Study of Podoplanin-Deficient Mouse Bone with Mechanical Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Ethics
2.2. Generation of Podoplanin-cKO Mice
2.3. Breeding and Animal Experiments
2.4. Histochemistry
2.5. Reverse Transcription (RT)-PCR and Real-Time PCR
2.6. Scanning Electron Microscopy (SEM)
2.7. Statistical Analysis
3. Results
3.1. Osteocytes in Dmp1-Cre;PdpnΔ/Δ and Aging Mice
3.2. Analysis of the Absorption of Dmp1-Cre;PdpnΔ/Δ Alveolar Bone Under Mechanical Stress and Osteoclast Differentiation Markers
4. Discussion
4.1. Comparative Studies on Osteocyte Cell Processes Between Dmp1-Cre;PdpnΔ/Δ and Aging Mice
4.2. Comparative Studies on Bone Resorption with Mechanical Stress Between Dmp1-Cre;PdpnΔ/Δ and Wild-Type Mice
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kato, Y.; Fujita, N.; Kunita, A.; Sato, S.; Kaneko, M.; Osawa, M. Molecular identification of Aggrus/T1α as a platelet aggregation-inducing factor expressed in colorectal tumors. J. Biol. Chem. 2003, 278, 51599–51605. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Kaneko, M.K. A cancer-specific monoclonal antibody recognizes the aberrantly glycosylated podoplanin. Sci. Rep. 2014, 4, 5924. [Google Scholar] [CrossRef] [PubMed]
- Schacht, V.; Ramirez, M.I.; Hong, Y.K.; Hirakawa, S.; Feng, D.; Harvey, N.; Williams, M.; Dvorak, A.M.; Dvorak, H.F.; Oliver, G.; et al. T1a/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 2003, 22, 3546–3556. [Google Scholar] [CrossRef] [PubMed]
- Takara, K.; Maruo, N.; Oka, K.; Kaji, C.; Hatakeyama, Y.; Sawa, N.; Kato, Y.; Yamashita, J.; Kojima, H.; Sawa, Y. Morphological study of tooth development in podoplanin-deficient mice. PLoS ONE 2017, 12, e0171912. [Google Scholar] [CrossRef]
- Nose, K.; Saito, H.; Kuroki, T. Isolation of a gene sequence induced later by tumor-promoting 12-O-tetradecanoylphorbol-13-acetate in mouse osteoblastic cells (MC3T3-E1) and expressed constitutively in ras-transformed cells. Cell Growth Differ. 1990, 1, 511–518. [Google Scholar]
- Farr, A.G.; Berry, M.L.; Kim, A.; Nelson, A.J.; Welch, M.P.; Aruffo, A. Characterization and cloning of a novel glycoprotein expressed by stromal cells in T-dependent areas of peripheral lymphoid tissues. J. Exp. Med. 1992, 176, 1477–1482. [Google Scholar] [CrossRef]
- Wetterwald, A.; Hoffstetter, W.; Cecchini, M.G.; Lanske, B.; Wagner, C.; Fleisch, H.; Atkinson, M. Characterization and cloning of the E11 antigen, a marker expressed by rat osteoblasts and osteocytes. Bone 1996, 18, 125–132. [Google Scholar] [CrossRef]
- Hadjiargyrou, M.; Rightmire, E.P.; Ando, T.; Lombardo, F.T. The E11 osteoblastic lineage marker is differentially expressed during fracture healing. Bone 2001, 29, 149–154. [Google Scholar] [CrossRef]
- Schulze, E.; Witt, M.; Kasper, M.; Löwik, C.W.; Funk, R.H. Immunohistochemical investigations on the differentiation marker protein E11 in rat calvaria, calvaria cell culture and the osteoblastic cell line ROS 17/2.8. Histochem Cell Biol. 1999, 111, 61–69. [Google Scholar] [CrossRef]
