Mechanical Behaviour of Orthodontic Auxiliary Photopolymerisable Resins in Simulated Oral Conditions: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosvall, M.D.; Fields, H.W.; Ziuchkovski, J.; Rosenstiel, S.F.; Johnston, W.M. Attractiveness, acceptability, and value of orthodontic appliances. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 276.e1–276.e12. [Google Scholar] [CrossRef]
- Rossini, G.; Parrini, S.; Castroflorio, T.; Deregibus, A.; Debernardi, C.L. Efficacy of clear aligners in controlling orthodontic tooth movement: A systematic review. Angle Orthod. 2015, 85, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Favero, R.; Libralato, L.; Balestro, F.; Volpato, A.; Favero, L. Edge level of aligners and periodontal health: A clinical perspective study in young patients. Dental Press. J. Orthod. 2023, 28, e2321124. [Google Scholar] [CrossRef] [PubMed]
- Ronsivalle, V.; Gastaldi, G.; Fiorillo, G.; Amato, A.; Loreto, C.; Leonardi, R.; Lo Giudice, A. Customized Facial Orthopedics: Proof of Concept for Generating 3D-Printed Extra-Oral Appliance for Early Intervention in Class III Malocclusion. Prosthesis 2024, 6, 135–145. [Google Scholar] [CrossRef]
- Favero, R.; Volpato, A.; Favero, L. Managing early orthodontic treatment with clear aligners. J. Clin. Orthod. 2018, 52, 701–709. [Google Scholar] [PubMed]
- Jedliński, M.; Mazur, M.; Greco, M.; Belfus, J.; Grocholewicz, K.; Janiszewska-Olszowska, J. Attachments for the Orthodontic Aligner Treatment—State of the Art—A Comprehensive Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 4481. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Wang, C.; Li, L.; He, Y.; Wang, C.; Song, J.; Wang, L.; Fan, Y. The effects of lingual buttons, precision cuts, and patient-specific attachments during maxillary molar distalization with clear aligners: Comparison of finite element analysis. Am. J. Orthod. Dentofac. Orthop. 2023, 163, e1–e12. [Google Scholar] [CrossRef]
- Skaik, A.; Wei, X.L.; Abusamak, I.; Iddi, I. Effects of time and clear aligner removal frequency on the force delivered by different polyethylene terephthalate glycol-modified materials determined with thin-film pressure sensors. Am. J. Orthod. Dentofac. Orthop. 2019, 155, 98–107. [Google Scholar] [CrossRef]
- ISO 604:2002; Plastics—Determination of Compressive Properties. International Organization for Standardization (ISO): Geneva, Switzerland, 2002.
- Bresolato, D.; Volpato, A.; Favero, L.; Favero, R. Effect of Water-Based Disinfectants or Air-Drying on Dimensional Changes in a Thermoplastic Orthodontic Aligner. Materials 2021, 14, 7850. [Google Scholar] [CrossRef]
- Porcayo-Calderon, J.; Casales-Diaz, M.; Salinas-Bravo, V.M.; Martinez-Gomez, L. Corrosion Performance of Fe-Cr-Ni Alloys in Artificial Saliva and Mouthwash Solution. Bioinorg. Chem. Appl. 2015, 1, 930802. [Google Scholar] [CrossRef] [PubMed]
- Duffó, G.S.; Castillo, E.Q. Development of an Artificial Saliva Solution for Studying the Corrosion Behavior of Dental Alloys. Corrosion 2004, 60, 594–602. [Google Scholar] [CrossRef]
- Afraz, W.; Sunilkumar, P.; Chaudhari, A.; Patil, C.; Yaragamblimath, P.; Survase, R. Leaching from thermoplastic sheets-a quantitative assessment. Int. J. Contemp. Med. Res. 2016, 3, 1518–1521. [Google Scholar]
