Multifactorial Contributors to the Longevity of Dental Restorations: An Integrated Review of Related Factors
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Patient-Related Factors
4.2. Operator-Related Factors
4.3. Tooth-Related Factors
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parolia, A.; Kundabala, M.; Gupta, V.; Verma, M.; Batra, C.; Shenoy, R.; Srikant, N. Microleakage of bonded amalgam restorations using different adhesive agents with dye under vacuum: An in vitro study. Indian J. Dent. Res. 2011, 22, 252–255. [Google Scholar] [CrossRef]
- Jokstad, A.; Mjor, I.A.; Qvist, V. The age of restorations in situ. Acta Odontol. Scand. 1994, 52, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Pink, F.E.; Minden, N.J.; Simmonds, S. Decisions of practitioners regarding placement of amalgam and composite restorations in general practice settings. Oper. Dent. 1994, 19, 127–132. [Google Scholar]
- Mjör, I.A.; Moorhead, J.E.; Dahl, J.E. Reasons for replacement of restorations in permanent teeth in general dental practice. Int. Dent. J. 2000, 50, 360–366. [Google Scholar] [CrossRef]
- McDaniel, R.J.; Davis, R.D.; Murchison, D.F.; Cohen, R.B. Causes of failure among cuspal-coverage amalgam restorations: A clinical survey. J. Am. Dent. Assoc. 2000, 131, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Listl, S.; Galloway, J.; Mossey, P.A.; Marcenes, W. Global economic impact of dental diseases. J. Dent. Res. 2015, 94, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, B.; Ahmed, L. The war between amalgam and composite: A critical review. J. Oral Res. Rev. 2021, 13, 133–138. [Google Scholar] [CrossRef]
- Manhart, J.; Chen, H.; Hamm, G.; Hickel, R. Buonocore Memorial Lecture. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Oper. Dent. 2004, 29, 481–508. [Google Scholar] [PubMed]
- Heintze, S.D.; Rousson, V. Clinical effectiveness of direct class II restorations: A meta-analysis. J. Adhes. Dent. 2012, 14, 407–431. [Google Scholar] [CrossRef]
- Demarco, F.F.; Cenci, M.S.; Montagner, A.F.; de Lima, V.P.; Correa, M.B.; Moraes, R.R.; Opdam, N.J.M. Longevity of composite restorations is definitely not only about materials. Dent. Mater. 2023, 39, 1–12. [Google Scholar] [CrossRef]
- Opdam, N.J.M.; Loomans, B.A.C.; Roeters, F.J.M.; Bronkhorst, E.M. Five-year clinical performance of posterior resin composite restorations placed by dental students. J. Dent. 2004, 32, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Da Rosa Rodolpho, P.A.; Rodolfo, B.; Collares, K.; Correa, M.B.; Demarco, F.F.; Opdam, N.J.M.; Cenci, M.S.; Moraes, R.R. Clinical performance of posterior resin composite restorations after up to 33 years. Dent. Mater. 2022, 38, 680–688. [Google Scholar] [CrossRef]
- Bernardo, M.; Luis, H.; Martin, M.D.; Leroux, B.G.; Rue, T.; Leitão, J.; DeRouen, T.A. Survival and reasons for failure of amalgam versus composite posterior restorations placed in a randomized clinical trial. J. Am. Dent. Assoc. 2007, 138, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Demarco, F.F.; Correa, M.B.; Cenci, M.S.; Moraes, R.R.; Opdam, N.J. Longevity of posterior composite restorations: Not only a matter of materials. Dent. Mater. 2012, 28, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Demarco, F.F.; Collares, K.; Coelho-de-Souza, F.H.; Correa, M.B.; Cenci, M.S.; Moraes, R.R.; Opdam, N.J. Anterior composite restorations: A systematic review on long-term survival and reasons for failure. Dent. Mater. 2015, 31, 1214–1224. [Google Scholar] [CrossRef]
- Opdam, N.J.M.; Van De Sande, F.H.; Bronkhorst, E.; Cenci, M.S.; Bottenberg, P.; Pallesen, U.; Gaengler, P.; Lindberg, A.; Huysmans, M.C.D.N.J.M.; van Dijken, J.W. Longevity of posterior composite restorations: A systematic review and meta-analysis. J. Dent. Res. 2014, 93, 943–949. [Google Scholar] [CrossRef]
- Goldstein, G.R. The longevity of direct and indirect posterior restorations is uncertain and may be affected by a number of dentist-, patient-, and material-related factors. J. Evid. Based Dent. Pract. 2010, 10, 30–31. [Google Scholar] [CrossRef]
- Silvani, S.; Trivelato, R.F.; Nogueira, R.D.; Gonçalves, L.d.S.; Geraldo-Martins, V.R. Factors affecting the placement or replacement of direct restorations in a dental school. Contemp. Clin. Dent. 2014, 5, 54–58. [Google Scholar] [CrossRef]
- Nassar, H.; El-Shamy, H. Bonding system choice and practices among senior dental students. J. Int. Soc. Prev. Community Dent. 2017, 7, S143–S148. [Google Scholar] [CrossRef]
- Wong, C.; Blum, I.R.; Louca, C.; Sparrius, M.; Wanyonyi, K. A retrospective clinical study on the survival of posterior composite restorations in a primary care dental outreach setting over 11 years. J. Dent. 2021, 106, 103586. [Google Scholar] [CrossRef]
- Jingarwar, M.M.; Bajwa, N.K.; Pathak, A. Minimal intervention dentistry—A new frontier in clinical dentistry. J. Clin. Diagn. Res. 2014, 8, ZE04–ZE08. [Google Scholar] [CrossRef]
