Affordable Processing of Edible Orthopterans Provides a Highly Nutritive Source of Food Ingredients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rearing and Maintenance of Insect Colonies
2.2. Sample Preparation
2.3. Nutritional Composition Parameters of the Three Insects
2.3.1. Amino Acid Analysis
2.3.2. Fatty Acid Analysis
2.3.3. Mineral and Trace Elemental Analysis
2.4. Predicted Nutritional Quality Parameters
2.4.1. Protein Quality
Predicted Protein Efficiency Ratio
Essential Amino Acid Index
Predicted Biological Value
Nutritional Index
2.4.2. Lipid Quality
2.5. Statistical Analyses
3. Results
3.1. Proximate Composition
3.2. Amino Acid Content
3.3. Fatty Acid Content
3.4. Mineral Composition and Vitamin B12 Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gahukar, R.T. Entomophagy and human food security. Int. J. Trop. Insect Sci. 2011, 31, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Vantomme, P.; Mertens, E.; Van huis, A.; Klundr, H. Assessing the Potential of Insects as Food and Feed in assuring Food Security. In Proceedings of the Technical Consultation Meeting, Rome, Italy, 23–25 January 2012; pp. 563–583. [Google Scholar]
- Birgit, A.; Rumpold, O.K.S. Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar]
- Jongema, Y. World List of Edible Insects; Wageningen University: Wageningen, The Netherlands, 2015; Volume 2015, pp. 1–75. [Google Scholar]
- Meyer-rochow, V.B. Can insects help to ease the problem of world food shortage? Search 1975, 6, 261–262. [Google Scholar]
- DeFoliart, G.R. The Human Use of Insects as Food and as Animal Feed. Bull. Entomol. Soc. Am. 1989, 35, 22–36. [Google Scholar] [CrossRef]
- Van Huis, A. Potential of Insects as Food and Feed in Assuring Food Security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef]
- Halloran, A.; Vantomme, P.; Hanboonsong, Y.; Ekesi, S. Regulating edible insects: The challenge of addressing food security, nature conservation, and the erosion of traditional food culture. Food Secur. 2015, 7, 739–746. [Google Scholar] [CrossRef]
- Caparros Megido, R.; Sablon, L.; Geuens, M.; Brostaux, Y.; Alabi, T.; Blecker, C.; Drugmand, D.; Haubruge, E.; Francis, F. Edible insects acceptance by Belgian consumers: Promising attitude for entomophagy development. J. Sens. Stud. 2014, 29, 14–20. [Google Scholar] [CrossRef]
- Pener, M.P.; Simpson, S.J. Locust Phase Polyphenism: An Update. Adv. Insect Phys. 2009, 36, 1–272. [Google Scholar]
- Cullen, D.A.; Cease, A.J.; Latchininsky, A.V.; Ayali, A.; Berry, K.; Buhl, J.; De Keyser, R.; Foquet, B.; Hadrich, J.C.; Matheson, T.; et al. From Molecules to Management: Mechanisms and Consequences of Locust Phase Polyphenism; Academic Press Inc.: Cambridge, UK; London, UK, 2017; Volume 53. [Google Scholar]
- Meinzingen, W. A Guide to Migrant Pest Management in Africa; Food and Agriculture Organization of the United Nations: Rome, Italy, 1993. [Google Scholar]
- Mohamed, E.H.A.A. Determination of Nutritive Value of the Edible migratory locust Locusta migratoria, Linnaeus, 1758 (Orthoptera: Acrididae). Int. J. Adv. Inpharmacy Biol. Chem. 2015, 4, 144–148. [Google Scholar]
- The Year of the Locust—The Mail & Guardian. Available online: https://mg.co.za/article/2020-02-21-the-year-of-the-locust-2/ (accessed on 23 March 2020).
