Phenolic and Carotenoid Profile of Lamb’s Lettuce and Improvement of the Bioactive Content by Preharvest Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Metabolite Analyses
2.2.1. Phenolic Compounds
2.2.2. Carotenoids
2.2.3. Vitamin C
2.2.4. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Compounds
3.1.1. Hydroxybenzoic Acid
3.1.2. Hydroxycinnamic Acids and Derivatives
3.1.3. Flavones
3.1.4. Flavonols
3.1.5. Flavanones
3.2. Carotenoid and Chlorophyll Profiling
3.2.1. Carotenoids
3.2.2. Chlorophylls
3.3. Effect of Mineral Nutrition and Salinity on Lamb’s Lettuce Composition
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.L.; Kao, T.H.; Chen, B.H. Determination of carotenoids in the chinese medical herb jiao-gu-lan (Gynostemma pentaphyllum MAKINO) by liquid chromatography. Chromatographia 2004, 60, 411–417. [Google Scholar] [CrossRef]
- Bazzano, L.A.; He, J.; Ogden, L.G.; Loria, C.M.; Vupputuri, S.; Myers, L.; Whelton, P.K. Fruit and vegetable intake and risk of cardiovascular disease in US adults: The first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am. J. Clin. 2002, 76, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benetou, V.; Orfanos, P.; Lagiou, P.; Trichopoulos, D.; Boffetta, P.; Trichopoulou, A. Vegetables and fruits in relation to cancer risk: Evidence from the Greek EPIC cohort study. Cancer Epidemiol. Biomark. Prev. 2008, 17, 387–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villatoro-Pulido, M.; Priego-Capote, F.; Alvarez-Sanchez, B.; Saha, S.; Philo, M.; Obregon-Cano, S.; De Haro-Bailon, A.; Font, R.; Del Rio-Celestino, M. An approach to the phytochemical profiling of rocket Eruca sativa (Mill.) Thell. J. Sci. Food Agr. 2013, 93, 3809–3819. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef] [PubMed]
- Baena, R.; Salinas, P. Diet and cancer: Risk factors and epidemiological evidence. Maturitas 2014, 77, 202–208. [Google Scholar] [CrossRef]
- Pellegrina, C.D.; Padovani, G.; Mainente, F.; Zoccatelli, G.; Bissoli, G.; Mosconi, S.; Veneri, G.; Peruffo, A.; Andrighetto, G.; Rizzi, C.; et al. Anti-tumour potential of a gallic acid-containing phenolic fraction from Oenothera biennis. Cancer Lett. 2005, 226, 17–25. [Google Scholar] [CrossRef]
- Mayne, S.T. β-carotene, carotenoids, and disease prevention in humans. FASEB J. 1996, 10, 690–701. [Google Scholar] [CrossRef] [Green Version]
- Ferruzzi, M.G.; Bohm, V.; Courtney, P.D.; Schwartz, S.J. Antioxidant and antimutagenic activity of dietary chlorophyll derivatives determined by radical scavenging and bacterial reverse mutagenesis assays. J. Food Sci. 2002, 67, 2589–2595. [Google Scholar] [CrossRef]
- Ferreres, F.; Gil, M.I.; Castaner, M.; TomasBarberan, F.A. Phenolic metabolites in red pigmented lettuce (Lactuca sativa). Changes with minimal processing and cold storage. J. Agr. Food Chem. 1997, 45, 4249–4254. [Google Scholar] [CrossRef]
- Llorach, R.; Martinez-Sanchez, A.; Tomas-Barberan, F.A.; Gil, M.I.; Ferreres, F. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem. 2008, 108, 1028–1038. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, A.; Martinetti, L.; Maggiore, T. Biochemical changes in cut vs. intact lamb’s lettuce (Valerianella olitoria) leaves during storage. Int. J. Food Sci. Technol. 2009, 44, 1050–1056. [Google Scholar]
