Potentialities of Rapid Analytical Strategies for the Identification of the Botanical Species of Several “Specialty” or “Gourmet” Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specialty Oils
2.2. Chemicals
2.3. Preparation and GC-FID Determination of Fatty Acid Methyl Esters (FAMEs)
2.4. Spectroscopic Analysis
2.5. Multivariate Statistical Analysis
3. Results and Discussion
3.1. FAMEs Composition of Specialty Oils
3.2. PCA on Fatty Acid Composition of Specialty Oils
3.3. Classification Analysis
3.4. Color Analysis and PCA Analysis
3.5. PCA on FAMEs Composition Coupled to Spectroscopic Data and CIELab Parameters (Data Fusion)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gunstone, F. (Ed.) Vegetable Oils in Food Technology: Composition, Properties and Uses; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Moreau, R.; Kamal-Eldin, A. Gourmet and Health-Promoting Specialty Oils; AOCS Press: Urbana, IL, USA, 2008. [Google Scholar] [CrossRef]
- Hernandez, E.M. Specialty Oils: Functional and Nutraceutical Properties. In Functional Dietary Lipids—Food Formulation, Consumer Issues and Innovation for Health; Sanders, T.A.B., Ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 69–101. [Google Scholar] [CrossRef]
- Matthäus, B.; Özcan, M.M. Oil Content, Fatty Acid Composition and Distributions of Vitamin-E-Active Compounds of Some Fruit Seed Oils. Antioxidants 2015, 4, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Moreau, R.; Kamal-Eldin, A. Introduction. In Gourmet and Health-Promoting Specialty Oils; Moreau, R., Kamal-Eldin, A., Eds.; AOCS Press: Urbana, IL, USA, 2009; pp. 1–13. [Google Scholar] [CrossRef]
- Madawala, S.R.P.; Kochharb, S.P.; Dutta, P.C. Lipid components and oxidative status of selected specialty oils. Grasas Acetes 2012, 63, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Cauzac-Picaus, M. Les huile végétales, intérèt dietetique et gastronomique. Phytothérapie 2010, 8, 113–117. [Google Scholar] [CrossRef]
- Cicero, N.; Albergamo, A.; Salvo, A.; Bua, G.D.; Bartolomeo, G.; Mangano, V.; Rotondo, A.; Di Stefano, V.; Di Bella, G.; Dugo, G. Chemical characterization of a variety of cold-pressed gourmet oils available on the Brazilian market. Food Res. Int. 2018, 109, 517–525. [Google Scholar] [CrossRef]
- Socaciu, C.; Fetea, F.; Ranga, F.; Bunea, A.; Dulf, F.; Socaci, S.; Pintea, A. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) Coupled with Chemometrics, to Control the Botanical Authenticity and Quality of Cold-Pressed Functional Oils Commercialized in Romania. Appl. Sci. 2020, 10, 8695. [Google Scholar] [CrossRef]
- Ozen, B.F.; Weiss, I.; Mauer, L.J. Dietary Supplement Oil Classification and Detection of Adulteration Using Fourier Transform Infrared Spectroscopy. J. Agric. Food Chem. 2003, 51, 5871–5876. [Google Scholar] [CrossRef]
- Guyader, S.; Thomas, F.; Portaluri, V.; Jamin, E.; Akoka, S.; Silvestre, V.; Remaud, G. Authentication of edible fats and oils by non-targeted 13C INEPT NMR spectroscopy. Food Control 2018, 91, 216–224. [Google Scholar] [CrossRef]
