Freshness Quality and Shelf Life Evaluation of the Seaweed Ulva rigida through Physical, Chemical, Microbiological, and Sensory Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of Samples
2.2. Physical Analysis
2.3. Chemical Analysis
2.4. Microbiological Analysis
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effects of Storage at Different Temperatures on the Physical Properties of Ulva rigida
3.2. Effects of Storage at Different Temperatures on the Chemical Properties of Ulva rigida
3.3. Effects of Storage at Different Temperatures on the Microbial Cell Count of Ulva rigida
3.4. Effects of Storage at Different Temperatures on the Sensory Attributes of Ulva rigida
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cardoso, S.; Pereira, O.; Seca, A.; Pinto, D.; Silva, A. Seaweeds as preventive agents for cardiovascular diseases: From nutrients to functional foods. Mar. Drugs 2015, 13, 6838–6865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Fernández-Segovia, I.; Lerma-García, M.J.; Fuentes, A.; Barat, J.M. Characterization of Spanish powdered seaweeds: Composition, antioxidant capacity and technological properties. Food Res. Int. 2018, 111, 212–219. [Google Scholar] [CrossRef]
- Cian, R.E.; Drago, S.R.; De Medina, F.S.; Martínez-Augustin, O. Proteins and carbohydrates from red seaweeds: Evidence for beneficial effects on gut function and microbiota. Mar. Drugs 2015, 13, 5358–5383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraces-Casais, P.; Lage-Yusty, M.A.; Rodríguez-Bernaldo De Quirós, A.; López-Hernández, J. Rapid identification of volatile compounds in fresh seaweed. Talanta 2013, 115, 798–800. [Google Scholar] [CrossRef] [PubMed]
- Rioux, L.-E.; Beaulieu, L.; Turgeon, S.L. Seaweed: A traditional ingredients for new gastronomic sensation. Food Hydrocoll. 2017, 68, 255–265. [Google Scholar] [CrossRef]
- Mouritsen, O.G.; Rhatigan, P.; Pérez-Lloréns, J.L. The rise of seaweed gastronomy: Phycogastronomy. Bot. Mar. 2019, 62, 195–209. [Google Scholar] [CrossRef]
- Pérez Lloréns, J.L.; Hernández, I.; Vergara, J.J.; Brun, F.G.; León, Á. Those Curious and Delicious Seaweeds: A Fascinating Voyage from Biology to Gastronomy; UCA Press: Cádiz, Spain, 2018; ISBN 978-84-9828-666-3. [Google Scholar]
- Nova, P.; Martins, A.P.; Teixeira, C.; Abreu, H.; Silva, J.G.; Silva, A.M.; Freitas, A.C.; Gomes, A.M. Foods with microalgae and seaweeds fostering consumers health: A review on scientific and market innovations. J. Appl. Phycol. 2020, 32, 1789–1802. [Google Scholar] [CrossRef]
- Paiva, L.; Lima, E.; Neto, A.I.; Marcone, M.; Baptista, J. Nutritional and functional bioactivity value of selected azorean macroalgae: Ulva compressa, Ulva rigida, Gelidium microdon, and Pterocladiella capillacea. J. Food Sci. 2017, 82, 1757–1764. [Google Scholar] [CrossRef]
- Sánchez-García, J.; Palacios, V.; Roldán, A. Nutritional potential of four seaweed species collected in the Barbate Estuary (Gulf of Cadiz, Spain). J. Nutr. Food Sci. 2016, 6, 4–10. [Google Scholar] [CrossRef]
