- Unsal, K.A.; Karaman, E. Effect of Additional Light Curing on Colour Stability of Composite Resins. Int. Dent. J. 2022, 72, 346–352. [Google Scholar]
- Checchi, V.; Forabosco, E.; Dall’Olio, F.; Kaleci, S.; Giannetti, L.; Generali, L. Assessment of colour modifications in two different composite resins induced by the influence of chlorhexidine mouthwashes and gels, with and without anti-staining properties: An in vitro study. Int. J. Dent. Hyg. 2024, 22, 655–660. [Google Scholar] [PubMed]
- Ersöz, B.; Karaoğlanoğlu, S.; Oktay, E.A.; Aydin, N. Resistance of Single-shade Composites to Discoloration. Oper. Dent. 2022, 47, 686–692. [Google Scholar] [CrossRef]
- Yew, H.Z.; Berekally, T.L.; Richards, L.C. A laboratory investigation of colour changes in two contemporary resin composites on exposure to spices. Aust. Dent. J. 2013, 58, 468–477. [Google Scholar]
- El- Rashidy, A.A.; Shaalan, O.; Abdelraouf, R.M.; Habib, N.A. Effect of immersion and thermocycling in different beverages on the surface roughness of single- and multi-shade resin composites. BMC Oral Health 2023, 23, 367. [Google Scholar]
- Forabosco, E.; Consolo, U.; Mazzitelli, C.; Kaleci, S.; Generali, L.; Checchi, V. Effect of bleaching on the color match of single-shade resin composites. J. Oral Sci. 2023, 65, 232–236. [Google Scholar] [CrossRef]
- Al-Samadani, K.H. Effect of energy drinks on the surface texture of nanoflled composite resin. J. Contemp. Dent. Pract. 2013, 14, 830–835. [Google Scholar] [PubMed]
- Delgado, A.H.; Sauro, S.; Lima, A.F.; Loguercio, A.D.; Della Bona, A.; Mazzoni, A.; Collares, F.M.; Staxrud, F.; Ferracane, J.; Tsoi, J.; et al. RoBDEMAT: A risk of bias tool and guideline to support reporting of pre-clinical dental materials research and assessment of systematic reviews. J. Dent. 2022, 127, 104350. [Google Scholar] [PubMed]
- Aydin, N.; Yilmaz, F.; Demir, B. Analysis of variance in subject groups. J. Stat. Stud. 2020, 45, 123–130. [Google Scholar]
- Forabosco, E.; Generali, L.; Mancuso, E.; Kaleci, S.; Consolo, U.; Checchi, V. Color match of single-shade restorations after professional dental bleaching: An in vitro study. J. Conserv. Dent. Endod. 2024, 27, 280–285. [Google Scholar] [CrossRef]
- de Alencar E Silva Leite, M.L.; da Cunha Medeiros E Silva, F.D.S.; Meireles, S.S.; Duarte, R.M.; Maciel Andrade, A.K. The effect of drinks on color stability and surface roughness of nanocomposite. J. Dent. 2014, 8, 330–336. [Google Scholar]
- Vaizoglu, G.A.; Ulusoy, N.; Alagöz, L.G. Effect of Coffee and Polishing Systems on the Color Change of a Conventional Resin Composite Repaired by Universal Resin Composites: An In Vitro Study. Materials 2023, 16, 6066. [Google Scholar] [CrossRef]