- Lucarotti, P.S.K.; Burke, F.J.T. The ultimate guide to restoration longevity in England and Wales. Part 1: Methodology. Br. Dent. J. 2018, 224, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Chapple, I.L.; Bouchard, P.; Cagetti, M.G.; Campus, G.; Carra, M.C.; Cocco, F.; Nibali, L.; Hujoel, P.; Laine, M.L.; Lingstrom, P.; et al. Interaction of lifestyle, behaviour or systemic diseases with dental caries and periodontal diseases: Consensus report of group 2 of the joint EFP/ORCA workshop on the boundaries between caries and periodontal diseases. J. Clin. Periodontol. 2017, 44, S39–S51. [Google Scholar] [CrossRef] [PubMed]
- Opal, S.; Garg, S.; Jain, J.; Walia, I. Genetic factors affecting dental caries risk. Aust. Dent. J. 2015, 60, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Pitts, N.B.; Twetman, S.; Fisher, J.; Marsh, P.D. Understanding dental caries as a non-communicable disease. Br. Dent. J. 2021, 231, 749–753. [Google Scholar] [CrossRef]
- Wilson, N.; Lynch, C.D.; Brunton, P.A.; Hickel, R.; Meyer-Lueckel, H.; Gurgan, S.; Pallesen, U.; Shearer, A.C.; Tarle, Z.; Cotti, E.; et al. Criteria for the replacement of restorations: Academy of Operative Dentistry European Section. Oper. Dent. 2016, 41, S48–S57. [Google Scholar] [CrossRef]
- Kuper, N.K.; Opdam, N.J.; Ruben, J.L.; de Soet, J.J.; Cenci, M.S.; Bronkhorst, E.M.; Huysmans, M.C.D.N.J.M. Gap size and wall lesion development next to composite. J. Dent. Res. 2014, 93, 108–113. [Google Scholar] [CrossRef]
- Scholtanus, J.D.; Huysmans, M.C.D. Clinical failure of class-II restorations of a highly viscous glass-ionomer material over a 6-year period: A retrospective study. J. Dent. 2007, 35, 156–162. [Google Scholar] [CrossRef]
- De Paola, P.F. Clinical studies of monofluorophosphate dentifrices. Caries Res. 1983, 17 (Suppl. 1), 119–135. [Google Scholar] [CrossRef]
- Murray, J.J.; Rugg-Gunn, A.J.; Jenkins, G.N. Fluorides in Caries Prevention, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 1991. [Google Scholar]
- Marinho, V.C.; Higgins, J.P.; Sheiham, A.; Logan, S. Fluoride toothpastes for preventing dental caries in children and adolescents. Cochrane Database Syst Rev. 2003, 1, 1–93. [Google Scholar] [CrossRef]
- Marinho, V.C.; Higgins, J.P.; Sheiham, A.; Logan, S. Combinations of topical fluoride (toothpastes, mouthrinses, gels, varnishes) versus single topical fluoride for preventing dental caries in children and adolescents. Cochrane Database Syst Rev. 2004, 1. [Google Scholar] [CrossRef] [PubMed]
- Twetman, S.; Petersson, L.; Axelsson, S.; Dahlgren, H.; Holm, A.K.; Källestål, C.; Lagerlöf, F.; Lingström, P.; Mejàre, I.; Nordenram, G.; et al. Caries-preventive effect of sodium fluoride mouthrinses: A systematic review of controlled clinical trials. Acta Odontol. Scand. 2004, 62, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Van de Sande, F.H.; Opdam, N.J.; Rodolpho, P.A.; Correa, M.B.; Demarco, F.F.; Cenci, M.S. Patient risk factors’ influence on survival of posterior composites. J. Dent. Res. 2013, 92, 78S–83S. [Google Scholar] [CrossRef] [PubMed]
- Opdam, N.J.; Bronkhorst, E.M.; Loomans, B.A.; Huysmans, M.C. 12-year survival of composite vs. amalgam restorations. J. Dent. Res. 2010, 89, 1063–1067. [Google Scholar] [CrossRef]
- Marsh, P.D. Are dental diseases examples of ecological catastrophes? Microbiology 2003, 149, 279–294. [Google Scholar] [CrossRef]
- Beyth, N.; Bahir, R.; Matalon, S.; Domb, A.J.; Weiss, E.I. Streptococcus mutans biofilm changes surface-topography of resin composites. Dent. Mater. 2008, 24, 732–736. [Google Scholar] [CrossRef]
- Nederfors, T.; Isaksson, R.; Mörnstad, H.; Dahlöf, C. Prevalence of perceived symptoms of dry mouth in an adult Swedish population-relation to age, sex and pharmacotherapy. Community Dent. Oral Epidemiol. 1997, 25, 211–216. [Google Scholar] [CrossRef]
- Villa, A.; Polimeni, A.; Strohmenger, L.; Cicciù, D.; Gherlone, E.; Abati, S. Dental patients’ self-reports of xerostomia and associated risk factors. J. Am. Dent. Assoc. 2011, 142, 811–816. [Google Scholar] [CrossRef]
- Iorgulescu, G. Saliva between normal and pathological. Important factors in determining systemic and oral health. J. Med. Life 2009, 2, 303. [Google Scholar]
- Scully, C. Drug effects on salivary glands: Dry mouth. Oral Dis. 2003, 9, 165–176. [Google Scholar] [CrossRef]
- Reeh, E.S.; Messer, H.H.; Douglas, W.H. Reduction in tooth stiffness as a result of endodontic and restorative procedures. J. Endod. 1989, 15, 512–516. [Google Scholar] [CrossRef]
- Benedetti, G.; Campus, G.; Strohmenger, L.; Lingström, P. Tobacco and dental caries: A systematic review. Acta Odontol. Scand. 2013, 71, 363–371. [Google Scholar] [CrossRef]
- Jiang, X.; Jiang, X.; Wang, Y.; Huang, R. Correlation between tobacco smoking and dental caries: A systematic review and meta-analysis. Tob. Induc. Dis. 2019, 17, 34. [Google Scholar] [CrossRef]