- Gupta, S.; Abu-Ghannam, N. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov. Food Sci. Emerg. Technol. 2011, 12, 600–609. [Google Scholar] [CrossRef]
- Moore, J.E.; Xu, J.; Millar, B.C. Diversity of the microflora of edible macroalga (Palmaria palmata). Food Microbiol. 2002, 19, 249–257. [Google Scholar] [CrossRef]
- López-Pérez, O.; Picon, A.; Nuñez, M. Volatile compounds and odour characteristics of seven species of dehydrated edible seaweeds. Food Res. Int. 2017, 99, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
- Tello-Ireland, C.; Lemus-Mondaca, R.; Vega-Gálvez, A.; López, J.; Di Scala, K. Influence of hot-air temperature on drying kinetics, functional properties, colour, phycobiliproteins, antioxidant capacity, texture and agar yield of alga Gracilaria chilensis. LWT Food Sci. Technol. 2011, 44, 2112–2118. [Google Scholar] [CrossRef]
- Alasalvar, C.; Taylor, K.D.A.; Öksüz, A.; Garthwaite, T.; Alexis, M.N.; Grigorakis, K. Freshness assessment of cultured sea bream (Sparus aurata) by chemical, physical and sensory methods. Food Chem. 2001, 72, 33–40. [Google Scholar] [CrossRef]
- Armenta, S.; Coelho, N.M.M.; Roda, R.; Garrigues, S.; de la Guardia, M. Seafood freshness determination through vapour phase Fourier transform infrared spectroscopy. Anal. Chim. Acta 2006, 580, 216–222. [Google Scholar] [CrossRef]
- Barat, J.M.; Gallart-Jornet, L.; Andrés, A.; Akse, L.; Carlehög, M.; Skjerdal, O.T. Influence of cod freshness on the salting, drying and desalting stages. J. Food Eng. 2006, 73, 9–19. [Google Scholar] [CrossRef]
- Pacquit, A.; Lau, K.T.; McLaughlin, H.; Frisby, J.; Quilty, B.; Diamond, D. Development of a volatile amine sensor for the monitoring of fish spoilage. Talanta 2006, 69, 515–520. [Google Scholar] [CrossRef]
- Blikra, M.; Løvdal, T.; Vaka, M.R.; Roiha, I.S.; Lunestad, B.T.; Lindseth, C.; Skipnes, D. Assessment of food quality and microbial safety of brown macroalgae (Alaria esculenta and Saccharina latissima). J. Sci. Food Agric. 2019, 99, 1198–1206. [Google Scholar] [CrossRef]
- Nayyar, D.; Skonberg, D.I. Contrasting effects of two storage temperatures on the microbial, physicochemical, and sensory properties of two fresh red seaweeds, Palmaria palmata and Gracilaria tikvahiae. J. Appl. Phycol. 2019, 31, 731–739. [Google Scholar] [CrossRef]
- Jung, Y.J.; Padmanabahn, A.; Hong, J.H.; Lim, J.; Kim, K.O. Consumer freshness perception of spinach samples exposed to different storage conditions. Postharvest Biol. Technol. 2012, 73, 115–121. [Google Scholar] [CrossRef]
- Løkke, M.M.; Seefeldt, H.F.; Edelenbos, M. Freshness and sensory quality of packaged wild rocket. Postharvest Biol. Technol. 2012, 73, 99–106. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X.; Zhang, J.; Wang, X.; Shi, W. Postmortem changes in the freshness and volatile compounds of grass carp (Ctenopharyngodon idella). J. Food Meas. Charact. 2020, 14, 584–596. [Google Scholar] [CrossRef]