- Keskus, B.; Oznurhan, F. Comparison of physical and mechanical properties of three different restorative materials in primary teeth: An in vitro study. Eur. Arch. Paediatr. Dent. 2022, 23, 821–828. [Google Scholar] [CrossRef]
- Maiorov, E.E.; Shalamai, L.I.; Mendosa, E.Y.; Lampusova, V.B.; Oksas, N.S. Determination of the Mechanical Properties of Contemporary Dental Composite Materials by a Stretching Method. Biomed. Eng. 2022, 56, 242–246. [Google Scholar] [CrossRef]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 2003, 24, 655–665. [Google Scholar] [CrossRef]
- Arya, R.K.; Thapliyal, D.; Sharma, J.; Verros, G.D. Glassy Polymers—Diffusion, Sorption, Ageing and Applications. Coatings 2021, 11, 1049. [Google Scholar] [CrossRef]
- Biradar, B.; Biradar, S.; Ms, A. Evaluation of the Effect of Water on Three Different Light Cured Composite Restorative Materials Stored in Water: An In Vitro Study. Int. J. Dent. 2012, 1, 640942. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.T.; He, J.W.; Lin, Z.M.; Liu, F.; Lassila, L.V.; Vallittu, P.K. Physical and chemical properties of an antimicrobial Bis-GMA free dental resin with quaternary ammonium dimethacrylate monomer. J. Mech. Behav. Biomed. Mater. 2016, 56, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Soderholm, K.-J.M.; Roberts, M.J. Influence of Water Exposure on the Tensile Strength of Composites. J. Dent. Res. 1990, 69, 1812–1816. [Google Scholar] [CrossRef]
- Monterubbianesi, R.; Tosco, V.; Sabbatini, S.; Orilisi, G.; Conti, C.; Özcan, M.; Orsini, G.; Putignano, A. How Can Different Polishing Timing Influence Methacrylate and Dimethacrylate Bulk Fill Composites? Evaluation of Chemical and Physical Properties. Biomed. Res. Int. 2020, 1, 1965818. [Google Scholar] [CrossRef]
- Sarrett, D.C.; Söderholm, K.-J.M.; Batich, C.D. Water and Abrasive Effects on Three-body Wear of Composites. J. Dent. Res. 1991, 70, 1074–1081. [Google Scholar] [CrossRef]
- Prakki, A.; Cilli, R.; Mondelli RF, L.; Kalachandra, S.; Pereira, J.C. Influence of pH environment on polymer based dental material properties. J. Dent. 2005, 33, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Dhanpal, P.; Yiu CK, Y.; King, N.M.; Tay, F.R.; Hiraishi, N. Effect of temperature on water sorption and solubility of dental adhesive resins. J. Dent. 2009, 37, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Isshen, B.A.; Willmann, J.H.; Nimer, A.; Drescher, D. Effect of in vitro aging by water immersion and thermocycling on the mechanical properties of PETG aligner material. J. Orofac. Orthop. 2019, 80, 292. [Google Scholar]
- Al-Zain, A.O.; Platt, J.A. Effect of light-curing distance and curing time on composite microflexural strength. Dent. Mater. J. 2021, 40, 202–208. [Google Scholar] [CrossRef]
- Lovadino, J.R.; Ambrosano GM, B.; Aguiar FH, B.; Braceiro, A.; Lima DA, N.L. Effect of Light Curing Modes and Light Curing Time on the Microhardness of a Hybrid Composite Resin. J. Contemp. Dent. Pract. 2007, 8, 1–8. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Fok AS, L.; Watts, D.C. Multiple correlations of material parameters of light-cured dental composites. Dent. Mater. 2009, 25, 829–836. [Google Scholar] [CrossRef]