- Dalla Costa, L.; Tomasi, N.; Gottardi, S.; Iacuzzo, F.; Cortella, G.; Manzocco, L.; Pinton, R.; Mimmo, T.; Cesco, S. The effect of growth medium temperature on corn salad Valerianella locusta (L.) Laterr baby leaf yield and quality. Hortscience 2011, 46, 1619–1625. [Google Scholar] [CrossRef]
- Manzocco, L.; Foschia, M.; Tomasi, N.; Maifreni, M.; Costa, L.D.; Marino, M.; Cortella, G.; Cesco, S. Influence of hydroponic and soil cultivation on quality and shelf life of ready-to-eat lamb’s lettuce (Valerianella locusta L. Laterr). J. Sci. Food Agr. 2011, 91, 1373–1380. [Google Scholar] [CrossRef]
- Ceglie, F.G.; Amodio, M.L.; de Chiara, M.L.V.; Madzaric, S.; Mimiola, G.; Testani, E.; Tittarelli, F.; Colelli, G. Effect of organic agronomic techniques and packaging on the quality of lamb’s lettuce. J. Sci. Food Agr. 2018, 98, 4606–4615. [Google Scholar] [CrossRef]
- Dlugosz-Grochowska, O.; Wojciechowska, R.; Kruczek, M.; Habela, A. Supplemental lighting with leds improves the biochemical composition of two Valerianella locusta (L.) cultivars. Hortic. Environ. Biotechnol. 2017, 58, 441–449. [Google Scholar] [CrossRef]
- Pappalardo, H.D.; Toscano, V.; Puglia, G.D.; Genovese, C.; Raccuia, S.A. Cynara cardunculus L. as a multipurpose crop for plant secondary metabolites production in marginal stressed lands. Front. Plant Sci. 2020, 11, 240. [Google Scholar] [CrossRef]
- Ramos-Bueno, R.P.; Rincon-Cervera, M.A.; Gonzalez-Fernandez, M.J.; Guil-Guerrero, J.L. Phytochemical composition and antitumor activities of new salad greens: Rucola (Diplotaxis tenuifolia) and corn salad (Valerianella locusta). Plant Foods Hum. Nutr. 2016, 71, 197–203. [Google Scholar] [CrossRef]
- Cantos, E.; Espin, J.C.; Tomas-Barberan, F.A. Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC-DAD-MS-MS. J. Agr. Food Chem. 2002, 50, 5691–5696. [Google Scholar] [CrossRef]
- Motilva, M.J.; Macia, A.; Romero, M.P.; Labrador, A.; Dominguez, A.; Peiro, L. Optimisation and validation of analytical methods for the simultaneous extraction of antioxidants: Application to the analysis of tomato sauces. Food Chem. 2014, 163, 234–243. [Google Scholar] [CrossRef]
- Fenoll, J.; Martinez, A.; Hellin, P.; Flores, P. Simultaneous determination of ascorbic and dehydroascorbic acids in vegetables and fruits by liquid chromatography with tandem-mass spectrometry. Food Chem. 2011, 127, 340–344. [Google Scholar] [CrossRef]
- Navarro, M.; Moreira, I.; Arnaez, E.; Quesada, S.; Azofeifa, G.; Vargas, F.; Alvarado, D.; Chen, P. Polyphenolic characterization and antioxidant activity of Malus domestica and Prunus domestica cultivars from Costa Rica. Foods 2018, 7, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakkar, S.; Bais, S. A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol. 2014, 23, 952943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clifford, M.N.; Knight, S.; Kuhnert, N. Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn. J. Agr. Food Chem. 2005, 53, 3821–3832. [Google Scholar] [CrossRef]