- Cerritos, R.; Cano-Santana, Z. Harvesting grasshoppers Sphenarium purpurascens in Mexico for human consumption: A comparison with insecticidal control for managing pest outbreaks. Crop Prot. 2008, 27, 473–480. [Google Scholar] [CrossRef]
- Khusro, M.; Andrew, N.R.; Nicholas, A. Insects as poultry feed: A scoping study for poultry production systems in Australia. Worlds Poult. Sci. J. 2012, 68, 435–446. [Google Scholar] [CrossRef]
- Hanboonsong, Y.; Jamjanya, T.; Durst, P.B. Six-legged livestock: Edible Insect Farming, Collecting and Marketing in Thailand; Food and Agriculture Organization of the United Nations: Bangkok, Thailand, 2013. [Google Scholar]
- Lundy, M.E.; Parrella, M.P. Crickets are not a free lunch: Protein capture from scalable organic side-streams via high-density populations of Acheta domesticus. PLoS ONE 2015, 10, e0118785. [Google Scholar]
- Ayieko, M.A.A.; Ogola, H.J.J.; Ayieko, I.A.A. Introducing rearing crickets (gryllids) at household levels: Adoption, processing and nutritional values. J. Insects Food Feed 2016, 2, 203–211. [Google Scholar]
- Belluco, S.; Losasso, C.; Maggioletti, M.; Alonzi, C.C.; Paoletti, M.G.; Ricci, A. Edible Insects in a Food Safety and Nutritional Perspective: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 296–313. [Google Scholar] [CrossRef]
- Wang, D.; Shao, W.Z.; Chuan, X.Z.; Yao, Y.B.; Shi, H.A.; Ying, N.X. Evaluation on nutritional value of field crickets as a poultry feedstuff. Asian Australas. J. Anim. Sci. 2005, 18, 667–670. [Google Scholar]
- FAO Desert Locust situation update 4 May 2020. Available online: http://www.fao.org/ag/locusts/en/info/info/index.html (accessed on 6 May 2020).
- Fombong, F.T.; Van Der Borght, M.; Vanden Broeck, J. Influence of freeze-drying and oven-drying post blanching on the nutrient composition of the edible insect Ruspolia differens. Insects 2017, 8, 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livesey, G. Energy and protein requirements the 1985 report of the 1981 Joint FAO/WHO/UNU Expert Consultation. Nutr. Bull. 1987, 12, 138–149. [Google Scholar] [CrossRef]
- Oser, B. CHAPTER 10. In Protein and Amino acid nutrition. In An Integrated Essential Amino Acid Index for Predicting the Biological Value of Proteins; Academic Press Books-Elsevier: London, UK, 1959; pp. 281–295. [Google Scholar]
- Alsmeyer, R.H.; Cunningham, A.E.H.M. Equations predict PER from amino acid analysis. Food Technol. 1974, 28, 34–40. [Google Scholar]
- Ijarotimi, O.S.; Nathaniel, F.T.; Faramade, O.O. Determination of Chemical Composition, Nutritional Quality and Anti-Diabetic Potential of Raw, Blanched and Fermented Wonderful Kola ( Bucholzia coriacea ) Seed Flour. J. Hum. Nutr. Food Sci. 2015, 3, 1060. [Google Scholar]