- Green, H.S.; Wang, S.C. First report on quality and purity evaluations of avocado oil sold in the US. Food Control 2020, 116, 107328. [Google Scholar] [CrossRef]
- Gezer, I.; Haciseferoğullari, H.; Özcan, M.M.; Arslan, D.; Asma, B.M.; Ünver, A. Physico-chemical properties of apricot (Prunus armeniaca L.) kernels. South West. J. Hortic. Biol. Environ. 2011, 2, 1–13. [Google Scholar]
- Teuber, S.S.; Brown, R.L.; Haapanen, L.D. Allergenicity of gourmet nut oils processed by different methods. J. Allergy Clin. Immunol. 1997, 99, 502–507. [Google Scholar] [CrossRef]
- Geiselhart, S.; Hoffmann-Sommergruber, K.; Bublin, M. Tree nut allergens. Mol. Immunol. 2018, 100, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Bézard, J.; Blond, J.P.; Bernard, A.; Clouet, P. The metabolism and availability of essential fatty acids in animal and human tissues. Reprod. Nutr. Dev. 1994, 34, 539–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Johnson, R.A.; Wichern, D. Multivariate Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2002. [Google Scholar]
- Oliveri, P.; Malegori, C.; Casale, M. Chemometrics and Statistics | Multivariate Classification Techniques. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 481–486. [Google Scholar] [CrossRef]
- Alimentarius, C. Codex Standard for Named Vegetable Oils. Codex Stan 1999, 210, 1–13. [Google Scholar]
- Zunin, P.; Boggia, R.; Turrini, F.; Leardi, R. Total and “free” lipids in commercial infant formulas: Fatty acid composition and their stability to oxidation. Food Chem. 2015, 173, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Italian Chemical Society; Division of Analytical Chemistry-Group of Chemometrics. CAT Chemometric Agile Tool. Available online: http://www.gruppochemiometria.it/index.php/software (accessed on 15 October 2020).
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inform. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Amaral, J.; Casal, S.; Pereira, J.; Seabra, R.; Oliveira, B. Determination of Sterol and Fatty Acid Compositions, Oxidative Stability, and Nutritional Value of Six Walnut (Juglans regia L.) Cultivars Grown in Portugal. J. Agric. Food Chem. 2003, 51, 7698–7702. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Tsao, R.; Yang, R.; Kramer, J.K.G.; Hernandez, M. Fatty acid profiles, tocopherol contents, and antioxidant activities of heartnut (Juglans ailanthifolia Var. cordiformis) and Persian walnut (Juglans regia L.). J. Agric. Food Chem. 2007, 55, 1164–1169. [Google Scholar] [CrossRef]
- Woods, V.B.; Fearon, A.M. Dietary sources of unsaturated fatty acids for animals and their transfer into meat, milk and eggs: A review. Livest. Sci. 2009, 126, 1–20. [Google Scholar] [CrossRef]
- Peršurić, Z.; Saftić, L.; Mašek, T.; Pavelić, S.K. Comparison of triacylglycerol analysis by MALDI-TOF/MS, fatty acid analysis by GC-MS and non-selective analysis by NIRS in combination with chemometrics for determination of extra virgin olive oil geographical origin: A case study. LWT 2018, 95, 326–332. [Google Scholar] [CrossRef]