- Baeza, G.; Sarria, B.; Bravo, L.; Mateos, R. Exhaustive qualitative LC-DAD-MSn analysis of arabica green coffee beans: Cinnamoyl-glycosides and cinnamoylshikimic acids as new polyphenols in green coffee. J. Agr. Food Chem. 2016, 64, 9663–9674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanescu, B.E.; Szabo, K.; Mocan, A.; Crisan, G. Phenolic compounds from five ericaceae species leaves and their related bioavailability and health benefits. Molecules 2019, 24, 2046. [Google Scholar] [CrossRef] [Green Version]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef] [Green Version]
- Liang, N.; Kitts, D.D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 2016, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Meng, S.; Cao, J.; Feng, Q.; Peng, J.; Hu, Y. Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review. Evid. Based Complement. Alternat. Med. 2013, 6778, 801457. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Ballevre, O.; Luo, H.; Zhang, W. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertens. Res. 2012, 35, 370–374. [Google Scholar] [CrossRef] [Green Version]
- Belkaid, A.; Currie, J.-C.; Desgagnes, J.; Annabi, B. The chemopreventive properties of chlorogenic acid reveal a potential new role for the microsomal glucose-6-phosphate translocase in brain tumor progression. Cancer Cell Int. 2006, 6, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramberger, K.; Barlic-Maganja, D.; Bandelj, D.; Arbeiter, A.B.; Peeters, K.; Visnjevec, A.M.; Praznikar, Z.J. HPLC-DAD-ESI-QTOF-MS Determination of bioactive compounds and antioxidant activity comparison of the hydroalcoholic and water extracts from two Helichrysum Ital. species. Metabolites 2020, 10, 403. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Felipe, P.; Yang, Y.H.; Kim, M.Y.; Kwon, O.Y.; Sok, D.E.; Kim, H.C.; Kim, M.R. Effects of dietary supplementation with red-pigmented leafy lettuce (Lactuca sativa) on lipid profiles and antioxidant status in C57BL/6J mice fed a high-fat high-cholesterol diet. Br. J. Nutr. 2009, 101, 1246–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catarino, M.D.; Silva, A.M.S.; Saraiva, S.C.; Sobral, A.J.F.N.; Cardoso, S.M. Characterization of phenolic constituents and evaluation of antioxidant properties of leaves and stems of Eriocephalus africanus. Arab. J. Chem. 2018, 11, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Flores, P.; Hernández, V.; Fenoll, J.; Hellín, P. Pre-harvest application of ozonated water on broccoli crops: Effect on head quality. J. Food Compos. Anal. 2019, 83, 103260. [Google Scholar] [CrossRef]
- Csernatoni, F.; Socaciu, C.; Pop, R.M.; Ranga, F.; Bunghez, F.; Romanciuc, F. Comparative fingerprint of aromatic herbs and yeast alcoholic extracts used as ingredients for promen, a prostate preventive nutraceutical. Food Sci. Technol. 2013, 70, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Schuster, B.; Herrmann, K. Hydroxybenzoic and hydroxycinnamic acid-derivatives in soft fruits. Phytochemistry 1985, 24, 2761–2764. [Google Scholar] [CrossRef]
- Papetti, A.; Daglia, M.; Aceti, C.; Sordelli, B.; Spini, V.; Carazzone, C.; Gazzani, G. Hydroxycinnamic acid derivatives occurring in Cichorium endivia vegetables. J. Pharm. Biomed. Anal. 2008, 48, 472–476. [Google Scholar] [CrossRef]
- El-Askary, H.I.; Mohamed, S.S.; El-Gohari, H.M.A.; Ezzat, S.M.; Meselhy, M.R. Quinic acid derivatives from Artemisia annua L. leaves; biological activities and seasonal variation. S. Afr. J. Bot. 2020, 128, 200–208. [Google Scholar] [CrossRef]