- Ghosh, S.; Lee, S.-M.M.; Jung, C.; Meyer-Rochow, V.B.B. Nutritional composition of five commercial edible insects in South Korea. J. Asia. Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Ramos-Elorduy, J.; Moreno, J.M.P.; Prado, E.E.; Perez, M.A.; Otero, J.L.; de Guevara, O.L.; Ladron De Guevara, O.; Manuel, J.; Moreno, P.; Prado, E.E.; et al. Nutritional Value of Edible Insects from the State of Oaxaca, Mexico. J. Food Compos. Anal. 1997, 10, 142–157. [Google Scholar] [CrossRef]
- FAO. Food Energy—Methods of Analysis and Conversion Factors; Report of a Technical Workshop; FAO Food and Nutrition Paper 77; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Ssepuuya, G.; Smets, R.; Nakimbugwe, D.; Van Der Borght, M.; Claes, J. Nutrient composition of the long-horned grasshopper Ruspolia differens Serville: Effect of swarming season and sourcing geographical area. Food Chem. 2019, 301, 125305. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Scott, B.R. Derivations by Dr B.R. Scott; Lovelace Respiratory Research Institute: Albuquerque, NM, USA, 2005. [Google Scholar]
- Son, Y.-J.; Choi, S.Y.; Hwang, I.-K.; Nho, C.W.; Kim, S.H. Could Defatted Mealworm (Tenebrio molitor) and Mealworm Oil Be Used as Food Ingredients? Foods 2020, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Messina, C.M.; Gaglio, R.; Morghese, M.; Tolone, M.; Arena, R.; Moschetti, G.; Santulli, A.; Francesca, N.; Settanni, L. Microbiological Profile and Bioactive Properties of Insect Powders Used in Food and Feed Formulations. Foods 2019, 8, 400. [Google Scholar] [CrossRef] [Green Version]
- Cheseto, X.; Baleba, S.B.S.; Tanga, C.M.; Kelemu, S.; Torto, B. Chemistry and Sensory Characterization of a Bakery Product Prepared with Oils from African Edible Insects. Foods 2020, 9, 800. [Google Scholar] [CrossRef]
- Kr, N.; Kröncke, N.; Grebenteuch, S.; Keil, C.; Demtröder, S.; Kroh, L.; Thünemann, A.F.; Benning, R.; Haase, H. Effect of different drying methods on nutrient quality of the yellow mealworm (Tenebrio molitor L.). Insects 2019, 10, 84. [Google Scholar]
- Lautenschläger, T.; Neinhuis, C.; Kikongo, E.; Henle, T.; Förster, A. Impact of different preparations on the nutritional value of the edible caterpillar Imbrasia epimethea from northern Angola. Eur. Food Res. Technol. 2017, 243, 769–778. [Google Scholar] [CrossRef]
- Jensen, L.D.; Miklos, R.; Dalsgaard, T.K.; Heckmann, L.H.; Nørgaard, J.V. Nutritional evaluation of common (Tenebrio molitor) and lesser (Alphitobius diaperinus ) mealworms in rats and processing effect on the lesser mealworm. J. Insects Food Feed 2019, 1, 1–10. [Google Scholar] [CrossRef]
- Finke, M.D.; DeFoliart, G.R.; Benevenga, N.J. Use of a four-parameter logistic model to evaluate the quality of the protein from three insect species when fed to rats. J. Nutr. 1989, 119, 864–871. [Google Scholar] [CrossRef] [Green Version]
- Blásquez, J.R.E.; Moreno, J.M.P.; Camacho, V.H.M. Could Grasshoppers Be a Nutritive Meal? Food Nutr. Sci. 2012, 03, 164–175. [Google Scholar] [CrossRef] [Green Version]