- Selig, D.; Haenel, T.; Hausnerová, B.; Moeginger, B.; Labrie, D.; Sullivan, B.; Price, R.B. Examining exposure reciprocity in a resin based composite using high irradiance levels and real-time degree of conversion values. Dent. Mater. 2015, 31, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Randolph, L.D.; Palin, W.M.; Watts, D.C.; Genet, M.; Devaux, J.; Leloup, G.; Leprince, J.G. The effect of ultra-fast photopolymerisation of experimental composites on shrinkage stress, network formation and pulpal temperature rise. Dent. Mater. 2014, 30, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- Francesco, P.; Gabriele, C.; Fiorillo, L.; Giuseppe, M.; Antonella, S.; Giancarlo, B.; Mirta, P.; Mendes Tribst, J.P.; Lo Giudice, R. The Use of Bulk Fill Resin-Based Composite in the Sealing of Cavity with Margins in Radicular Cementum. Eur. J. Dent. 2022, 16, 1–13. [Google Scholar] [CrossRef]
- Tamburrino, F.; D’Antò, V.; Bucci, R.; Alessandri-Bonetti, G.; Barone, S.; Razionale, A.V. Mechanical Properties of Thermoplastic Polymers for Aligner Manufacturing: In Vitro Study. Dent. J. 2020, 8, 47. [Google Scholar] [CrossRef] [PubMed]
Component | Content (g/L) |
---|---|
NaCl | 0.6 |
KCl | 0.72 |
CaCl2·2H2O | 0.22 |
KH2PO4 | 0.68 |
Na2HPO4·12H2O | 0.856 |
KSCN | 0.06 |
NaHCO3 | 1.5 |
C₆H₈O₇ | 0.03 |
Group | Mean (MPa) | Standard Deviation (MPa) | Minimum (MPa) | Maximum (MPa) | Range (MPa) |
---|---|---|---|---|---|
10 s NB | 1673.6 | 210.1 | 1340.6 | 1996.0 | 655.4 |
5 s NB | 1665.9 | 154.6 | 1331.4 | 1847.1 | 515.7 |
10 s B | 1638.1 | 203.2 | 1324.3 | 1897.1 | 572.8 |
5 s B | 1454.5 | 137.7 | 1210.4 | 1676.7 | 466.3 |
Factors | Count | Mean (MPa) | Standard Error (MPa) | Lower Limit (MPa) | Upper Limit (MPa) |
---|---|---|---|---|---|
Bath | |||||
NO | 24 | 1669.7 | 36.6 | 1596.1 | 1743.4 |
YES | 24 | 1546.3 | 36.6 | 1472.6 | 1620.0 |
Time | |||||
5 s | 24 | 1560.2 | 36.6 | 1486.5 | 1633.9 |
10 s | 24 | 1655.9 | 36.6 | 1582.2 | 1729.5 |
bath × time | |||||
NO—5 s | 12 | 1665.9 | 51.7 | 1561.7 | 1770.1 |
NO—10 s | 12 | 1673.6 | 51.7 | 1569.4 | 1777.8 |
YES—5 s | 12 | 1454.5 | 51.7 | 1350.3 | 1558.7 |
YES—10 s | 12 | 1638.1 | 51.7 | 1533.9 | 1742.3 |
OVERALL MEAN | 48 | 1608.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Favero, R.; Zanetti, T.; Tosco, V.; Monterubbianesi, R.; Volpato, A. Mechanical Behaviour of Orthodontic Auxiliary Photopolymerisable Resins in Simulated Oral Conditions: An In Vitro Study. Dent. J. 2025, 13, 67. https://doi.org/10.3390/dj13020067
Favero R, Zanetti T, Tosco V, Monterubbianesi R, Volpato A. Mechanical Behaviour of Orthodontic Auxiliary Photopolymerisable Resins in Simulated Oral Conditions: An In Vitro Study. Dentistry Journal. 2025; 13(2):67. https://doi.org/10.3390/dj13020067
Chicago/Turabian StyleFavero, Riccardo, Tommaso Zanetti, Vincenzo Tosco, Riccardo Monterubbianesi, and Andrea Volpato. 2025. "Mechanical Behaviour of Orthodontic Auxiliary Photopolymerisable Resins in Simulated Oral Conditions: An In Vitro Study" Dentistry Journal 13, no. 2: 67. https://doi.org/10.3390/dj13020067
APA StyleFavero, R., Zanetti, T., Tosco, V., Monterubbianesi, R., & Volpato, A. (2025). Mechanical Behaviour of Orthodontic Auxiliary Photopolymerisable Resins in Simulated Oral Conditions: An In Vitro Study. Dentistry Journal, 13(2), 67. https://doi.org/10.3390/dj13020067