- Özogul, Y.; Özyurt, G.; Özogul, F.; Kuley, E.; Polat, A. Freshness assessment of European eel (Anguilla anguilla) by sensory, chemical and microbiological methods. Food Chem. 2005, 92, 745–751. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, G.; Luo, L.; Chen, G. Study on seafood volatile profile characteristics during storage and its potential use for freshness evaluation by headspace solid phase microextraction coupled with gas chromatography-mass spectrometry. Anal. Chim. Acta 2010, 659, 151–158. [Google Scholar] [CrossRef]
- Silva, F.M.; Silva, C.L.M. Colour changes in thermally processed cupuaçu (Theobroma grandiflorum) puree: Critical times and kinetics modelling. Int. J. Food Sci. Technol. 1999, 34, 87–94. [Google Scholar] [CrossRef]
- Cobb, B.F.; Alaniz, I.; Thompson, C.A. Biochemical and microbial studies on shrimp: Volatile nitrogen and amino nitrogen analysis. J. Food Sci. 1973, 38, 431–436. [Google Scholar] [CrossRef]
- Huss, H.H. Assessment of fish quality. In Quality and Quality Changes in Fresh Fish; FAO Fisheries Technical Paper; FAO: Rome, Italy, 1995; p. 348. [Google Scholar]
- Beveridge, T.J.; Lawrence, J.R.; Murray, R.G.E. Sampling and Staining for Light Microscopy. In Methods for General and Molecular Microbiology; ASM Press: Washington, DC, USA, 2007; pp. 19–33. [Google Scholar]
- UNE-ISO 13299:2016. Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile; AENOR: Madrid, Spain, 2016. [Google Scholar]
- Peinado, I.; Girón, J.; Koutsidis, G.; Ames, J.M.M. Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Res. Int. 2014, 66, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, M.; Baldermann, S.; Yoshikawa, K.; Fujita, A.; Mase, N.; Watanabe, N. Determination of volatile compounds in four commercial samples of japanese green algae using solid phase microextraction gas chromatography mass spectrometry. Sci. World J. 2014, 1–8. [Google Scholar] [CrossRef]
- Hamad, S.H. Factors affecting the growth of microorganisms in food. In Progress in Food Preservation; Wiley-Blackwell: Oxford, UK, 2012; Chapter 20; pp. 405–427. ISBN 9780470655856. [Google Scholar]
- Del Olmo, A.; Picon, A.; Nuñez, M. Preservation of five edible seaweeds by high pressure processing: Effect on microbiota, shelf life, colour, texture and antioxidant capacity. Algal Res. 2020, 49. [Google Scholar] [CrossRef]
- Ocaño-Higuera, V.M.; Marquez-Ríos, E.; Canizales-Dávila, M.; Castillo-Yáñez, F.J.; Pacheco-Aguilar, R.; Lugo-Sánchez, M.E.; García-Orozco, K.D.; Graciano-Verdugo, A.Z. Postmortem changes in cazon fish muscle stored on ice. Food Chem. 2009, 116, 933–938. [Google Scholar] [CrossRef]
- Knutzen, J. Effects of decreased pH on marine organisms. Mar. Pollut. Bull. 1981, 12, 25–29. [Google Scholar] [CrossRef]
- Büyükcan, M.; Bozoglu, F.; Alpas, H. Preservation and shelf-life extension of shrimps and clams by high hydrostatic pressure. Int. J. Food Sci. Technol. 2009, 44, 1495–1502. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 2013, 31, 877–902. [Google Scholar] [CrossRef]