- FAO; Government of Kenya. Kenya Food Composition Tables, 2018; Kenya Food Composition Food & Agriculture Org.: Nairobi, Kenya, 2019; p. 255. [Google Scholar]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Finke, M.D. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 2002, 21, 269–285. [Google Scholar] [CrossRef]
- Messina, M.J. Legumes and soybeans: Overview of their nutritional profiles and health effects. Am. J. Clin. Nutr. 1999, 70, 439s–450s. [Google Scholar] [CrossRef] [Green Version]
- Joint, F.A.O.; World Health Organization. Expert Consultation on Energy and Protein Requirements; Report of a Joint FAO/WHO/UNU Expert Consultation; World Health Organization: Geneva, Switzerland, 1985. [Google Scholar]
- Ishida, H.; Suzuno, H.; Sugiyama, N.; Innami, S.; Tadokoro, T.; Maekawa, A. Nutritive evaluation on chemical components of leaves, stalks and stems of sweet potatoes (Ipomoea batatas poir). Food Chem. 2000, 68, 359–367. [Google Scholar] [CrossRef]
- Finke, M.D. Nutrient Content in Insects. Encycl. Entomol. 2008, 2623–2654. [Google Scholar]
- Nakai, S.; Modler, H.W. (Eds.) Food Proteins: Properties and Characterization; VCH Publishers: New York, NY, USA, 1996. [Google Scholar]
- Canadian Food Inspection Agency. Elements within the Nutrition Facts Table—Food Label Requirements; Canadian Food Inspection Agency: Morden, MB, Canada, 2020. [Google Scholar]
- Ruth Charrondiere, U.; Stadlmayr, B.; Rittenschober, D.; Mouille, B.; Nilsson, E.; Medhammar, E.; Olango, T.; Eisenwagen, S.; Persijn, D.; Ebanks, K.; et al. FAO/INFOODS food composition database for biodiversity. Food Chem. 2013, 140, 408–412. [Google Scholar]
- Leser, S. The 2013 FAO report on dietary protein quality evaluation in human nutrition: Recommendations and implications. Nutr. Bull. 2013, 38, 420–428. [Google Scholar] [CrossRef]
- Grundy, S.M. Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids. Am. J. Clin. Nutr. 1994, 60, 986S–990S. [Google Scholar] [CrossRef]
- Alfaia, C.P.M.; Alves, S.P.; Martins, S.I.V.; Costa, A.S.H.; Fontes, C.M.G.A.; Lemos, J.P.C.; Bessa, R.J.B.; Prates, J.A.M. Effect of the feeding system on intramuscular fatty acids and conjugated linoleic acid isomers of beef cattle, with emphasis on their nutritional value and discriminatory ability. Food Chem. 2009, 114, 939–946. [Google Scholar]
- Dobermann, D.; Field, L.M.; Michaelson, L.V. Impact of heat processing on the nutritional content of Gryllus bimaculatus (black cricket). Nutr. Bull. 2019, 44, 116–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, A.; Frederich, M.; Megido, R.C.; Alabi, T.; Malik, P.; Uyttenbroeck, R.; Francis, F.; Blecker, C.; Haubruge, E.; Lognay, G.; et al. Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. J. Asia. Pac. Entomol. 2017, 20, 337–340. [Google Scholar] [CrossRef]
- Turley, J.; Thompson, J. Nutrition: Your Life Science; Cengage Learning: Boston, MA, USA, 2015; p. 560. [Google Scholar]