- Thomson, W.M.; Poulton, R.; Milne, B.J.; Caspi, A.; Broughton, J.R.; Ayers, K.M.S. Socioeconomic inequalities in oral health in childhood and adulthood in a birth cohort. Community Dent. Oral Epidemiol. 2004, 32, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Vasilache, I.; Schlegel, A.K.; Wichmann, M.; Eitner, S. Esthetics and Psyque-Part 1: Assessment of the influence of patient perceptions of body image and body experience on selection of existing natural tooth color. Int. J. Prosthodont. 2012, 25, 36–43. [Google Scholar] [PubMed]
- Witt, M.; Flores-Mir, C. Laypeople’s preferences regarding frontal dentofacial esthetics: Periodontal factors. J. Am. Dent. Assoc. 2011, 142, 925–937. [Google Scholar] [CrossRef]
- Proctor, G.B. The physiology of salivary secretion. Periodontology 2000, 2016, 11–25. [Google Scholar] [CrossRef]
- Kaur, A.; Kwatra, K.S.; Kamboj, P. Evaluation of non-microbial salivary caries activity parameters and salivary biochemical indicators in predicting dental caries. J. Indian Soc. Pedod. Prev. Dent. 2012, 30, 212–217. [Google Scholar] [CrossRef]
- Peres, M.A.; Peres, K.G.; De Barros, A.J.D.; Victora, C.G. The relation between family socioeconomic trajectories from childhood to adolescence and dental caries and associated oral behaviours. J. Epidemiol. Community Health 2007, 61, 141–145. [Google Scholar] [CrossRef]
- Crocombe, L.A.; Broadbent, J.M.; Thomson, W.M.; Brennan, D.S.; Poulton, R. Impact of dental visiting trajectory patterns on clinical oral health and oral health-related quality of life. J. Public Health Dent. 2012, 72, 36–44. [Google Scholar] [CrossRef]
- Correa, M.B.; Peres, M.A.; Peres, K.G.; Horta, B.L.; Barros, A.J.; Demarco, F.F. Do socioeconomic determinants affect the quality of posterior dental restorations? A multilevel approach. J. Dent. 2013, 41, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Linnemann, T.; Kramer, E.J.; Schwendicke, F.; Wolf, T.G.; Meyer-Lueckel, H.; Wierichs, R.J. Longevity and risk factors of post restorations after up to 15 years: A practice-based study. J. Endod. 2021, 47, 577–584. [Google Scholar] [CrossRef]
- Koc, D.; Dogan, A.; Bek, B. Bite force and influential factors on bite force measurements: A literature review. Eur. J. Dent. 2010, 4, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Da Rosa Rodolpho, P.A.; Cenci, M.S.; Donassollo, T.A.; Loguercio, A.D.; Demarco, F.F. A clinical evaluation of posterior composite restorations: 17-year findings. J. Dent. 2006, 34, 427–435. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Lawson, N.C. Probing the hierarchy of evidence to identify the best strategy for placing class II dental composite restorations using current materials. J. Esthet. Restor. Dent. 2021, 33, 39–50. [Google Scholar] [CrossRef]
- Jandt, K.D.; Mills, R.W. A brief history of LED photopolymerization. Dent. Mater. 2013, 29, 605–617. [Google Scholar] [CrossRef]
- Kopperud, S.E.; Rukke, H.V.; Kopperud, H.M.; Bruzell, E.M. Light curing procedures-performance, knowledge level and safety awareness among dentists. J. Dent. 2017, 58, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Maktabi, H.; Balhaddad, A.A.; Alkhubaizi, Q.; Strassler, H.; Melo, M.A.S. Factors influencing success of radiant exposure in light-curing posterior dental composite in the clinical setting. Am. J. Dent. 2018, 31, 320–328. [Google Scholar] [PubMed]
- Laske, M.; Opdam, N.J.M.; Bronkhorst, E.M.; Braspenning, J.C.C.; Huysmans, M.C.D.N.J.M. Ten-year survival of class II restorations placed by general practitioners. JDR Clin. Transl. Res. 2016, 1, 292–299. [Google Scholar] [CrossRef]
- Trachtenberg, F.; Maserejian, N.N.; Tavares, M.; Soncini, J.A.; Hayes, C. Extent of tooth decay in the mouth and increased need for replacement of dental restorations: The New England Children’s Amalgam Trial. Pediatr. Dent. 2008, 30, 388–392. [Google Scholar]
- Collares, K.; Opdam, N.J.; Laske, M.; Bronkhorst, E.M.; Demarco, F.F.; Correa, M.B.; Huysmans, M.C.D.N.J.M. Longevity of anterior composite restorations in a general dental practice-based network. J. Dent. Res. 2017, 96, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- Elderton, R.J. Assessment of he quality of restorations. J. Oral Rehabil. 1977, 4, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Elderton, R.J.; Nuttall, N.M. Variation among dentists in planning treatment. Br. Dent. J. 1983, 154, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Bader, J.D.; Shugars, D.A. Understanding dentists’ restorative treatment decisions. J. Public Health Dent. 1992, 52, 102–110. [Google Scholar] [CrossRef]
- Gordan, V.V.; Riley, J.L., III; Geraldeli, S.; Rindal, D.B.; Qvist, V.; Fellows, J.L.; Kellum, H.P.; Gilbert, G.H.; Dental Practice-Based Research Network Lareslaborative Group. Repair or replacement of defective restorations by dentists in The Dental Practice-Based Research Network. J. Am. Dent. Assoc. 2012, 143, 593–601. [Google Scholar] [CrossRef]