- Mworia, E.G.; Yoshikawa, T.; Yokotani, N.; Fukuda, T.; Suezawa, K.; Ushijima, K.; Nakano, R.; Kubo, Y. Characterization of ethylene biosynthesis and its regulation during fruit ripening in kiwifruit, Actinidia chinensis “Sanuki Gold”. Postharvest Biol. Technol. 2010, 55, 108–113. [Google Scholar] [CrossRef]
- Yang, S.F.; Hoffman, N.E. Ethylene biosyntesis and its regultion in higher plants. Annu. Rev. Plant Physiol. 1984, 35, 155–189. [Google Scholar] [CrossRef]
- Xiong, X.; He, B.; Jiang, D.; Dong, X.; Yu, C.; Qi, H. Postmortem biochemical and textural changes in the sea cucumber Stichopus japonicus body wall (SJBW) during iced storage. LWT 2020, 118, 108705. [Google Scholar] [CrossRef]
- Li, Y.; Jia, S.; Hong, H.; Zhang, L.; Zhuang, S.; Sun, X.; Liu, X.; Luo, Y. Assessment of bacterial contributions to the biochemical changes of chill-stored blunt snout bream (Megalobrama amblycephala) fillets: Protein degradation and volatile organic compounds accumulation. Food Microbiol. 2020, 91, 103495. [Google Scholar] [CrossRef] [PubMed]
- Ocaño-Higuera, V.M. Postmorten biochemical and tectural changes in the adductor muscle of Catarina scallop stored at 0 °C. J. Food Biochem. 2006, 52, 373–389. [Google Scholar] [CrossRef]
- Ben-Yehoshua, S.; Rodov, V. Transpiration and water stress. In Postharvest Physiology and Pathology of Vegetables; CRC Press: New York, NY, USA, 2002; pp. 111–159. ISBN 0-8247-0687-0. [Google Scholar]
- Rico, D.; Martín-Diana, A.B.; Barat, J.M.; Barry-Ryan, C. Extending and measuring the quality of fresh-cut fruit and vegetables: A review. Trends Food Sci. Technol. 2007, 18, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Waldron, K.W.; Parker, M.L.; Smith, A.C. Plant cell walls and food quality. Compr. Rev. Food Sci. Food Saf. 2003, 2, 128–146. [Google Scholar] [CrossRef] [PubMed]
- Holligworth, A.T.; Marleen, J.R.; Wekell, M..; Sullivan, J.; Torkelson, J.D.; Throm, H.R. Chemical indicators of decomposition for raw surimi and flaked artificial crab. J. Food Sci. 1990, 55, 349–352. [Google Scholar] [CrossRef]
- Arulkumar, A.; Satheeshkumar, K.; Paramasivam, S.; Rameshthangam, P.; Miranda, J.M. Chemical biopreservative effects of red seaweed on the shelf life of black tiger shrimp (Penaeus monodon). Foods 2020, 9, 634. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Aguilar, R.; Ocaño-Higuera, V.M.; Castillo-Yañez, F.J.; Morán-Palacio, E.F.; Márquez-Ríos, E.; Lugo-Sánchez, M.E. Changes in postmortem quality indices in Finescale triggerfish muscle stored in ice. J. Food Biochem. 2003, 27, 333–352. [Google Scholar] [CrossRef]
- Lakshmanan, P.T. Fish spoilage and quality assessment. In Quality Assurance in Seafood Processing. Society of Fisheries Technologists (India), Kochi; Iyer, T.S.G., Kandoran, M.K., Mary, T., Mathew, P.T., Eds.; 2000; pp. 26–40. Available online: http://drs.cift.res.in/handle/123456789/976 (accessed on 5 December 2020).
- EC Commission Regulation (EC) No 1022/2008 of 17 October 2008 Amending Regulation (EC) No 2074/2005 as Regards the Total Volatile Basic Nitrogen (TVB-N) Limits. 2008. Available online: https://eur-lex.europa.eu/eli/reg/2008/1022/oj (accessed on 10 December 2020).