- Stajić, S.; Živković, D.; Perunović, M.; Šobajić, S.; Vranić, D. Cholesterol content and atherogenicity of fermented sausages made of pork meat from various breeds. Procedia Food Sci. 2011, 1, 568–575. [Google Scholar] [CrossRef] [Green Version]
- Camacho, A.; Torres, A.; Capote, J.; Mata, J.; Viera, J.; Bermejo, L.A.; Argüello, A. Meat quality of lambs (hair and wool) slaughtered at different live weights. J. Appl. Anim. Res. 2017, 45, 400–408. [Google Scholar] [CrossRef]
- Richard, J.; Charbonnier, A. Description d’un score lipidique des aliments. Caliers Nutr. Diet. 1994, 4, 234–240. [Google Scholar]
- Kinyuru, J.N.; Kenji, G.M.; Muhoho, S.N.; Ayieko, M. Nutritional potential of longhorn grasshopper (Ruspolia differens) Consumed in Siaya district, Kenya. J. Agric. Sci. Technol. 2010, 12, 32–46. [Google Scholar]
- Aremu, M.O.; Opaluwa, O.D.; Bamidele, T.O.; Nweze, C.C.; Ohale, I.M.; Ochege, M.O. Comparative evaluation of nutritive value of okro (Abelmoschus esculentus) and bush mango (Irvingia gabonensis) fruits grown in Nasarawa State, Nigeria. Food Sci. Qual. Manag. 2014, 27, 2224–6088. [Google Scholar]
- Williams, P. Nutritional composition of red meat. Nutr. Diet. 2007, 64, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Green, R.; Miller, J. Handbook of vitamins. In Handbook of Vitamins; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Meyers, L.D.; Hellwig, J.P.; Otten, J.J. (Eds.) Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Allen, L.H. How common is vitamin B-12 deficiency? Am. J. Clin. Nutr. 2009, 89, 693S–696S. [Google Scholar] [CrossRef] [Green Version]
Sampler | Spectrometer | ||
---|---|---|---|
Parameter | Setting | Parameter | Setting |
Plasma conditions | Same for each element | Pulsed gas flow | Normal |
Type Aerosol | Wet | Spectral profiling | No |
Start nebulizer | Directly | Resolution | Fixed (normal) |
Sample flow (mL/min) | 1.5 | Reading time (s) | Automatic |
Plasma sight (all) | Radial | Break time (s) | 30 |
Plasma sight (element) | Axial | Replications (#) | 3 |
Source delay (s) | 30 | Software | WinLab 32 |
Flush time (s) | 10 |
Parameter | G. bimaculatus | L. migratoria | S. gregaria |
---|---|---|---|
Moisture (fresh) | 73.66 ± 2.27 | 77.77 ± 1.13 | 82.39 ± 2.20 |
Moisture (processed) | 0.85 ± 0.16 a | 1.46 ± 0.16 b | 1.97 ± 0.18 c |
Protein | 65.34 ± 0.48 a | 54.16± 0.93 b | 61.41± 0.32 c |
Fat (total lipids) | 20.74 ± 0.16 a | 30.52 ± 0.75 b | 19.10 ± 0.10 a |
Fibre (chitin) | 5.80 ± 1.45 a | 9.19 ± 0.32 b | 6.61 ± 1.28 a |
Ash | 4.11 ± 0.01 a | 3.08 ± 0.06 a | 2.70 ± 0.13 a |
NFE | 4.80 ± 1.53 a | 1.50 ± 1.25 a | 6.50 ± 1.34 b |
Energy (Kcal/g) | 469.91 ± 44.09 | 512.34 ± 43.36 | 474.76 ± 47.40 |
Amino Acid | G. bimaculatus | L. migratoria | S. gregaria | Recommended Daily Intakes (WHO/FAO) ** |
---|---|---|---|---|
Histidine | 25.79 ± 0.51 a | 27.23 ± 1.40 a | 26.32 ± 0.93 a | 15.0 |
Serine | 55.84 ± 0.34 a | 40.71 ± 0.76 c | 44.73 ± 3.29 b | ---- |
Arginine | 74.21 ± 1.32 a | 59.12 ± 2.86 b | 58.32 ± 1.90 b | ---- |