- Poleti Martucci, M.E.; De Vos, R.C.H.; Carollo, C.A.; Gobbo-Neto, L. Metabolomics as a potential chemotaxonomical tool: Application in the genus vernonia schreb. PLoS ONE 2014, 9, e93149. [Google Scholar] [CrossRef] [Green Version]
- Ferreres, F.; Sousa, C.; Vrchovska, V.; Valentao, P.; Pereira, J.A.; Seabra, R.M.; Andrade, P.B. Chemical composition and antioxidant activity of tronchuda cabbage internal leaves. Eur. Food Res. Technol. 2006, 222, 88–98. [Google Scholar] [CrossRef]
- Niciforovic, N.; Abramovic, H. Sinapic acid and its derivatives: Natural sources and bioactivity. Compr. Rev. Food Sci. Saf. 2014, 13, 34–51. [Google Scholar] [CrossRef] [PubMed]
- López-Lázaro, M. Distribution and biological activities of the flavonoid luteolin. Mini-Rev. Med. Chem. 2009, 9, 31–59. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Sugimoto, Y.; Masuda, H.; Kamei, C. Antiallergic effect of flavonoid glycosides obtained from Mentha piperita L. Biol. Pharm. Bull. 2002, 25, 256–259. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.Z.; Lu, S.; Harnly, J.M. Detection and quantification of glycosylated flavonoid malonates in celery, Chinese celery, and celery seed by LC-DAD-ESI/MS. J. Agr. Food Chem. 2007, 55, 1321–1326. [Google Scholar] [CrossRef] [Green Version]
- Brito, A.; Ramirez, J.E.; Areche, C.; Sepulveda, B.; Simirgiotis, M.J. HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in northern chile. Molecules 2014, 19, 17400–17421. [Google Scholar] [CrossRef]
- Justesen, U. Negative atmospheric pressure chemical ionisation low-energy collision activation mass spectrometry for the characterisation of flavonoids in extracts of fresh herbs. J. Chromatogr. A 2000, 902, 369–379. [Google Scholar] [CrossRef]
- Patel, K.; Gadewar, M.; Tahilyani, V.; Patel, D.K. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin. J. Integr. Med. 2013, 19, 792–800. [Google Scholar] [CrossRef]
- Guzelmeric, E.; Vovk, I.; Yesilada, E. Development and validation of an HPTLC method for apigenin 7-O-glucoside in chamomile flowers and its application for fingerprint discrimination of chamomile-like materials. J. Pharm. Biomed. 2015, 107, 108–118. [Google Scholar] [CrossRef]
- Gulluce, M.; Orhan, F.; Adiguzel, A.; Bal, T.; Guvenalp, Z.; Dermirezer, L.O. Determination of antimutagenic properties of apigenin-7-O-rutinoside, a flavonoid isolated from Mentha longifolia (L.) Huds. ssp longifolia with yeast DEL assay. Toxicol. Ind. Health 2013, 29, 534–540. [Google Scholar] [CrossRef]
- Hwang, S.H.; Paek, J.H.; Lim, S.S. Simultaneous ultra performance liquid chromatography determination and antioxidant activity of linarin, luteolin, chlorogenic acid and apigenin in different parts of compositae species. Molecules 2016, 21, 1609. [Google Scholar] [CrossRef] [PubMed]
- Hvattum, E.; Ekeberg, D. Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry. J. Mass Spectrom. 2003, 38, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K.; Akobirshoeva, A.; Zilfikarov, I.N.; Vennos, C. Isorhamnetin and quercetin derivatives as anti-acetylcholinesterase principles of marigold (Calendula officinalis) flowers and preparations. Int. J. Mol. Sci. 2017, 18, 1685. [Google Scholar] [CrossRef] [Green Version]