- Ripolles-Avila, C.; Martínez-Garcia, M.; Capellas, M.; Yuste, J.; Fung, D.Y.C.; Rodríguez-Jerez, J.J. From hazard analysis to risk control using rapid methods in microbiology: A practical approach for the food industry. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1877–1907. [Google Scholar] [CrossRef]
- Garg, N.; Abdel-Aziz, S.M.; Aeron, A. Microbes in food and health. Microbes Food Health 2016. [Google Scholar] [CrossRef]
- García, M.; Casariego, A.; Díaz, R.; Roblejo, L. Effect of edible chitosan/zeolite coating on tomatoes quality during refrigerated storage. Emir. J. Food Agric. 2014, 26, 238–246. [Google Scholar] [CrossRef]
- Henshaw, F.O.; Uzochukwu, S.V.A.; Bello, I.Y. Sensory properties of akara (fried cowpea paste) prepared from paste stored at low storage temperatures. Int. J. Food Prop. 2000, 3, 295–304. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Miranda, M.; Díaz, L.P.; Lopez, L.; Rodriguez, K.; Di Scala, K. Effective moisture diffusivity determination and mathematical modelling of the drying curves of the olive-waste cake. Bioresour. Technol. 2010, 101, 7265–7270. [Google Scholar] [CrossRef]
- Paull, R.E.; Chen, N.J. Postharvest handling and storage of the edible red seaweed Gracilaria. Postharvest Biol. Technol. 2008, 48, 302–308. [Google Scholar] [CrossRef]
- Varlik, C.; Baygar, T.; Özden, Ö.; Erkan, N.; Metin, S. Soǧukta Depolanan Karideslerin (Parapenaeus longirostris, LUCAS 1846) Bazi Duygusal, Fiziksel ve Kimyasal Parametrelerinin Belirlenmesi. Turkish J. Vet. Anim. Sci. 2000, 24, 181–185. [Google Scholar]
- Sánchez-García, F.; Mirzayeva, A.; Roldán, A.; Castro, R.; Palacios, V.; García-Barroso, C.; Durán-Guerrero, E. Evolution of volatile compounds and sensory characteristics of edible green seaweed (Ulva rigida) during storage at different temperatures. J. Sci. Food Agric. 2019, 99, 5475–5482. [Google Scholar] [CrossRef] [PubMed]
- Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: Desirable levels, instrumental and sensory measurement, and the effects of processing. Crit. Rev. Food Sci. Nutr. 2010, 50, 369–389. [Google Scholar] [CrossRef] [PubMed]
- Bracket, R.E. Safe stability and safety of fresh produce as influenced by sanitation and disinfection. J. Food Prot. 1992, 55, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Tanna, B.; Mishra, A. Nutraceutical potential of seaweed polysaccharides: Structure, bioactivity, safety, and toxicity. Compr. Rev. Food Sci. Food Saf. 2019, 18, 817–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, L.; Grenha, A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar. Drugs 2016, 14, 42. [Google Scholar] [CrossRef]
- Fan, Y.; Odabasi, A.; Sims, C.; Schneider, K.; Gao, Z.; Sarnoski, P. Utilization of Descriptive Sensory Analysis and Volatile Analysis to Determine Quality Indicators of Aquacultured Whiteleg Shrimp (Litopanaeus vannemei) during Refrigerated Storage. J. Aquat. Food Prod. Technol. 2020, 29, 722–735. [Google Scholar] [CrossRef]
- Raposo, A.; Coimbra, A.; Amaral, L.; Gonçalves, A.; Morais, Z. Eating jellyfish: Safety, chemical and sensory properties. J. Sci. Food Agric. 2018, 98, 3973–3981. [Google Scholar] [CrossRef]