- Lempel, E.; Lovász, B.V.; Bihari, E.; Krajczár, K.; Jeges, S.; Tóth, Á. Long-term clinical evaluation of direct resin composite restorations in vital vs. endodontically treated posterior teeth—retrospective study up to 13 years. Dent. Mater. 2019, 35, 1308–1318. [Google Scholar] [CrossRef]
- Van Nieuwenhuysen, J.P.; D’Hoore, W.; Carvalho, J.; Qvist, V. Long-term evaluation of extensive restorations in permanent teeth. J. Dent. 2003, 31, 395–405. [Google Scholar] [CrossRef]
- Mondelli, J.; Steagall, L.; Ishikiriama, A.; de Lima Navarro, M.F.; Soares, F.B. Fracture strength of human teeth with cavity preparations. J. Prosthet. Dent. 1980, 43, 419–422. [Google Scholar] [CrossRef]
- Morgano, S.M.; Rodrigues, A.H.; Sabrosa, C.E. Restoration of endodontically treated teeth. Dent. Clin. N. Am. 2004, 48, 397–416. [Google Scholar] [CrossRef]
- Trushkowsky, R.D. Restoration of endodontically treated teeth: Criteria and technique considerations. Quintessence Int. 2014, 45, 557–567. [Google Scholar] [CrossRef]
- Bhuva, B.; Giovarruscio, M.; Rahim, N.; Bitter, K.; Mannocci, F. The restoration of root filled teeth: A review of the clinical literature. Int. Endod. J. 2021, 54, 509–535. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.; Sundaram, G. An up to 3-year randomized clinical study comparing indirect and direct resin composites used to restore worn posterior teeth. Int. J. Prosthodont. 2006, 19, 6. [Google Scholar]
- Laske, M.; Opdam, N.J.; Bronkhorst, E.M.; Braspenning, J.C.; Huysmans, M.C. Risk factors for dental restoration survival: A practice-based study. J. Dent. Res. 2019, 98, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.W.; Seo, D.G.; Baik, J.E.; Cho, K.; Yun, C.H.; Han, S.H. Differential profiles of salivary proteins with affinity to Streptococcus mutans lipoteichoic acid in caries-free and caries-positive human subjects. Mol. Oral Microbiol. 2014, 29, 208–218. [Google Scholar] [CrossRef]
- Van Nieuw Amerongen, A.; Bolscher, J.G.; Veerman, E.C. Salivary proteins: Protective and diagnostic value in cariology? Caries Res. 2004, 38, 247–253. [Google Scholar] [CrossRef]
- Pinheiro, S.L.; da Rocha, N.N.; Peres, M.D.L.H.M. Capacity of a hydroxyapatite–lysozyme combination against Streptococcus mutans for the treatment of dentinal caries. J. Conserv. Dent. Endod. 2016, 19, 465–468. [Google Scholar] [CrossRef]
- Shimada, J.; Moon, S.K.; Lee, H.Y.; Takeshita, T.; Pan, H.; Woo, J.I.; Lim, D.J. Lysozyme M deficiency leads to an increased susceptibility to Streptococcus pneumoniae-induced otitis media. BMC Infect. Dis. 2008, 8, 134. [Google Scholar] [CrossRef]
- Kagan, B.L.; Selsted, M.E.; Ganz, T.; Lehrer, R.I. Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc. Natl. Acad. Sci. USA 1990, 87, 210–214. [Google Scholar] [CrossRef]
- Żelechowska, P.; Agier, J.; Brzezińska-Błaszczyk, E. Endogenous antimicrobial factors in the treatment of infectious diseases. Cent. Eur. J. Immunol. 2016, 41, 419–425. [Google Scholar] [CrossRef]
- Malekipour, M.R.; Messripour, M.; Shirani, F. Buffering capacity of saliva in patients with active dental caries. Asian J. Biochem. 2008, 3, 280–283. [Google Scholar] [CrossRef]
- Deery, C.; Toumba, K.J. Diagnosis and prevention of dental caries. Paediatr. Dent. 2018, 3, 110–129. [Google Scholar] [CrossRef]
- Bulkacz, J.; Carranza, F.A. Defence mechanisms of gingiva. In Clinical Periodontology, 9th ed.; Newman, M.G., Takei, H.H., Carranza, F.A., Eds.; WB Saunders Company: Philadelphia, PA, USA, 2002; pp. 254–262. [Google Scholar]
- Jukka, L.; Hannu, V.; Ellinoora, R.; Laura, J.; Ritva, N.; Vuokko, A. The survival time of restorations is shortened in patients with dry mouth. J. Dent. 2021, 113, 103794. [Google Scholar] [CrossRef]
- Mott, A.E.; Grushka, M.; Sessle, B.J. Diagnosis and management of taste disorders and burning mouth syndrome. Dent. Clin. N. Am. 1993, 37, 33–71. [Google Scholar] [CrossRef]
- Patton, L.L.; Siegel, M.A.; Benoliel, R.; De Laat, A. Management of burning mouth syndrome: Systematic review and management recommendations. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 103, S39.e1–S39.e13. [Google Scholar] [CrossRef]
- Petrušić, N.; Posavac, M.; Sabol, I.; Mravak-Stipetić, M. The effect of tobacco smoking on salivation. Acta Stomatol. Croat. 2015, 49, 309–315. [Google Scholar] [CrossRef]
- Nakonieczna-Rudnicka, M.; Bachanek, T. Number of Streptococcus mutans and Lactobacillus in saliva versus the status of cigarette smoking, considering duration of smoking and number of cigarettes smoked daily. Ann. Agric. Environ. Med. 2017, 24, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Chanea, K.; Palmire, A. Smoking and Candy on Oral Bacteria, Streptococcus mutans, Adherence; California State Polytechnic University: Pomona, CA, USA, 2014; Available online: http://hdl.handle.net/10211.3/118316 (accessed on 27 June 2024).