- Ebaya, M.M.; Ali, A.I.; El-Haliem, H.A.; Mahmoud, S.H. Color stability and surface roughness of ormocer- versus methacrylate-based single shade composite in anterior restoration. BMC Oral Health 2022, 22, 430. [Google Scholar] [CrossRef] [PubMed]
- Stober, T.; Gilde, H.; Lenz, P. Color stability of highly filled composite resin materials for facings. Dent. Mater. 2001, 17, 87–94. [Google Scholar] [CrossRef]
- Um, C.M.; Ruyter, I.E. Staining of resin-based veneering materials with coffee and tea. Quintessence Int. 1991, 22, 377–386. [Google Scholar] [PubMed]
- Proctor, G.B.; Pramanik, R.; Carpenter, G.H.; Rees, G.D. Salivary proteins interact with dietary constituents to modulate tooth staining. J. Dent. Res. 2005, 84, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Soares-Geraldo, D.; Scaramucci, T.; Steagall, W., Jr.; Braga, S.R.; Sobral, M.A. Interaction between staining and degradation of a composite resin in contact with colored foods. Braz. Oral Res. 2011, 25, 369–375. [Google Scholar] [CrossRef]
- Al-Haj Ali, S.N.; Alsulaim, H.N.; Albarrak, M.I.; Farah, R.I. Spectrophotometric comparison of color stability of microhybrid and nanocomposites following exposure to common soft drinks among adolescents: An in vitro study. Eur. Arch. Paediatr. Dent. 2021, 22, 675–683. [Google Scholar] [CrossRef]
- Fathima, J.N.; Hashir, N.M.J.; Padmanabhan, K. Spectrophotometric evaluation of color stability of composite resin after exposure to cold drinks: An in vitro study. J. Conserv. Dent. Endod. 2024, 27, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Berber, A.; Cakir, F.Y.; Baseren, M.; Gurgan, S. Effect of different polishing systems and drinks on the color stability of resin composite. J. Contemp. Dent. Pract. 2013, 14, 662–667. [Google Scholar] [PubMed]
- Ahmadizenouz, G.; Esmaeili, B.; Ahangari, Z.; Khafri, S.; Rahmani, A. Effect of energy drinks on discoloration of silorane and dimethacrylate-based composite resins. J. Dent. 2016, 13, 261–270. [Google Scholar]
- Ibrahim, D.F.; Hasmun, N.N.; Liew, Y.M.; Venkiteswaran, A. Repeated etching cycles of resin infiltration up to nine cycles on demineralized enamel: Surface roughness and esthetic outcomes-in vitro study. Children 2023, 10, 1148. [Google Scholar] [CrossRef] [PubMed]
- Forabosco, E.; Checchi, V. Visual and Instrumental Color Match Evaluation of Single Shade Composites before and after Bleaching Procedures: A Pilot Study. Open Dent. J. 2023, 17, E187421062308092. [Google Scholar] [CrossRef]