- Vazquez, M.; Evans, B.A.; Riccardi, D.; Evans, S.L.; Ralphs, J.R.; Dillingham, C.M.; Mason, D.J. A new method to investigate how mechanical loading of osteocytes controls osteoblasts. Front. Endocrinol. 2014, 5, 208. [Google Scholar] [CrossRef]
- Zhang, K.; Barragan-Adjemian, C.; Ye, L.; Kotha, S.; Dallas, M.; Lu, Y.; Zhao, S.; Harris, M.; Harris, S.E.; Feng, J.Q.; et al. E11/gp38 selective expression in osteocytes: Regulation by mechanical strain and role in dendrite elongation. Mol. Cell Biol. 2006, 26, 4539–4552. [Google Scholar] [CrossRef] [PubMed]
- Atkins, G.J.; Rowe, P.S.; Lim, H.P.; Welldon, K.J.; Ormsby, R.; Wijenayaka, A.R.; Zelenchuk, L.; Evdokiou, A.; Findlay, D.M. Sclerostin is a locally acting regulator of late-osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE-ASARM-dependent mechanism. J. Bone Miner. Res. 2011, 26, 1425–1436. [Google Scholar] [CrossRef]
- Meury, T.; Akhouayri, O.; Jafarov, T.; Mandic, V.; St-Arnaud, R. Nuclear alpha NAC influences bone matrix mineralization and osteoblast maturation in vivo. Mol. Cell Biol. 2010, 30, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Ohizumi, I.; Harada, N.; Taniguchi, K.; Tsutsumi, Y.; Nakagawa, S.; Kaiho, S.; Mayumi, T. Association of CD44 with OTS-8 in tumor vascular endothelial cells. Biochim. Biophys. Acta 2000, 1497, 197–203. [Google Scholar] [CrossRef]
- Woo, S.M.; Rosser, J.; Dusevich, V.; Kalajzic, I.; Bonewald, L.F. Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo. J. Bone Miner. Res. 2011, 26, 2634–2646. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, C.; Yuen, J.; Klein, T.; Crawford, R.; Xiao, Y. Influence of osteocytes in the in vitro and in vivo β-tricalcium phosphate-stimulated osteogenesis. J. Biomed. Mater. Res. A 2014, 102, 2813–2823. [Google Scholar] [CrossRef]
- Prideaux, M.; Loveridge, N.; Pitsillides, A.A.; Farquharson, C. Extracellular matrix mineralization promotes E11/gp38 glycoprotein expression and drives osteocytic differentiation. PLoS ONE 2012, 7, e36786. [Google Scholar] [CrossRef]
- Zhu, D.; Mackenzie, N.C.; Millán, J.L.; Farquharson, C.; MacRae, V.E. The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS ONE 2011, 6, e19595. [Google Scholar] [CrossRef]
- Rath, B.; Nam, J.; Knobloch, T.J.; Lannutti, J.J.; Agarwal, S. Compressive forces induce osteogenic gene expression in calvarial osteoblasts. J. Biomech. 2008, 41, 1095–1103. [Google Scholar] [CrossRef]
- Choi, J.U.A.; Kijas, A.W.; Lauko, J.; Rowan, A.E. The mechanosensory role of osteocytes and implications for bone health and disease states. Front. Cell Dev. Biol. 2022, 9, 770143. [Google Scholar] [CrossRef]
- Takenawa, T.; Kanai, T.; Kitamura, T.; Yoshimura, Y.; Sawa, Y.; Iida, J. Expression and Dynamics of Podoplanin in Cultured Osteoblasts with Mechanostress and Mineralization Stimulus. Acta Histochem. Cytochem. 2018, 51, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Kanai, T.; Sawa, Y.; Sato, Y. Cancellation of the calcification in cultured osteoblasts by CLEC-2. J. Hard Tissue Biol. 2021, 30, 53–62. [Google Scholar] [CrossRef]