- Ashkanane, A.; Gomez, G.F.; Levon, J.; Windsor, L.J.; Eckert, G.J.; Gregory, R.L. Nicotine Upregulates Coaggregation of Candida albicans and Streptococcus mutans. J. Prosthodont. 2017, 28, 790–796. [Google Scholar] [CrossRef]
- Opdam, N.J.; Bronkhorst, E.M.; Roeters, J.M.; Loomans, B.A. A retrospective clinical study on longevity of posterior composite and amalgam restorations. Dent. Mater. 2007, 23, 2–8. [Google Scholar] [CrossRef]
- Laske, M.; Opdam, N.J.M.; Bronkhorst, E.M.; Braspenning, J.C.C.; Huysmans, M.C.D.N.J.M. Longevity of direct restorations in Dutch dental practices. Descriptive study out of a practice-based research network. J. Dent. 2016, 46, 12–17. [Google Scholar] [CrossRef]
- Wong, F.M.; Ng, Y.T.; Leung, W.K. Oral health and its associated factors among older institutionalized residents—A systematic review. Int. J. Environ. Res. Public Health 2019, 16, 4132. [Google Scholar] [CrossRef]
- Northridge, M.E.; Kumar, A.; Kaur, R. Disparities in access to oral health care. Annu. Rev. Public Health 2020, 41, 513–535. [Google Scholar] [CrossRef] [PubMed]
- Cunniffe, H.A. Dentures discovered in larynx 8 days after general anaesthetic. BMJ Case Rep. 2019, 12, e230055. [Google Scholar] [CrossRef]
- Vila, T.; Sultan, A.S.; Montelongo-Jauregui, D.; Jabra-Rizk, M.A. Oral candidiasis: A disease of opportunity. J. Fungi 2020, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, V.; Drever, S.; Agilinko, J.; Vallamkondu, V.; Majumdar, S.; Shakeel, M. Management of a swallowed denture: Our experience with 34 patients. Ger Med Sci. 2021, 19, 10. [Google Scholar]
- Derafshi, R.; Bazargani, A.; Ghapanchi, J.; Izadi, Y.; Khorshidi, H. Isolation and identification of nonoral pathogenic bacteria in the oral cavity of patients with removable dentures. J. Int. Soc. Prev. Community Dent. 2017, 7, 197–201. [Google Scholar] [CrossRef]
- Axe, A.S.; Varghese, R.; Bosma, M.; Kitson, N.; Bradshaw, D.J. Dental health professional recommendation and consumer habits in denture cleansing. J. Prosthet. Dent. 2016, 115, 183–188. [Google Scholar] [CrossRef]
- Skupien, J.A.; Opdam, N.J.; Winnen, R.; Bronkhorst, E.M.; Kreulen, C.M.; Pereira-Cenci, T. Survival of restored endodontically treated teeth in relation to periodontal status. Braz. Dent. J. 2016, 27, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Takei, H.H.; Azzi, R.R.; Han, T.J. Preparation of the periodontium for restorative dentistry. In Carranza’s Clinical Periodontology, 9th ed.; Chapter 74. W.B. Saunders Company: Philadelphia, PA, USA, 2002. [Google Scholar]
- Goldberg, P.V.; Higginbottom, F.L.; Wilson, T.G., Jr. Periodontal considerations in restorative and implant therapy. Periodontology 2000, 2001, 100–109. [Google Scholar] [CrossRef]
- Chen, C.Y.; Lin, K.M. Health consequences of illegal drug use. Curr. Opin. Psychiatry 2009, 22, 287–292. [Google Scholar] [CrossRef]
- Brienza, R.S.; Stein, M.D.; Chen, M.H.; Gogineni, A.; Sobota, M.; Maksad, J.; Clarke, J. Depression among needle exchange program and methadone maintenance clients. J. Subst. Abuse Treat. 2000, 18, 331–337. [Google Scholar] [CrossRef]
- Robinson, P.G.; Acquah, S.; Gibson, B. Drug users: Oral health-related attitudes and behaviours. Br. Dent. J. 2005, 198, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Santolaria-Fernández, F.J.; Gomez-Sirvent, J.L.; González-Reimers, C.E.; Batista-López, J.; Jorge-Hernández, J.; Rodríguez-Moreno, F.; Hernández-Garcia, M.T. Nutritional assessment of drug addicts. Drug Alcohol Depend. 1995, 38, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Palma, P.D.; Nordenram, G. The perceptions of homeless people in Stockholm concerning oral health and consequences of dental treatment: A qualitative study. Spec. Care Dent. 2005, 25, 289–295. [Google Scholar] [CrossRef]
- Charnock, S.; Owen, S.; Brookes, V.; Williams, M. A community based programme to improve access to dental services for drug users. Br. Dent. J. 2004, 196, 385–388. [Google Scholar] [CrossRef]
- Rees, T.D. Oral effects of drug abuse. Crit. Rev. Oral Biol. Med. 1992, 3, 163–184. [Google Scholar] [CrossRef]
- Titsas, A.; Ferguson, M.M. Impact of opioid use on dentistry. Aust. Dent. J. 2002, 47, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Krutchkoff, D.J.; Eisenberg, E.; O’Brien, J.E.; Ponzillo, J.J. Cocaine-induced dental erosions. N. Engl. J. Med. 1990, 322, 408. [Google Scholar] [CrossRef]
- Madinier, I.; Harrosch, J.; Dugourd, M.; Giraud-Morin, C.; Fosse, T. The buccal-dental health of drug addicts treated in the University hospital centre in Nice. Presse Med. 2003, 32, 919–923. [Google Scholar]
- Blanksma, C.J.; Brand, H.S. Cocaine abuse: Orofacial manifestations and implications for dental treatment. Int. Dent. J. 2005, 55, 365–369. [Google Scholar] [CrossRef]
- Wierichs, R.J.; Kramer, E.J.; Meyer-Lueckel, H. Risk factors for failure of direct restorations in general dental practices. J. Dent. Res. 2020, 99, 1039–1046. [Google Scholar] [CrossRef]
- McCracken, M.S.; Gordan, V.V.; Litaker, M.S.; Funkhouser, E.; Fellows, J.; Shamp, D.; Qvist, V.; Meral, J.S.; Gilbert, G.H. A 24-month evaluation of amalgam and resin-based composite restorations. J. Am. Dent. Assoc. 2013, 144, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Burke, F.J.; Lucarotti, P.S. The ultimate guide to restoration longevity in England and Wales. Part 4: Resin composite restorations: Time to next intervention and to extraction of the restored tooth. Br. Dent. J. 2018, 224, 945–946. [Google Scholar] [CrossRef]