- Sergio, L.; Boari, F.; Pieralice, M.; Linsalata, V.; Cantore, V.; Di Venere, D. Bioactive phenolics and antioxidant capacity of some wild edible greens as affected by different cooking treatments. Foods 2020, 18, 1320. [Google Scholar] [CrossRef] [PubMed]
- Cebadera, L.; Dias, M.I.; Barros, L.; Fernández-Ruiz, V.; Cámara, R.M.; Del Pino, A.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Morales, P.; Camara, M. Characterization of extra early spanish clementine varieties (Citrus clementina Hort ex Tan) as a relevant source of bioactive compounds with antioxidant activity. Foods 2020, 9, 642. [Google Scholar] [CrossRef] [PubMed]
- Petry, F.C.; Mercadante, A.Z. Composition by LC-MS/MS of new carotenoid esters in mango and citrus. J. Agr. Food Chem. 2016, 64, 8207–8224. [Google Scholar] [CrossRef] [PubMed]
- López, A.; Javier, G.A.; Fenoll, J.; Hellín, P.; Flores, P. Chemical composition and antioxidant capacity of lettuce: Comparative study of regular-sized (Romaine) and baby-sized (Little Gem and Mini Romaine) types. J. Food Compos. Anal. 2014, 33, 39–48. [Google Scholar] [CrossRef]
- Gupta, P.; Sreelakshmi, Y.; Sharma, R. A rapid and sensitive method for determination of carotenoids in plant tissues by high performance liquid chromatography. Plant Methods 2015, 11, 5. [Google Scholar] [CrossRef] [Green Version]
- Takaichi, S.; Mimuro, M. Distribution and geometric isomerism of neoxanthin in oxygenic phototrophs: 9′-cis, a sole molecular form. Plant Cell Physiol. 1998, 39, 968–977. [Google Scholar] [CrossRef]
- Moloto, M.R.; Phan, A.D.T.; Shai, J.L.; Sultanbawa, Y.; Sivakumar, D. Comparison of phenolic compounds, carotenoids, amino acid composition, in vitro antioxidant and anti-diabetic activities in the leaves of seven cowpea (Vigna unguiculata) cultivars. Foods 2020, 9, 1285. [Google Scholar] [CrossRef]
- Pandey, D.M.; Kang, K.H.; Yeo, U.D. Effects of excessive photon on the photosynthetic pigments and violaxanthin de-epoxidase activity in the xanthophyll cycle of spinach leaf. Plant Sci. 2005, 168, 161–166. [Google Scholar] [CrossRef]
- Znidarcic, D.; Ban, D.; Sircelj, H. Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chem. 2011, 129, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A.; Nisar, P. Effects of high temperature frying of spinach leaves in sunflower oil on carotenoids, chlorophylls, and tocopherol composition. Front. Chem. 2017, 5, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demmig-Adams, B.; Lopez-Pozo, M.; Stewart, J.J.; Adams, W.W., III. Zeaxanthin and lutein: Photoprotectors, anti-inflammatories, and brain food. Molecules 2020, 25, 3607. [Google Scholar] [CrossRef]
- Chen, J.P.; Tai, C.Y.; Chen, B.H. Improved liquid chromatographic method for determination of carotenoids in Taiwanese mango (Mangifera indica L.). J. Chromatogr. A 2004, 1054, 261–268. [Google Scholar] [CrossRef]
- Lin, C.H.; Chen, B.H. Determination of carotenoids in tomato juice by liquid chromatography. J. Chromatogr. A 2003, 1012, 103–109. [Google Scholar] [CrossRef]
- Müller, H. Determination of the carotenoid content in selected vegetables and fruit by HPLC and photodiode array detection. J. Food Sci. Technol. 1997, 204, 88–94. [Google Scholar] [CrossRef]