- Osawa, K.; Kanai, T.; Ushijima, N.; Kajiwara, K.; Sawa, Y.; Sato, Y. Morphological study for the osteocytes in podoplanin-conditional knockout mice. J. Hard Tissue Biol. 2023, 32, 213–222. [Google Scholar] [CrossRef]
- Belkina, N.V.; Liu, Y.; Hao, J.J.; Karasuyama, H.; Shaw, S. LOK is a major ERM kinase in resting lymphocytes and regulates cytoskeletal rearrangement through ERM phosphorylation. Proc. Natl. Acad. Sci. USA 2009, 106, 4707–4712. [Google Scholar] [CrossRef] [PubMed]
- Lan, M.; Kojima, T.; Murata, M.; Osanai, M.; Takano, K.; Chiba, H.; Sawada, N. Phosphorylation of ezrin enhances microvillus length via a p38 MAP-kinase pathway in an immortalized mouse hepatic cell line. Exp. Cell Res. 2006, 312, 111–120. [Google Scholar] [CrossRef]
- Martín-Villar, E.; Megías, D.; Castel, S.; Yurrita, M.M.; Vilaró, S.; Quintanilla, M. Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. J. Cell Sci. 2006, 119, 4541–4553. [Google Scholar] [CrossRef]
- Acton, S.E.; Farrugia, A.J.; Astarita, J.L.; Mourão-Sá, D.; Jenkins, R.P.; Nye, E.; Hooper, S.; van Blijswijk, J.; Rogers, N.C.; Snelgrove, K.J.; et al. Dendritic cells control fibroblastic reticular network tension and lymph node expansion. Nature 2014, 514, 498–502. [Google Scholar] [CrossRef]
- Astarita, J.L.; Cremasco, V.; Fu, J.; Darnell, M.C.; Peck, J.R.; Nieves-Bonilla, J.M.; Song, K.; Kondo, Y.; Woodruff, M.C.; Gogineni, A.; et al. The CLEC-2-podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nat. Immunol. 2015, 16, 75–84. [Google Scholar] [CrossRef]
- Nakai, T.; Yoshimura, Y.; Deyama, Y.; Suzuki, K.; Iida, J. Mechanical stress up-regulates RANKL expression via the VEGF autocrine pathway in osteoblastic MC3T3-E1 cells. Mol. Med. Rep. 2009, 2, 229–234. [Google Scholar]
- Sanuki, R.; Shionome, C.; Kuwabara, A.; Mitsui, N.; Koyama, Y.; Suzuki, N.; Zhang, F.; Shimizu, N.; Maeno, M. Compressive force induces osteoclast differentiation via prostaglandin E(2) production in MC3T3-E1 cells. Connect. Tissue Res. 2010, 51, 150–158. [Google Scholar] [CrossRef]
- Nakano, Y.; Yamaguchi, M.; Fujita, S.; Asano, M.; Saito, K.; Kasai, K. Expressions of RANKL/RANK and M-CSF/c-fms in root resorption lacunae in rat molar by heavy orthodontic force. Eur. J. Orthod. 2011, 33, 335–343. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanai, T.; Osawa, K.; Kajiwara, K.; Sato, Y.; Sawa, Y. Study of Podoplanin-Deficient Mouse Bone with Mechanical Stress. Dent. J. 2025, 13, 61. https://doi.org/10.3390/dj13020061
Kanai T, Osawa K, Kajiwara K, Sato Y, Sawa Y. Study of Podoplanin-Deficient Mouse Bone with Mechanical Stress. Dentistry Journal. 2025; 13(2):61. https://doi.org/10.3390/dj13020061
Chicago/Turabian StyleKanai, Takenori, Kyoko Osawa, Koichiro Kajiwara, Yoshiaki Sato, and Yoshihiko Sawa. 2025. "Study of Podoplanin-Deficient Mouse Bone with Mechanical Stress" Dentistry Journal 13, no. 2: 61. https://doi.org/10.3390/dj13020061
APA StyleKanai, T., Osawa, K., Kajiwara, K., Sato, Y., & Sawa, Y. (2025). Study of Podoplanin-Deficient Mouse Bone with Mechanical Stress. Dentistry Journal, 13(2), 61. https://doi.org/10.3390/dj13020061