- Turan, S.; Topcu, A.; Karabulut, I.; Vural, H.; Hayaloglu, A.A. Fatty acid, triacylglycerol, phytosterol, and tocopherol variations in kernel oil of Malatya apricots from Turkey. J. Agric. Food Chem. 2007, 55, 10787–10794. [Google Scholar] [CrossRef] [PubMed]
- Wold, S.; Johansson, E.; Cocchi, M. 3D QSAR in Drug Design: Theory, Methods and Applications; Kubinyi, K., Ed.; ESCOM Science Publishers: Leiden, The Netherlands, 1993; p. 523. [Google Scholar]
- Brereton, R.G. Applied Chemometrics for Scientists; John Wiley & Sons, Ltd.: Chichester, UK, 2007. [Google Scholar] [CrossRef]
SPECIALTY OIL | Number of Samples | Toasting Treatment | Farming | |
---|---|---|---|---|
Organic | Conventional | |||
48 | 34 | 14 | ||
27 | 9 | 18 | ||
11 | 5 | 6 | ||
51 | 18 | 8 | 43 | |
9 | 6 | 3 | ||
15 | 15 | - | ||
6 | 4 | 2 | ||
33 HO a: 12 LO b: 21 | 29 | 4 | ||
26 | 2 | 13 | 13 |
Almond | Apricot | Avocado | Hazelnut | Mosq Rose | Olive | Rosehip | Sunflower_HO | Sunflower_LO | Walnut | |
---|---|---|---|---|---|---|---|---|---|---|
infC14 | 0.01 ± 0.01 | nd | nd | nd | nd | nd | nd | nd | nd | nd |
C14:0 | 0.01 ± 0.01 | nd | 0.04 ± 0.03 | 0.01 ± 0.01 | nd | nd | 0.02 ± 0.03 | 0.02 ± 0.02 | 0.05 ± 0.02 | 0.03 ± 0.00 |
infC16:0 | nd | nd | nd | nd | nd | 0.02 ± 0.02 | nd | nd | nd | nd |
C16:0 | 6.57 ± 0.10 | 5.06 ± 0.17 | 16.89 ± 2.52 | 6.39 ± 0.16 | 3.64 ± 0.12 | 11.08 ± 1.70 | 3.77 ± 0.57 | 4.39 ± 0.28 | 6.49 ± 0.19 | 7.20 ± 0.41 |
C16:1 | 0.50 ± 0.03 | 0.79 ± 0.06 | 6.10 ± 1.50 | 0.29 ± 0.02 | 0.11 ± 0.04 | 0.92 ± 0.33 | 0.10 ± 0.13 | 0.15 ± 0.02 | 0.15 ± 0.04 | 0.11 ± 0.02 |
C17:0 | 0.05 ± 0.01 | 0.01 ± 0.01 | nd | 0.01 ± 0.01 | nd | nd | nd | nd | nd | nd |
C17:1 | nd | 0.01 ± 0.01 | 0.01 ± 0.01 | nd | nd | nd | nd | nd | nd | nd |
C18:0 | 2.26 ± 0.13 | 1.30 ± 0.09 | 0.85 ± 0.22 | 2.63 ± 0.09 | 1.85 ± 0.12 | 3.02 ± 0.20 | 2.25 ± 0.35 | 2.86 ± 0.34 | 3.15 ± 0.16 | 2.61 ± 0.10 |
C18:1 | 67.23 ± 0.59 | 65.88 ± 1.18 | 63.32 ± 3.25 | 80.65 ± 0.46 | 15.96 ± 1.54 | 73.88 ± 4.69 | 17.86 ± 1.76 | 81.86 ± 1.59 | 32.25 ± 1.42 | 17.47 ± 0.62 |
C18:2 | 23.04 ± 0.59 | 26.47 ± 1.10 | 11.47 ± 2.03 | 9.45 ± 0.53 | 44.12 ± 1.32 | 9.58 ± 3.01 | 51.42 ± 4.08 | 9.13 ± 1.11 | 56.41 ± 1.41 | 60.25 ± 0.92 |
C18:3 | 0.10 ± 0.02 | 0.14 ± 0.04 | 0.84 ± 0.14 | 0.07 ± 0.03 | 32.71 ± 2.91 | 0.61 ± 0.14 | 23.03 ± 5.47 | 0.16 ± 0.05 | 0.14 ± 0.03 | 11.72 ± 0.55 |
C18:3 is. | nd | nd | nd | nd | 0.77 ± 0.38 | nd | 0.43 ± 0.32 | nd | nd | nd |
C20:0 | 0.09 ± 0.01 | 0.17 ± 0.05 | 0.10 ± 0.03 | 0.16 | 0.19 ± 0.27 | 0.41 ± 0.06 | 0.23 ± 0.35 | 0.24 ± 0.07 | 0.23 ± 0.01 | 0.14 ± 0.06 |
C20:1 | 0.09 ± 0.01 | 0.11 ± 0.02 | 0.12 ± 0.07 | 0.11 | 0.20 ± 0.12 | 0.30 ± 0.05 | 0.24 ± 0.18 | 0.23 ± 0.07 | 0.18 ± 0.04 | 0.12 ± 0.04 |
C22:0 | 0.03 ± 0.01 | 0.06 ± 0.04 | 0.05 ± 0.04 | nd | 0.18 ± 0.06 | 0.11 ± 0.02 | 0.17 ± 0.06 | 0.77 ± 0.08 | 0.64 ± 0.05 | 0.04 ± 0.03 |