- Johra, F.T.; Bepari, A.K.; Bristy, A.T.; Reza, H.M. A mechanistic review of β-carotene, lutein, and zeaxanthin in eye health and disease. Antioxidants 2020, 9, 1046. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy; Wrolstad, R.E., Acree, T.E., An, H., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Sporns, P., Eds.; Current Protocols in Food Analytical Chemistry (CPFA), John Wiley and Sons: New York, NY, USA, 2001; pp. F4.3.1–F4.3.8. [Google Scholar]
- Milenković, S.M.; Zvezdanović, J.; Anđelković, T.; Dejan, Z. The identification of chlorophyll and its derivatives in the pigment mixtures: HPLC-chromatography, visible and mass spectroscopy studies. Adv. Technol. 2012, 1, 16–24. [Google Scholar]
- Lanfer-Marquez, U.M.; Barros, R.M.C.; Sinnecker, P. Antioxidant activity of chlorophylls and their derivatives. Food Res. Int. 2005, 38, 885–891. [Google Scholar] [CrossRef]
- Pérez-Gálvez, A.; Viera, I.; Roca, M. Carotenoids and chlorophylls as antioxidants. Antioxidants 2020, 9, 505. [Google Scholar] [CrossRef] [PubMed]
- Suparmi, S.; Fasitasari, M.; Martosupono, M.; Mangimbulude, J.C. Comparisons of curative effects of chlorophyll from Sauropus androgynus (L) merr leaf extract and cu-chlorophyllin on sodium nitrate-induced oxidative stress in rats. J. Toxicol. 2016, 5, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Mou, B. Responses of spinach to salinity and nutrient deficiency in growth, physiology, and nutritional value. J. Am. Soc. Hortic. Sci. 2016, 141, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Tsouvaltzis, P.; Kasampalis, D.S.; Aktsoglou, D.C.; Barbayiannis, N.; Siomos, A.S. Effect of reduced nitrogen and supplemented amino acids nutrient solution on the nutritional quality of baby green and red lettuce grown in a floating system. Agronomy 2020, 10, 922. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Petropoulos, S.A.; Pannico, A.; Kyriacou, M.C.; Giordano, M.; Colla, G.; Troise, A.D.; Vitaglione, P.; De Pascale, S.; Rouphael, Y. The bioactive profile of lettuce produced in a closed soilless system as configured by combinatorial effects of genotype and macrocation supply composition. Food. Chem. 2020, 309, 125713. [Google Scholar] [CrossRef]
- Zhou, W.; Liang, X.; Dai, P.; Chen, Y.; Zhang, Y.; Zhang, M.; Lu, L.; Jin, C.; Lin, X. Alteration of phenolic composition in lettuce (Lactuca sativa L.) by reducing nitrogen supply enhances its anti-proliferative effects on colorectal cancer cells. Int. J. Mol. Sci. 2019, 20, 4205. [Google Scholar] [CrossRef] [Green Version]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Nocerino, S.; Rouphael, Y.; Colla, G.; El-Nakhel, C.; Mori, M. Nitrogen use and uptake efficiency and crop performance of baby spinach (Spinacia oleracea L.) and lamb’s lettuce (Valerianella locusta L.) grown under variable sub-optimal n regimes combined with plant-based biostimulant application. Agronomy 2020, 10, 278. [Google Scholar] [CrossRef] [Green Version]
- Nemadodzi, L.E.; Araya, H.; Nkomo, M.; Ngezimana, W.; Mudau, N.F. Nitrogen, phosphorus, and potassium effects on the physiology and biomass yield of baby spinach (Spinacia oleracea L.). J. Plant Nutr. 2017, 40, 2033–2044. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Pannico, A.; Kyriacou, M.C.; Giordano, M.; De Pascale, S.; Rouphael, Y. Macronutrient deprivation eustress elicits differential secondary metabolites in red and green-pigmented butterhead lettuce grown in a closed soilless system. J. Sci. Food Agr. 2019, 99, 6962–6972. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Salinity stress enhances color parameters, bioactive leaf pigments, vitamins, polyphenols, flavonoids and antioxidant activity in selected Amaranthus leafy vegetables. J. Sci. Food Agr. 2019, 99, 2275–2284. [Google Scholar] [CrossRef]