Property | Storage Temperature (°C) | Storage Time (days) | ||||||
---|---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | 10 | 12 | ||
aw | 4 | 0.957 ± 0.002 | 0.956 ± 0.004 a # | 0.953 ± 0.002 a # | 0.954 ± 0.001 a | 0.951 ± 0.004 a | 0.943 ± 0.001 b | 0.945 ± 0.002 b |
16 | 0.950 ± 0.002 b | 0.945 ± 0.003 c | 0.955 ± 0.003 b | 0.946 ± 0.001 c | 0.943 ± 0.002 c | 0.943 ± 0.001 c | ||
pH | 4 | 6.67 ± 0.07 a | 7.24 ± 0.11 b # | 7.08 ± 0.08 b | 6.49 ± 0.11 c # | 6.08 ± 0.05 d # | 5.84 ± 0.01 e # | 7.24 ± 0.05 b # |
16 | 6.96 ± 0.09 b | 7.19 ± 0.03 c | 7.67 ± 0.02 d | 7.44 ± 0.04 e | 7.06 ± 0.09 b | 5.86 ± 0.02 f | ||
Drip loss (%) | 4 | 0.04 ± 0.01 a | 0.04 ± 0.01 a | 0.43 ± 0.06 b # | 2.07 ± 0.06 c # | 5.17 ± 0.05 d # | 7.63 ± 0.07 e # | 7.87 ± 0.06 f # |
16 | 0.04 ± 0.02 a | 0.83 ± 0.05 b | 2.82 ± 0.07 c | 6.80 ± 0.10 d | 8.82 ± 0.04 e | 9.23 ± 0.06 f | ||
a* | 4 | −13.25 ± 0.03 a | −14.54 ± 0.03 b # | −12.73 ± 0.36 a | −14.61 ± 0.19 b # | −14.22 ± 0.35 b # | −15.09 ± 0.03 b # | −12.80 ± 0.11 a # |
16 | −11.33 ± 0.37 b | −11.86 ± 0.77 b | −10.26 ± 013 c | −5.65 ± 0.07 d | −11.32 ± 0.41 b | −9.93 ± 0.10 c | ||
b* | 4 | 74.62 ± 2.36 a | 78.32 ± 2.12 a # | 57.22 ± 1.06 b # | 52.61 ± 0.30 c # | 49.65 ± 1.04 c # | 56.22 ± 1.03 b # | 62.39 ± 063 d # |
16 | 59.09 ± 0.38 b | 46.86 ± 0.98 c | 40.58 ± 0.94 d | 30.83 ± 0.40 e | 38.37 ± 1.24 d | 36.04 ± 3.89 d | ||
L* | 4 | 66.15 ± 0.62 a | 65.30 ± 0.87 a | 67.83 ± 0.19 a # | 61.40 ± 0.56 b # | 60.01 ± 0.34 b # | 56.35 ± 0.37 c # | 51.39 ± 1.42 d # |
16 | 66.97 ± 1.13 a | 62.19 ± 0.72 b | 68.04 ± 0.96 a | 67.02 ± 0.65 a | 64.87 ± 0.39 a | 70.01 ± 1.58 c | ||
∆E | 4 | _ | 4.29 ± 0.85 a # | 17.31 ± 1.05 b # | 22.35 ± 1.48 c # | 25.53 ± 1.08 c # | 20.73 ± 0.93 b # | 18.99 ± 1.44 b # |
16 | 15.51 ± 0.32 a | 27.88 ± 0.94 b | 34.03 ± 0.95 c | 44.26 ± 0.38 d | 36.12 ± 1.21 c | 38.74 ± 4.00 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-García, F.; Hernández, I.; Palacios, V.M.; Roldán, A.M. Freshness Quality and Shelf Life Evaluation of the Seaweed Ulva rigida through Physical, Chemical, Microbiological, and Sensory Methods. Foods 2021, 10, 181. https://doi.org/10.3390/foods10010181
Sánchez-García F, Hernández I, Palacios VM, Roldán AM. Freshness Quality and Shelf Life Evaluation of the Seaweed Ulva rigida through Physical, Chemical, Microbiological, and Sensory Methods. Foods. 2021; 10(1):181. https://doi.org/10.3390/foods10010181
Chicago/Turabian StyleSánchez-García, Fini, Ignacio Hernández, Víctor M. Palacios, and Ana M. Roldán. 2021. "Freshness Quality and Shelf Life Evaluation of the Seaweed Ulva rigida through Physical, Chemical, Microbiological, and Sensory Methods" Foods 10, no. 1: 181. https://doi.org/10.3390/foods10010181
APA StyleSánchez-García, F., Hernández, I., Palacios, V. M., & Roldán, A. M. (2021). Freshness Quality and Shelf Life Evaluation of the Seaweed Ulva rigida through Physical, Chemical, Microbiological, and Sensory Methods. Foods, 10(1), 181. https://doi.org/10.3390/foods10010181