- Silva, A.E.; Demarco, F.F.; Feldens, C.A. Oral health–related quality of life and associated factors in Southern Brazilian elderly. Gerodontology 2015, 32, 35–45. [Google Scholar] [CrossRef]
- Erum, G.E.; Fida, M. Changes in smile parameters as perceived by orthodontists, dentists, artists, and laypeople. World J. Orthod. 2008, 9, 132–140. [Google Scholar]
- Patzer, G. Understanding the causal relationship between physical attractiveness and self-esteem. J. Esthet. Dent. 1996, 3, 144–147. [Google Scholar] [CrossRef]
- Demarco, F.F.; Collares, K.; Correa, M.B.; Cenci, M.S.; Moraes, R.R.; Opdam, N.J. Should my composite restorations last forever? Why are they failing? Braz. Oral Res. 2017, 31, e56. [Google Scholar] [CrossRef]
- Camargo, M.B.J.; Dumith, S.C.; Barros, A.J. Regular use of dental care services by adults: Patterns of utilization and types of services. Cad. Saude Publica 2009, 25, 1894–1906. [Google Scholar] [CrossRef]
- Lucarotti, P.S.K.; Holder, R.L.; Burke, F.J.T. Outcome of direct restorations placed within the general dental services in England and Wales (Part 3): Variation by dentist factors. J. Dent. 2005, 33, 827–835. [Google Scholar] [CrossRef]
- Burke, F.J.T.; Lucarotti, P.S.K. How long do direct restorations placed within the general dental services in England and Wales survive? Br. Dent. J. 2009, 206, E2. [Google Scholar] [CrossRef]
- Bader, J.D.; Shugars, D.A.; Rozier, G.; Lohr, K.N.; Bonito, A.J.; Nelson, J.P.; Jackman, A.M. Diagnosis and management of dental caries. Evid. Rep. Technol. Assess. 2001, 36, 1–4. [Google Scholar]
- Brouwer, F.; Askar, H.; Paris, S.; Schwendicke, F. Detecting secondary caries lesions: A systematic review and meta-analysis. J. Dent. Res. 2016, 95, 143–151. [Google Scholar] [CrossRef]
- Davies, J.A. The relationship between change of dentist and treatment received in the General Dental Service. Br. Dent. J. 1984, 157, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Boyd, M.A. Amalgam replacement: Are decisions based on fact or tradition. Qual. Eval. Dent. Restor. Criteria Place. Replace. 1989, 73–82. [Google Scholar]
- Soncini, J.A.; Maserejian, N.N.; Trachtenberg, F.; Tavares, M.; Hayes, C. The longevity of amalgam versus compomer/composite restorations in posterior primary and permanent teeth: Findings From the New England Children’s Amalgam Trial. J. Am. Dent. Assoc. 2007, 138, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Simecek, J.W.; Diefenderfer, K.E.; Cohen, M.E. An evaluation of replacement rates for posterior resin-based composite and amalgam restorations in US Navy and marine corps recruits. J. Am. Dent. Assoc. 2009, 140, 200–209. [Google Scholar] [CrossRef]
- Samaha, S.; Bhatt, S.; Finkelman, M.; Papathanasiou, A.; Perry, R.; Strassler, H.; Kugel, G.; Garcia-Godoy, F.; Price, R. Effect of instruction, light curing unit, and location in the mouth on the energy delivered to simulated restorations. Am. J. Dent. 2017, 30, 343–349. [Google Scholar]
- Karacolak, G.; Turkun, L.S.; Boyacioglu, H.; Ferracane, J.L. Influence of increment thickness on radiant energy and microhardness of bulk-fill resin composites. Dent. Mater. J. 2018, 37, 206–213. [Google Scholar] [CrossRef]
- Brambilla, E.; Gagliani, M.; Ionescu, A.; Fadini, L.; García-Godoy, F. The influence of light-curing time on the bacterial colonization of resin composite surfaces. Dent. Mater. 2009, 25, 1067–1072. [Google Scholar] [CrossRef]
- Fan, P.L.; Schumacher, R.M.; Azzolin, K.; Geary, R.; Eichmiller, F.C. Curing-light intensity and depth of cure of resin-based composites tested according to international standards. J. Am. Dent. Assoc. 2002, 133, 429–434. [Google Scholar] [CrossRef]
- Al-Zain, A.O.; Platt, J.A. Effect of light-curing distance and curing time on composite microflexural strength. Dent. Mater. J. 2021, 40, 202–208. [Google Scholar] [CrossRef]
- Par, M.; Repusic, I.; Skenderovic, H.; Milat, O.; Spajic, J.; Tarle, Z. The effects of extended curing time and radiant energy on microhardness and temperature rise of conventional and bulk-fill resin composites. Clin. Oral Investig. 2019, 23, 3777–3788. [Google Scholar] [CrossRef] [PubMed]
- Leprince, J.G.; Palin, W.M.; Hadis, M.A.; Devaux, J.; Leloup, G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent. Mater. 2013, 29, 139–156. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Wang, Y. Influence of prolonged light-curing time on the shear bonding strength of resin to bleached enamel. Oper. Dent. 2010, 35, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Eshmawi, Y.T.; Al-Zain, A.O.; Eckert, G.J.; Platt, J.A. Variation in composite degree of conversion and microflexural strength for different curing lights and surface locations. J. Am. Dent. Assoc. 2018, 149, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Janda, R.; Roulet, J.F.; Latta, M.; Steffin, G.; Rüttermann, S. Color stability of resin-based filling materials after aging when cured with plasma or halogen light. Eur. J. Oral Sci. 2005, 113, 251–257. [Google Scholar] [CrossRef]
- Maktabi, H.; Ibrahim, M.; Alkhubaizi, Q.; Weir, M.; Xu, H.; Strassler, H.; Melo, M.A.S. Underperforming light curing procedures trigger detrimental irradiance-dependent biofilm response on incrementally placed dental composites. J. Dent. 2019, 88, 103110. [Google Scholar] [CrossRef]