- Flores, P.; Hernández, V.; Hellín, P.; Fenoll, J.; Cava, J.; Mestre, T.; Martínez, V. Metabolite profile of the tomato dwarf cultivar Micro-Tom and comparative response to saline and nutritional stresses with regard to a commercial cultivar. J. Sci. Food Agr. 2016, 96, 1562–1570. [Google Scholar] [CrossRef] [PubMed]
Compound | RT | [M − H]− | bp | Product Ions | C a | |
---|---|---|---|---|---|---|
1 | Protocatechuic | 11.65 | 153 | 109 | 0.015 | |
2 | 3-Caffeoylquinic acid | 12.31 | 353 | 191 | 179(55), 135(6) | 0.15 |
3 | Caffeic acid-O-hexoside 1 | 14.28 | 341 | 179 | 135(10) | 0.093 |
4 | Caffeic acid-O-hexoside 2 | 16.71 | 341 | 179 | 135(4) | 0.036 |
5 | Caffeic acid-O-hexoside 3 | 17.33 | 341 | 179 | 135(14) | 0.011 |
6 | 5-Caffeoylquinic acid | 18.06 | 353 | 191 | 179(2), 173(1) | 367.6 |
7 | 4-Caffeoylquinic acid | 18.46 | 353 | 173 | 191(55), 179(85), 135(40) | 3.2 |
8 | Sinapic acid-hexoside 1 | 19.18 | 385 | 223 | 208(3), 179(5), 164(5) | 7.4 |
9 | Caffeic acid | 20.47 | 179 | 135 | 2.3 | |
10 | cis-5-Caffeoylquinic acid | 20.96 | 353 | 191 | 179(7), 173(1) | 55.5 |
11 | Sinapic acid-hexoside 2 | 21.89 | 385 | 223 | 208(5), 179(3), 164(2) | 5.2 |
12 | cis 5-O-p-Coumaroylquinic | 23.48 | 337 | 191 | 173(6), 163(4) | 35.1 |
13 | trans 5-O-p-Feruloylquinic acid | 25.73 | 367 | 191 | 173(8) | 20.1 |
14 | trans 5-O-p-Coumaroylquinic acid | 25.93 | 337 | 191 | 173(1), 163(1) | 27.1 |
15 | p-Coumaric acid | 27.53 | 163 | 119 | 0.056 | |
16 | cis 5-O-p-Feruloylquinic acid | 28.01 | 367 | 191 | 173(3) | 10.0 |
17 | Luteolin-7-O-apiosylglucoside | 32.80 | 579 | 285 | 1.2 | |
18 | Luteolin-7-rutinoside | 33.72 | 593 | 285 | 27.9 | |
19 | Isorhamnetin-rutinoside | 34.18 | 623 | 315 | 1.5 | |
20 | Quercetin-glucuronide | 34.51 | 477 | 301 | 0.01 | |
21 | Luteolin-7-O-glucoside | 34.99 | 447 | 285 | 0.20 | |
22 | Quercetin-3-O-glucoside | 35.09 | 463 | 300 | 301(35) | 0.031 |
23 | 3,4-Dicaffeoylquinic acid | 35.98 | 515 | 353 | 191(6), 179(5), 173(2) | 3.1 |
24 | 3,5-Dicaffeoylquinic acid | 37.61 | 515 | 353 | 191(5), 179(4) | 26.1 |
25 | Apigenin-rutinoside | 38.12 | 577 | 269 | 0.25 | |
26 | Hesperidin | 38.48 | 609 | 301 | 1.1 | |
27 | Diosmetin-apiosylglucoside | 39.75 | 593 | 299 | 284(1) | 23.9 |
28 | 4,5-Dicaffeoylquinic acid | 40.50 | 515 | 191(15), 179(50), 173(65) | 1.5 | |
29 | Apigenin-7-O-glucoside | 40.69 | 431 | 269 | 0.012 | |
30 | Diosmin | 40.80 | 607 | 299 | 284(1) | 21.6 |
31 | Feruloyl-caffeoylquinic acid | 43.91 | 529 | 353 | 367(55), 191(10), 179(17) | 0.043 |
32 | Acacetin-rutinoside | 50.00 | 591 | 283 | 1.1 | |
33 | Quercetin | 50.99 | 301 | 151 | 179(24), 121(42), 107(33) | 0.15 |
34 | Luteolin | 51.14 | 285 | 133 | 175(10), 151(10) | 0.051 |
35 | Diosmetin | 54.78 | 299 | 284 | 256(11) | 0.16 |
Compound | RT | λ (nm) | Qratio Found | Qratio Reported | C a | |||||
---|---|---|---|---|---|---|---|---|---|---|