C22:1 | 0.01 ± 0.01 | nd | nd | nd | 0.08 ± 0.03 | 0.04 ± 0.03 | 0.03 ± 0.04 | nd | nd | nd |
C24:0 | nd | nd | nd | nd | 0.05 ± 0.04 | nd | 0.05 ± 0.10 | 0.24 ± 0.06 | 0.23 ± 0.03 | nd |
∑ trans | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.30 ± 0.19 |
SFAs | 9.02 ± 0.20 | 6.60 ± 0.21 | 17.93 ± 2.33 | 9.19 ± 0.22 | 5.91 ± 0.31 | 14.63 ± 1.56 | 6.50 ± 0.62 | 8.52 ± 0.66 | 10.79 ± 0.31 | 10.02 ± 0.40 |
MUFAs | 67.70 ± 0.59 | 66.79 ± 1.14 | 69.55 ± 2.23 | 81.05 ± 0.45 | 16.35 ± 16.28 | 75.14 ± 4.42 | 18.23 ± 1.75 | 82.24 ± 1.58 | 32.57 ± 1.44 | 17.71 ± 0.56 |
PUFAs | 23.14 ± 0.59 | 26.61 ± 1.10 | 12.31 ± 2.06 | 9.52 ± 0.53 | 77.59 ± 2.08 | 10.19 ± 3.01 | 74.88 ± 2.08 | 9.29 ± 1.14 | 56.54 ± 1.41 | 71.96 ± 0.86 |
UFA/SFA | 10.08 | 14.16 | 4.57 | 9.86 | 15.89 | 5.83 | 14.32 | 10.74 | 8.26 | 8.95 |
LDA | K-NN | |||
---|---|---|---|---|
Specialty Oil | % Correct Predictions in Cross-Validation (CV) | % Correct Predictions | % Correct Predictions in Cross-Validation (CV) | % Correct Predictions |
Almond | 91.1 | 100 | 91.1 | 100 |
Apricot | 96 | 100 | 88.0 | 100 |
Avocado | 88.9 | 100 | 88.9 | 50 |
Hazelnut | 97.9 | 100 | 91.5 | 100 |
Mosq Rose | 100 | 100 | 87.5 | 100 |
Olive | 100 | 100 | 92.3 | 50 |
Rosehip | 80 | 100 | 20.0 | 0 |
Sunflower_HO | 100 | 100 | 90.0 | 100 |
Sunflower_LO | 100 | 100 | 100.0 | 100 |
Walnut | 100 | 100 | 100.0 | 100 |
% Total Correct Predictions in CV | % Total Correct Predictions | % Total Correct Predictions in CV | % Total Correct Predictions | |
95.4 | 100 | 84.7 | 80 |
LDA | K-NN | |||
---|---|---|---|---|
Specialty Oil | % Correct Predictions in Cross-Validation (CV) | % Correct Predictions | % Correct Predictions in Cross-Validation (CV) | % Correct Predictions |
Almond | 100 | 100 | 97.73 | 97.77 |
Apricot | 100 | 100 | 100 | 100 |
%Total Correct Predictions in CV | %Total Correct Predictions | % Total Correct Predictions in CV | % Total Correct Predictions | |
100 | 100 | 98.87 | 98.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turrini, F.; Zunin, P.; Boggia, R. Potentialities of Rapid Analytical Strategies for the Identification of the Botanical Species of Several “Specialty” or “Gourmet” Oils. Foods 2021, 10, 183. https://doi.org/10.3390/foods10010183
Turrini F, Zunin P, Boggia R. Potentialities of Rapid Analytical Strategies for the Identification of the Botanical Species of Several “Specialty” or “Gourmet” Oils. Foods. 2021; 10(1):183. https://doi.org/10.3390/foods10010183
Chicago/Turabian StyleTurrini, Federica, Paola Zunin, and Raffaella Boggia. 2021. "Potentialities of Rapid Analytical Strategies for the Identification of the Botanical Species of Several “Specialty” or “Gourmet” Oils" Foods 10, no. 1: 183. https://doi.org/10.3390/foods10010183
APA StyleTurrini, F., Zunin, P., & Boggia, R. (2021). Potentialities of Rapid Analytical Strategies for the Identification of the Botanical Species of Several “Specialty” or “Gourmet” Oils. Foods, 10(1), 183. https://doi.org/10.3390/foods10010183