Glycine | 55.14 ± 1.10 a | 68.92 ± 2.47b | 65.11 ± 1.33 c | ---- |
Aspartic acid | 104.45 ± 1.52 a | 81.15 ± 1.70 b | 80.53 ± 1.56 b | ---- |
Glutamic acid | 131.04 ± 2.86 a | 122.45 ± 1.19 b | 120.29 ± 2.05 b | ---- |
Threonine | 41.31 ± 0.34 a | 39.62 ± 0.68 a | 39.47 ± 0.77 a | 23.0 |
Alanine | 90.23 ± 3.84 b | 122.96 ± 1.17 a,b | 120.10 ± 2.05 a | ---- |
Proline | 64.73 ± 1.68 a | 76.35 ± 0.96 a | 74.28 ± 0.13 a,b | ---- |
Cysteine | 4.40 ± 0.11 a | 5.67 ± 1.71 a | 7.36 ± 0.23 a,b | 6.6 |
Lysine | 57.20 ± 0.15 a | 47.84 ± 3.84b | 45.69 ± 2.18 b | 45.0 |
Tyrosine | 51.36 ± 1.36 c | 56.60 ± 4.88 b | 66.66 ± 3.07 a | ---- |
Methionine | 0.70 ± 0.49 b | 3.91 ± 2.36 b | 9.49 ± 4.90 a | 16.0 |
Valine | 64.59 ± 1.44 a,b | 72.11 ± 0.79 a | 68.68 ± 0.35 b | 39.0 |
Isoleucine | 46.08 ± 0.13 a | 46.18 ± 0.29 a | 46.25 ± 0.82 a | 30.0 |
Leucine | 83.47 ± 0.06 a | 84.56 ± 0.26 a | 82.30 ± 1.7 a | 59.0 |
Phenylalanine | 38.90 ± 0.41 a | 34.9 ± 1.5 a | 36.3 ± 1.73 a | ---- |
Tryptophan | 10.52 ± 0.76 a | 9.71 ± 1.42 a | 8.20 ± 0.41 a | 6.0 |
∑ Amino acids (%) * | 55.93 ± 2.65 a | 47.74 ± 5.27 a | 58.46 ± 3.46 a | |
Essential (E) | 368.57 ± 1.06 a | 366.06 ± 2.84 a | 362.65 ± 3.16 a | |
Non-Essential (N) | 631.40 ± 1.08 a | 633.94 ± 2.88 a | 637.36 ± 3.19 a | |
E/N | 0.58 ± 0.00 a | 0.58 ± 0.01 a | 0.57 ± 0.01 a | |
E + N | 1000 ± 0.00 a | 1000 ± 0.00 a | 1000 ± 0.00 a | |
E/(E + N) | 0.37 ± 0.00 a | 0.37 ± 0.00 a | 0.36 ± 0.00 a | |
PERpredicted | 2.32 ± 0.12 a | 2.39 ± 0.29 a | 2.42 ± 0.23 a | |
EAAI | 69.23 ± 0.96 a | 73.00 ± 1.25 b | 76.10 ± 1.82 c | |
BVpredicted | 63.76 ± 1.05 a | 67.87 ± 1.36 b | 71.25 ± 1.98 c | |
Nutritional Index predicted | 45.24 ± 0.94 b | 39.53 ± 0.23 a | 46.73 ± 1.11 c |
Fatty Acid | Class | G. bimaculatus | L. migratoria | S. gregaria |
---|---|---|---|---|
Decanoic acid (C10:0) | SFA | 0.10 ± 0.02 a | 1.08 ± 1.25 a | 0.15 ± 0.11 a |
Lauric acid (C12:0) | SFA | 1.60 ± 0.09 a | 1.30 ± 1.17 a | 0.41 ± 0.06 a |
Myristic acid (C14:0) | SFA | 0.74 ± 0.45 a | 3.63 ± 0.56 a | 2.66 ± 0.25 a |
Myristoleic acid (C14:1) | MUFA | 0.10 ± 0.02 a | 1.25 ± 1.54 a | 0.15 ± 0.13 a |
Pentadecanoic acid (C15:0) | SFA | 0.19 ± 0.09 a | 0.40 ± 0.35 a | 0.22 ± 0.18 a |
Palmitic acid (C16:0) | SFA | 27.73 ± 2.42 a | 43.01 ± 1.45 b | 26.14 ± 1.21 a |
Palmitoleic acid (C16:1) | MUFA | 1.05 ± 0.30 a | 1.60 ± 0.96 a | 1.34 ± 0.10 a |
Heptadecanoic acid (C17:0) | SFA | 0.29 ± 0.02 a | 1.14 ± 0.83 a | 0.34 ± 0.13 a |
Stearic acid (C18:0) | SFA | 7.36 ± 0.82 a | 6.31 ± 6.01 a | 7.02 ± 0.67 a |
Oleic acid (C18:1) | MUFA | 31.76 ± 0.82 a | 22.85 ± 6.07 b | 40.87 ± 1.76 c |
Linoleic acid (C18:2) (n6) | PUFA | 27.33 ± 0.41 a | 9.32 ± 0.90 b | 6.85 ± 0.18 b |
α-Linolenic acid (C18:3) (n3) | PUFA | 1.02 ± 0.75 a | 4.85 ± 0.56 a | 13.11 ± 0.55a |
Arachidonic acid (C20:4) )n6) | PUFA | 0.59 ± 0.06 a | 1.40 ± 0.96 a | 0.43 ± 0.16 a |
Eicosapentaenoic acid (C20:5) (n3) | PUFA | 0.13 ± 0.12 a | 1.89 ± 1.35 a | 0.29 ± 0.30 a |