- Dozić, A.; Kleverlaan, C.J.; El-Zohairy, A.; Feilzer, A.J.; Khashayar, G. Performance of five commercially available tooth color-measuring devices. J. Prosthodont. 2007, 16, 93–100. [Google Scholar] [CrossRef]
- Klotz, A.L.; Habibi, Y.; Corcodel, N.; Rammelsberg, P.; Hassel, A.J.; Zenthöfer, A. Laboratory and clinical reliability of two spectrophotometers. J. Esthet. Restor. Dent. 2022, 34, 369–373. [Google Scholar] [CrossRef]
- Kumari, R.V.; Nagaraj, H.; Siddaraju, K.; Poluri, R.K. Evaluation of the Effect of Surface Polishing, Oral Beverages and Food Colorants on Color Stability and Surface Roughness of Nanocomposite Resins. J. Int. Oral Health 2015, 7, 63–70. [Google Scholar]
- Ning, K.; Bronkhorst, E.; Bremers, A.; Bronkhorst, H.; van der Meer, W.; Yang, F.; Leeuwenburgh, S.; Loomans, B. Wear behavior of a microhybrid composite vs. a nanocomposite in the treatment of severe tooth wear patients: A 5-year clinical study. Dent. Mater. 2021, 37, 1819–1827. [Google Scholar] [CrossRef]
Composite | Filler Particles | Resin Matrix | Filler | Manufacturer | Lot # |
---|---|---|---|---|---|
ONEshade | Micro-hybrid | Glass powder, polyurethane dimethacrylate, silicon dioxide, Bis-GMA, tetramethylene dimethacrylate | 75% weight, 53% volume. Inorganic filler particles (0.005–3.0 μm) | Olident (Podłęże, Polonia) | 2023004852 |
Olico XP | Micro-hybrid | Glass powder, dimethacrylates, silicon dioxide, Bis-GMA | 80% weight, 68% volume. Inorganic filler particles (0.05–0.9 µm) | Olident (Podłęże, Polonia) | 52301159C |
LIQUID | CONTENT |
---|---|
Turmeric powder–water solution | Obtained by diluting 1 g of turmeric powder in 1 L of distilled water and boiling for 10 min to obtain a standardized concentration [26]. |
Soy sauce (Kikkoman®, Kikkoman Trading Europe GmbH, Düsseldorf, Germany) | Water, soy, wheat, salt. |
Energy drink (Monster Pacific Punch®, Monster Energy, Corona, CA, USA) | Carbonated water, sugar, glucose, orange concentrate, apple concentrate, taurine, acidity regulators E330–E331, raspberry concentrate, goyava puree, cherry concentrate, preservatives E202–E211, caffeine, natural flavourings, vitamins B3–B6-B2–B12, sweetener E955, pineapple concentrate, passion fruit concentrate, thickener E414, colors E129*–E133, salt, emulsifier E445, inositol, carnitine tartrate. Caffeine: 333 mg/L. |
Control | Artificial saliva [27]. |
Mean ΔE00 ± SD | ||||||
---|---|---|---|---|---|---|
T0–T1 (7 days) | p-Value | T0–T1 (7 days) | p-Value | |||
ONE80 | OXP80 | ONE80 | ONE30 | |||
Artificial saliva | 0.7 ± 0.2 | 0.7 ± 0.1 | 0.676 | 0.7 ± 0.2 | 0.8 ± 0.5 | 0.630 |