- Ciccone-Nogueira, J.C.; Borsatto, M.C.; Souza-Zaron, W.C.D.; Ramos, R.P.; Palma-Dibb, R.G. Microhardness of composite resins at different depths varying the post-irradiation time. J. Appl. Oral Sci. 2007, 15, 305–309. [Google Scholar] [CrossRef]
- Aggarwal, N.; Jain, A.; Gupta, H.; Abrol, A.; Singh, C.; Rapgay, T. The comparative evaluation of depth of cure of bulk-fill composites–An in vitro study. J. Conserv. Dent. Endod. 2019, 22, 371–375. [Google Scholar] [CrossRef]
- Da Silva Pereira, R.A.; da Silva, G.R.; Barcelos, L.M.; Cavalcanti, K.G.B.A.; Herval, Á.M.; Ardenghi, T.M.; Soares, C.J. Practice-based analysis of direct posterior dental restorations performed in a public health service: Retrospective long-term survival in Brazil. PLoS ONE 2020, 15, e0243288. [Google Scholar] [CrossRef]
- Frankenberger, R.; Reinelt, C.; Petschelt, A.; Krämer, N. Operator vs. material influence on clinical outcome of bonded ceramic inlays. Dent. Mater. 2009, 25, 960–968. [Google Scholar] [CrossRef]
- Kawata, T.; Kawaguchi, T.; Yoda, N.; Ogawa, T.; Kuriyagawa, T.; Sasaki, K. Effects of a removable partial denture and its rest location on the forces exerted on an abutment tooth in vivo. Int. J. Prosthodont. 2008, 21, 50–52. [Google Scholar] [PubMed]
- Kramer, N.; Garcia-Godoy, F.; Reinelt, C.; Feilzer, A.J.; Frankenberger, R. Nanohybrid vs. fine hybrid composite in extended class II cavities after six years. Dent. Mater. 2011, 27, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Manhart, J.; Chen, H.Y.; Hickel, R. Clinical evaluation of the posterior composite Quixfil in class I and II cavities: 4-year follow-up of a randomized controlled trial. J. Adhes. Dent. 2010, 12, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Plasmans, P.J.; van’t Hof, M.A. A 4-year clinical evaluation of extensive amalgam restorations description of the failures. J. Oral Rehabil. 1993, 20, 561–570. [Google Scholar] [CrossRef]
- Shi, L.; Wang, X.; Zhao, Q.; Zhang, Y.; Zhang, L.; Ren, Y. Evaluation of packable and conventional hybrid resin composites in class I restorations: Three-year results of a randomized, double-blind and controlled clinical trial. Oper. Dent. 2010, 35, 11–19. [Google Scholar] [CrossRef]
- Akerboom, H.B.; Advokaat, J.G.; van Amerongen, W.E.; Borgmeijer, P.J. Long-term evaluation and restoration of amalgam restorations. Community Dent. Oral Epidemiol. 1993, 21, 45–48. [Google Scholar] [CrossRef]
- Kiremitci, A.; Alpaslan, T.; Gurgan, S. Six-year clinical evaluation of packable composite restorations. Oper. Dent. 2009, 34, 11–17. [Google Scholar] [CrossRef]
- Kohler, B.; Rasmusson, C.G.; Odman, P. A five-year clinical evaluation of class II composite resin restorations. J. Dent. 2000, 28, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Kopperud, S.E.; Tveit, A.B.; Gaarden, T.; Sandvik, L.; Espelid, I. Longevity of posterior dental restorations and reasons for failure. Eur. J. Oral Sci. 2012, 120, 539–548. [Google Scholar] [CrossRef]
- Lin, H.; Wang, J.; Yan, W. A three-year clinical evaluation of five light-cured composite resins in fillings of posterior teeth. Zhonghua Kou Qiang Yi Xue Za Zhi 1997, 32, 242–245. [Google Scholar]
- Mjor, I.A.; Jokstad, A. Five-year study of Class II restorations in permanent teeth using amalgam, glass polyalkenoate (ionomer) cement and resin-based composite materials. J. Dent. 1993, 21, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Burke, F.J.; Lucarotti, P.S. The ultimate guide to restoration longevity in England and Wales. Part 10: Key findings from a ten million restoration dataset. Br. Dent. J. 2018, 225, 1011–1016. [Google Scholar] [CrossRef] [PubMed]
- del Aguila, M.A.; Leggott, P.J.; Robertson, P.B.; Porterfield, D.L.; Felber, G.D. Practice patterns among male and female general dentists in a Washington State population. J. Am. Dent. Assoc. 2005, 136, 790–796. [Google Scholar] [CrossRef]
- Walton, S.M.; Byck, G.R.; Cooksey, J.A.; Kaste, L.M. Assessing differences in hours worked between male and female dentists: An analysis of cross-sectional national survey data from 1979 through 1999. J. Am. Dent. Assoc. 2004, 135, 637–645. [Google Scholar] [CrossRef]
- Ayers, K.M.; Thomson, W.M.; Rich, A.M.; Newton, J.T. Gender differences in dentists’ working practices and job satisfaction. J. Dent. 2008, 36, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Newton, J.T.; Buck, D.; Gibbons, D.E. Workforce planning in dentistry: The impact of shorter and more varied career patterns. Community Dent. Health 2001, 18, 236–241. [Google Scholar] [PubMed]
- Coppola, M.N.; Ozcan, Y.A.; Bogacki, R. Evaluation of performance of dental providers on posterior restorations: Does experience matter? A data envelopment analysis (DEA) approach. J. Med. Syst. 2003, 27, 445–456. [Google Scholar] [CrossRef]
- González-López, S.; De Haro-Gasquet, F.; Vílchez-Díaz, M.A.; Ceballos, L.; Bravo, M. Effect of restorative procedures and occlusal loading on cuspal deflection. Oper. Dent. 2006, 31, 33–38. [Google Scholar] [CrossRef]
- Gabel, A.B. The American Textbook of Operative Dentistry. 1954. Available online: https://books.google.ca/books/about/The_American_textbook_of_operative_denti.html?id=0iZqAAAAMAAJ&redir_esc=y (accessed on 27 June 2024).