Total Lipids | 20.74 ± 0.16 b | 30.52 ± 0.75 c | 19.10 ± 0.10 a | |
Total SFA | 38.02 ± 1.15 a | 56.85 ± 4.64 b | 36.95 ± 1.43 a | |
Total MUFA | 32.91 ± 0.53 a | 25.70 ± 4.72 a | 42.37 ± 1.77 b | |
Total PUFA | 29.54 ± 0.40 b | 17.45 ± 3.54 a | 20.68 ± 1.77 a | |
Total UFA | 62.46 ± 0.34 b | 43.15 ± 4.64 a | 63.05 ± 1.89 b | |
Total essential (C18:2 + C18:3) | 28.82 ± 0.45 b | 14.17 ±1.23 a | 19.96 ± 0.58 a | |
Total n6 | 27.92 ± 0.39 b | 10.71 ± 1.79 a | 7.28 ± 0.24 a | |
Total n3 | 1.15 ± 0.86 a | 6.74 ± 1.83 b | 13.40 ± 0.63 c | |
n6/n3 ratio | 17.19 ± 0.58 c | 1.63 ± 0.26 b | 0.54 ± 0.01 a | |
PUFA/SFA (P/S) ratio | 0.78 ± 0.02 b | 0.31± 0.07 a | 0.56 ± 0.03 b | |
Atherogenic index (AI) | 0.48 ± 0.02 a | 1.06 ± 0.12 a | 0.44 ± 0.03 a | |
Thrombogenic index (TI) | 1.11 ± 0.07 a | 3.19 ± 0.62 a | 1.56 ± 0.10 a |
Mineral or Vitamin B12 | G. bimaculatus | L. migratoria | S. gregaria | Recommended Daily Intakes (WHO/FAO) ** |
---|---|---|---|---|
Potassium | 1025.14 ± 0.03 a | 796.01± 0.01 b | 1309.46 ± 0.66 c | 4700 |
Phosphorus | 882.38 ± 0.09 a | 697.17± 0.02 b | 968.65 ± 0.51 c | 700 |
Sodium | 383.25 ± 0.01 a | 221.89 ± 0.01 b | 285.14± 0.15 c | 1500 |
Calcium | 191.16 ± 0.01 a | 129.79 ± 0.01 b | 80.48 ± 0.04 c | 1300 |
Magnesium | 110.57 ± 0.01 a | 86.01 ± 0.01 b | 128.29 ± 0.07 c | 260 |
Zinc | 13.76 ± 0.01 a | 12.70 ± 0.01 b | 24.88 ± 0.01 c | 3–14 |
Manganese | 7.15 ± 0.01 a | 0.40 ± 0.01 b | 1.26 ± 0.01 c | 1.8–2.6 |
Iron | 4.60 ± 0.01 a | 6.59 ± 0.01 b | 7.31 ± 0.01 c | 7.5–59 |
Copper | 1.84 ± 0.01 a | 1.20 ± 0.01 b | 4.86 ± 0.01 c | 0.9–1.3 |
Ca/P | 0.22 ± 0.09 | 0.19 ± 0.02 | 0.08 ± 0.52 | |
‡ Vitamin B12 ¥ | 1.35 ± 0.14 a | 1.10 ± 0.06 b | 0.22 ± 0.01 c | 0.40–1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fombong, F.T.; Kinyuru, J.; Ng’ang’a, J.; Ayieko, M.; Tanga, C.M.; Vanden Broeck, J.; Van Der Borght, M. Affordable Processing of Edible Orthopterans Provides a Highly Nutritive Source of Food Ingredients. Foods 2021, 10, 144. https://doi.org/10.3390/foods10010144
Fombong FT, Kinyuru J, Ng’ang’a J, Ayieko M, Tanga CM, Vanden Broeck J, Van Der Borght M. Affordable Processing of Edible Orthopterans Provides a Highly Nutritive Source of Food Ingredients. Foods. 2021; 10(1):144. https://doi.org/10.3390/foods10010144
Chicago/Turabian StyleFombong, Forkwa Tengweh, John Kinyuru, Jeremiah Ng’ang’a, Monica Ayieko, Chrysantus Mbi Tanga, Jozef Vanden Broeck, and Mik Van Der Borght. 2021. "Affordable Processing of Edible Orthopterans Provides a Highly Nutritive Source of Food Ingredients" Foods 10, no. 1: 144. https://doi.org/10.3390/foods10010144
APA StyleFombong, F. T., Kinyuru, J., Ng’ang’a, J., Ayieko, M., Tanga, C. M., Vanden Broeck, J., & Van Der Borght, M. (2021). Affordable Processing of Edible Orthopterans Provides a Highly Nutritive Source of Food Ingredients. Foods, 10(1), 144. https://doi.org/10.3390/foods10010144