Turmeric | 9.4 ± 0.6 | 14 ± 1.5 | <0.001 | 9.4 ± 0.6 | 6.6 ± 2.8 | 0.004 |
Energy drink | 2.1 ± 0.6 | 1.4 ± 0.5 | 0.005 | 2.1 ± 0.6 | 1.9 ± 0.7 | 0.612 |
Soy | 3.7 ± 0.4 | 3.6 ± 0.9 | 0.642 | 3.7 ± 0.4 | 4.2 ± 0.9 | 0.171 |
T0–T2 (30 days) | T0–T2 (30 days) | |||||
ONE80 | OXP80 | ONE80 | ONE30 | |||
Artificial saliva | 0.7 ± 0.2 | 0.8 ± 0.1 | 0.039 | 0.7 ± 0.2 | 1.3 ± 1.6 | 0.184 |
Turmeric | 17.7 ± 0.1 | 15.1 ± 2.4 | - | 17.7 ± 0.1 | 16.0 ± 1.3 | - |
Energy drink | 3.2 ± 1.0 | 1.8 ± 0.6 | 0.001 | 3.2 ± 1.0 | 2.8 ± 0.9 | 0.389 |
Soy | 6.7 ± 1.4 | 6.5 ± 2.4 | 0.718 | 6.7 ± 1.4 | 7.6 ± 1.1 | 0.095 |
T0–T1 (7 days) | T0–T1 (7 days) | |||||
ONE30 | OXP30 | OXP30 | OXP80 | |||
Artificial saliva | 0.8 ± 0.5 | 0.8 ± 0.7 | 0.898 | 0.8 ± 0.7 | 0.7 ± 0.1 | 0.071 |
Turmeric | 6.6 ± 2.8 | 6.6 ± 1.0 | 0.988 | 6.6 ± 1.0 | 14 ± 1.5 | <0.001 |
Energy drink | 1.9 ± 0.7 | 1.2 ± 0.2 | 0.004 | 1.2 ± 0.2 | 1.4 ± 0.5 | 0.206 |
Soy | 4.2 ± 0.9 | 3.6 ± 0.7 | 0.056 | 3.6 ± 0.7 | 3.6 ± 0.9 | 0.967 |
T0–T2 (30 days) | T0–T2 (30 days) | |||||
ONE30 | OXP30 | OXP30 | OXP80 | |||
Artificial saliva | 1.3 ± 1.6 | 0.9 ± 0.3 | 0.459 | 0.9 ± 0.3 | 0.8 ± 0.1 | 0.005 |
Turmeric | 16.0 ± 1.3 | 12.1 ± 0.1 | 0.125 | 12.1 ± 0.1 | 15.1 ± 2.4 | - |
Energy drink | 2.8 ± 0.9 | 1.9 ± 0.5 | 0.001 | 1.9 ± 0.5 | 1.8 ± 0.6 | 0.740 |
Soy | 7.6 ± 1.1 | 5.3 ± 1.2 | <0.001 | 5.3 ± 1.2 | 6.5 ± 2.4 | 0.145 |
Witeness Index ± SD | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T0 | p-value | T0 | p-value | T0 | p-value | T0 | p-value | |||||
ONE80 | OXP80 | ONE30 | OXP30 | ONE80 | ONE30 | OXP30 | OXP80 | |||||
Artificial saliva | 24.7 ± 0.5 | 22 ± 0.6 | <0.001 | 22.7 ± 1.6 | 19.7 ± 1.4 | <0.001 | 24.7 ± 0.5 | 22.7 ± 1.6 | <0.001 | 19.7 ± 1.4 | 22 ± 0.6 | <0.001 |
Turmeric | 23.7 ± 0.7 | 21.3 ± 3.4 | 0.015 | 22.7 ± 1.1 | 19 ± 0.9 | <0.001 | 23.7 ± 0.7 | 22.7 ± 1.1 | 0.003 | 19 ± 0.9 | 21.3 ± 3.4 | 0.021 |
Energy drink | 24.9 ± 0.7 | 22 ± 0.6 | <0.001 | 23.9 ± 1.5 | 20.3 ± 0.8 | <0.001 | 24.9 ± 0.7 | 23.9 ± 1.5 | 0.015 | 20.3 ± 0.8 | 22 ± 0.6 | <0.001 |
Soy | 23.7 ± 0.7 | 21.9 ± 0.5 | <0.001 | 22.5 ± 0.8 | 20.2 ± 1 | <0.001 | 23.7 ± 0.7 | 22.5 ± 0.8 | 0.001 | 20.2 ± 1 | 21.9 ± 0.5 | <0.001 |
Total | 24.2 ± 0.9 | 21.8 ± 1.8 | <0.001 | 22.9 ± 1.4 | 19.8 ± 1.1 | <0.001 | 24.2 ± 0.9 | 22.9 ± 1.4 | <0.001 | 19.8 ± 1.1 | 21.8 ± 1.8 | <0.001 |
T1 | T1 | T1 | T1 | |||||||||
ONE_80 | OXP_80 | ONE_30 | OXP_30 | ONE_80 | ONE_30 | OXP_30 | OXP_80 | |||||
Artificial saliva | 24.8 ± 0.7 | 21.3 ± 0.5 | <0.001 | 22.6 ± 1.4 | 18 ± 1.1 | <0.001 | 24.8 ± 0.7 | 22.6 ± 1.4 | <0.001 | 18 ± 1.1 | 21.3 ± 0.5 | <0.001 |