- Rocca, G.T.; Krejci, I. Crown and post-free adhesive restorations for endodontically treated posterior teeth: From direct composite to endocrowns. Eur. J. Esthet. Dent. 2013, 8, 156–179. [Google Scholar]
- Moura, F.R.; Romano, A.R.; Lund, R.G.; Piva, E.; Rodrigues Junior, S.A.; Demarco, F.F. Three-year clinical performance of composite restorations placed by undergraduate dental students. Braz. Dent. J. 2011, 22, 111–116. [Google Scholar] [CrossRef]
- Afrashtehfar, K.I.; Emami, E.; Ahmadi, M.; Eilayyan, O.; Abi-Nader, S.; Tamimi, F. Failure rate of single-unit restorations on posterior vital teeth: A systematic review. J. Prosthet. Dent. 2017, 117, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Beck, F.; Lettner, S.; Graf, A.; Bitriol, B.; Dumitrescu, N.; Bauer, P.; Moritz, A.; Schedle, A. Survival of direct resin restorations in posterior teeth within a 19-year period (1996-2015): A meta-analysis of prospective studies. Dent. Mater. 2015, 31, 958–985. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Kim, B.S.; Kim, Y. Cracked teeth: Distribution, characteristics, and survival after root canal treatment. J. Endod. 2016, 42, 557–562. [Google Scholar] [CrossRef]
- Nuamwisudhi, P.; Jearanaiphaisarn, T. Oral functional behaviors and tooth factors associated with cracked teeth in asymptomatic patients. J. Endod. 2021, 47, 1383–1390. [Google Scholar] [CrossRef]
- Auschill, T.M.; Koch, C.A.; Wolkewitz, M.; Hellwig, E.; Arweiler, N.B. Occurrence and causing stimuli of postoperative sensitivity in composite restorations. Oper. Dent. 2009, 34, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Raedel, M.; Hartmann, A.; Bohm, S.; Priess, H.W.; Samietz, S.; Konstantinidis, I.; Walter, M.H. Four-year outcomes of restored posterior tooth surfaces—A massive data analysis. Clin. Oral Investig. 2017, 21, 2819–2825. [Google Scholar] [CrossRef]
Patient-Related Factors | Description | References |
---|---|---|
Oral Hygiene Practices | Type of toothpaste used, frequency of brushing, flossing habits, and use of mouthwash. | Heintze et al., 2012 [9]; De Paola, 1983 [29]; Murray, 1991 [30]; Marinho, 2003, 2004 [31,32]; Twetman, 2004 [33]; Van de Sande et al., 2013 [34]; and Opdam et al., 2010 [35]. |
Dietary Habits | Frequency of snacking, consumption of fermentable carbohydrates, and acid exposure from food and drink. | Chapple et al., 2017 [17]; Pitts et al., 2021 [25]; Marsh, 2003 [36]; and Beyth et al., 2008 [37]. |
Medical Conditions | Systemic diseases (e.g., diabetes and xerostomia) and the use of medications causing dry mouth. | Nederfors et al., 1997 [38]; Villa et al., 2011 [39]; Iorgulescu, 2009 [40]; Scully, 2003 [41]; and Reeh et al., 1989 [42]. |
Lifestyle Factors | Smoking and parafunctional habits (e.g., bruxism). | Benedetti et al., 2013 [43]; Jiang et al., 2019 [44]; and Thomson et al., 2004 [45]. |
Psychological Factors | Stress and associated behaviors (e.g., bruxism) and psychological conditions affecting self-care. | Bauer et al., 2012 [46] and Witt and Flores-Mir, 2011 [47] |
Salivary Factors | Salivary flow rate and composition and the presence of salivary proteins and enzymes. | Proctor, 2016 [48]; Kaur et al., 2012 [49]; and Nederfors et al., 1997 [38]. |
Socioeconomic Status | Access to dental care, education level, and adherence to oral health advice. | Peres et al., 2007 [50]; Thomson et al., 2004 [45]; Crocombe et al., 2012 [51]; and Correa et al., 2013 [52]. |
Age and Gender | Age-related changes in oral health and gender differences in oral health practices. | Linnemann et al., 2021 [53]; Silva et al., 2015 [54]; and Ayers et al., 2008 [55]. |
Operator-Related Factors | Description | References |
---|---|---|
Experience and Technique | The longevity of restorations was positively correlated with the dentist’s experience, particularly in adhesive protocols and moisture control techniques. Inadequate curing and poor isolation during procedures were major contributors to restoration failure. | Ferracane and Lawson, 2021 [56]; Jandt and Mills, 2013 [57]; Kopperud et al., 2017 [58]; Maktabi et al., 2018 [59]; and Opdam et al., 2010 [35]. |
Practice Environment | Restorations placed in larger group practices exhibited higher failure rates than those placed in smaller practices, potentially due to variations in technique and patient management among different practitioners. | Laske et al., 2016 [60]; Trachtenberg et al., 2008 [61]; Linnemann et al., 2021 [53]; Van de Sande et al., 2013 [34]; and Collares et al., 2017 [62]. |
Decision-Making Process | Dentists’ approach to treatment—whether proactive (early intervention) or reactive (monitoring and delayed intervention)—impacted the longevity of restorations, with proactive approaches sometimes leading to over-treatment and higher failure rates. | Lucarotti and Burke, 2018 [22]; Elderton, 1977 [63]; Elderton and Nuttall, 1983 [64]; Bader and Shugars, 1992 [65]; and Gordan et al., 2012 [66]. |
Tooth-Related Factors | Description | References |
---|---|---|
Cavity Size and Location | Larger cavities and those located in posterior teeth, particularly molars, exhibited higher failure rates. MOD cavities and those involving significant dentin loss were more prone to fractures. | Opdam et al., 2014 [16]; Lempel et al., 2019 [67]; Van Nieuwenhuysen et al., 2003 [68]; and Mondelli et al., 1980 [69]. |
Tooth Vitality | Restorations on endodontically treated teeth had a higher failure rate compared to vital teeth. Teeth requiring endodontic treatment were at a higher risk of restoration failure due to reduced tooth structure and changes in biomechanical properties. | Lempel et al., 2019 [67]; Mogano et al., 2004 [70]; Trushkosky, 2014 [71]; Reeh et al., 1989 [42]; and Bhuva et al., 2021 [72]. |
Tooth Position | Restorations on molars had a lower survival rate than those on premolars or anterior teeth, likely due to higher occlusal forces. | Opdam et al., 2014 [16]; Lucarotti and Burke, 2018 [22]; Bartlett and Sundaram, 2006 [73]; and Van Nieuwenhuysen et al., 2003 [68]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, M.J.M.C.; Zare, E.; McDermott, P.; Santos Junior, G.C. Multifactorial Contributors to the Longevity of Dental Restorations: An Integrated Review of Related Factors. Dent. J. 2024, 12, 291. https://doi.org/10.3390/dj12090291
Santos MJMC, Zare E, McDermott P, Santos Junior GC. Multifactorial Contributors to the Longevity of Dental Restorations: An Integrated Review of Related Factors. Dentistry Journal. 2024; 12(9):291. https://doi.org/10.3390/dj12090291
Chicago/Turabian StyleSantos, Maria Jacinta Moraes Coelho, Elham Zare, Peter McDermott, and Gildo Coelho Santos Junior. 2024. "Multifactorial Contributors to the Longevity of Dental Restorations: An Integrated Review of Related Factors" Dentistry Journal 12, no. 9: 291. https://doi.org/10.3390/dj12090291
APA StyleSantos, M. J. M. C., Zare, E., McDermott, P., & Santos Junior, G. C. (2024). Multifactorial Contributors to the Longevity of Dental Restorations: An Integrated Review of Related Factors. Dentistry Journal, 12(9), 291. https://doi.org/10.3390/dj12090291