Turmeric | 11 ± 2.3 | −0.6 ± 4.3 | <0.001 | 13.4 ± 2.9 | 8.1 ± 3.4 | <0.001 | 11 ± 2.3 | 13.4 ± 2.9 | 0.056 | 8.1 ± 3.4 | −0.6 ± 4.3 | <0.001 |
Energy drink | 20 ± 2.1 | 18.3 ± 1.6 | 0.013 | 19.4 ± 1.8 | 17.4 ± 1 | 0.001 | 20 ± 2.1 | 19.4 ± 1.8 | 0.351 | 17.4 ± 1 | 18.3 ± 1.6 | 0.075 |
Soy | 17.1 ± 1.3 | 14.8 ± 2.9 | 0.011 | 12.5 ± 2.4 | 12.5 ± 2 | 0.947 | 17.1 ± 1.3 | 12.5 ± 2.4 | <0.001 | 12.5 ± 2 | 14.8 ± 2.9 | 0.027 |
Total | 18.2 ± 5.3 | 13.5 ± 8.9 | <0.001 | 17 ± 4.8 | 14 ± 4.5 | <0.001 | 18.2 ± 5.3 | 17 ± 4.8 | 0.177 | 14 ± 4.5 | 13.5 ± 8.9 | 0.703 |
T2 | T2 | T2 | T2 | |||||||||
ONE_80 | OXP_80 | ONE_30 | OXP_30 | ONE_80 | ONE_30 | OXP_30 | OXP_80 | |||||
Artificial saliva | 23.2 ± 0.6 | 21.2 ± 0.9 | <0.001 | 22.5 ± 1.5 | 18.9 ± 0.9 | <0.001 | 23.2 ± 0.6 | 22.5 ± 1.5 | 0.108 | 18.9 ± 0.9 | 21.2 ± 0.9 | 0.001 |
Turmeric | −18 ± 2.1 | −6.9 ± 5.5 | - | −10.9 ± 6.4 | −6.3 ± 2.1 | 0.015 | −18 ± 2.1 | −10.9 ± 6.4 | - | −6.3 ± 2.1 | −6.9 ± 5.5 | - |
Energy drink | 17,2 ± 3 | 17.1 ± 2.1 | 0.958 | 16.6 ± 2.6 | 15.7 ± 1.6 | 0.191 | 17.2 ± 3 | 16.6 ± 2.6 | 0.675 | 15.7 ± 1.6 | 17.1 ± 2.1 | 0.058 |
Soy | 8.9 ± 3.4 | 9.5 ± 6.1 | 0.768 | 5.6 ± 3.3 | 10.2 ± 2.4 | <0.001 | 8.9 ± 3.4 | 5.6 ± 3.3 | 0.025 | 10.2 ± 2.4 | 9.5 ± 6.1 | 0.722 |
Total | 14.9 ± 9.5 | 12.1 ± 10.5 | 0.161 | 9.5 ± 12.9 | 13.6 ± 6.5 | 0.046 | 14.9 ± 9.5 | 9.5 ± 12.9 | 0.017 | 13.6 ± 6.5 | 12.1 ± 10.5 | 0.398 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Checchi, V.; Forabosco, E.; Della Casa, G.; Kaleci, S.; Giannetti, L.; Generali, L.; Bellini, P. Color Stability Assessment of Single- and Multi-Shade Composites Following Immersion in Staining Food Substances. Dent. J. 2024, 12, 285. https://doi.org/10.3390/dj12090285
Checchi V, Forabosco E, Della Casa G, Kaleci S, Giannetti L, Generali L, Bellini P. Color Stability Assessment of Single- and Multi-Shade Composites Following Immersion in Staining Food Substances. Dentistry Journal. 2024; 12(9):285. https://doi.org/10.3390/dj12090285
Chicago/Turabian StyleChecchi, Vittorio, Eleonora Forabosco, Giulia Della Casa, Shaniko Kaleci, Luca Giannetti, Luigi Generali, and Pierantonio Bellini. 2024. "Color Stability Assessment of Single- and Multi-Shade Composites Following Immersion in Staining Food Substances" Dentistry Journal 12, no. 9: 285. https://doi.org/10.3390/dj12090285
APA StyleChecchi, V., Forabosco, E., Della Casa, G., Kaleci, S., Giannetti, L., Generali, L., & Bellini, P. (2024). Color Stability Assessment of Single- and Multi-Shade Composites Following Immersion in Staining Food Substances. Dentistry Journal, 12(9), 285. https://doi.org/10.3390/dj12090285