1 | all-trans-violaxanthin | 10.68 | 416 | 440 | 468 | 5.5 | ||||
2 | 9 or 9′-cis-neoxanthin | 11.58 | 328 | 412 | 436 | 464 | 0.11 | 0.13 [56] | 8.1 | |
3 | luteoxanthin | 12.44 | 398 | 422 | 448 | 3.3 | ||||
4 | antheraxanthin | 14.72 | 422 | 444 | 472 | 3.8 | ||||
5 | chlorophyll b | 15.42 | 468 | 602 | 652 | |||||
6 | chlorophyll b’ | 17.26 | 468 | 602 | 652 | |||||
7 | all-trans-lutein | 17.96 | (422) | 444 | 472 | 27.2 | ||||
8 | zeaxanthin | 22.24 | (428) | 450 | 478 | 0.62 | ||||
9 | chlorophyll a | 23.45 | 432 | 618 | 666 | |||||
10 | chlorophyll a’ | 27.09 | 432 | 618 | 666 | |||||
11 | β-apo-8′-carotenal b | 28.38 | 466 | |||||||
12 | β-cryptoxanthin | 38.52 | (426) | 452 | 478 | 0.41 | ||||
13 | 13-cis-β-carotene | 44.59 | 338 | (424) | 446 | 470 | 0.39 | 0.35 [62] | 1.9 | |
14 | all-trans-α-carotene | 47.55 | (426) | 446 | 474 | 1.2 | ||||
15 | pheophytin a | 53.22 | 408 | 506 | 538 | 610 | 666 | |||
16 | all-trans-β-carotene | 54.93 | (428) | 452 | 478 | 57.4 | ||||
17 | pheophytin a’ | 56.85 | 408 | 506 | 538 | 610 | 666 | |||
18 | 9-cis-β-carotene | 59.81 | 342 | (426) | 446 | 474 | 0.08 | 0.10 [63] | 3.2 |
mM | Hydroxicinamic | Flavones | Flavonols | Flavanones | |
---|---|---|---|---|---|
Ca | 0.5 | 838 ± 90 | 113 ± 9 | 3.54 ± 0.54 | 4.27 ± 0.67 |
2 | 771 ± 12 | 119 ± 7 | 3.96 ± 0.21 | 3.70 ± 0.12 | |
5 | 779 ± 20 | 130 ± 9 | 4.50 ± 0.48 | 4.90 ± 0.31 | |
n.s. | n.s. | n.s. | n.s. | ||
0.1 | 302 ± 49 | 44 ± 1 b | 0.46 ± 0.15 | 1.66 ± 0.13 b | |
K | 0.5 | 259 ± 17 | 37 ± 2 a | 0.21 ± 0.10 | 1.64 ± 0.20 b |
3.5 | 235 ± 29 | 32 ± 1 a | 0.30 ± 0.24 | 1.13 ± 0.12 a | |
n.s. | ** | n.s. | * | ||
N | 0.1 | 840 ± 18 b | 263 ± 4 c | 2.32 ± 0.16 b | 3.09 ± 0.26 b |
1 | 791 ± 85 b | 173 ± 29 b | 2.38 ± 0.24 b | 3.73 ± 0.67 b | |
7 | 565 ± 12 a | 76 ± 4 a | 1.65 ± 0.14 a | 1.05 ± 0.06 a | |
** | *** | * | ** | ||
NaCl | C | 479 ± 16 | 63 ± 2 | 2.10 ± 0.18 | 0.92 ± 0.12 |
15 | 471 ± 25 | 60 ± 2 | 1.99 ± 0.32 | 0.87 ± 0.07 | |
30 | 480 ± 56 | 52 ± 2 | 1.87 ± 0.34 | 0.74 ± 0.05 | |
60 | 397 ± 116 | 46 ± 13 | 2.19 ± 0.41 | 0.75 ± 0.19 | |
n.s. | n.s. | n.s. | n.s. |
Treatments | mM | Total Carotenoids | Total Chlorophyll | Vitamin C |
---|---|---|---|---|
Ca | 0.5 | 130 ± 10 | 125 ± 8 b | 376 ± 4 |
2 | 150 ± 7 | 86 ± 5 a | 364 ± 6 | |
5 | 154 ± 18 | 89 ± 9 a | 356 ± 10 | |
n.s. | ** | n.s. | ||
K | 0.1 | 148 ± 16 b | 205 ± 22 b | 454 ± 8 |
0.5 | 100 ± 8 a | 140 ± 13 a | 397 ± 21 | |
3.5 | 82 ± 4 a | 114 ± 7 a | 425 ± 26 | |
** | ** | n.s. | ||
N | 0.1 | 91 ± 4 a | 94 ± 3 a | 661 ± 20 |
1 | 86 ± 9 a | 87 ±8 a | 682 ± 55 | |
7 | 109 ± 3 b | 116 ±3 b | 624 ± 3 | |
* | ** | n.s | ||
NaCl | 0 | 83 ± 3 a | 100 ± 4 b | 515 ± 10 a |
15 | 113 ± 7 ab | 101 ±6 b | 541 ± 17 ab | |
30 | 121 ± 8 ab | 88 ± 4 ab | 540 ± 20 ab | |
60 | 132 ± 16 b | 80 ± 1 a | 597 ± 20 b | |
* | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández, V.; Botella, M.Á.; Hellín, P.; Cava, J.; Fenoll, J.; Mestre, T.; Martínez, V.; Flores, P. Phenolic and Carotenoid Profile of Lamb’s Lettuce and Improvement of the Bioactive Content by Preharvest Conditions. Foods 2021, 10, 188. https://doi.org/10.3390/foods10010188
Hernández V, Botella MÁ, Hellín P, Cava J, Fenoll J, Mestre T, Martínez V, Flores P. Phenolic and Carotenoid Profile of Lamb’s Lettuce and Improvement of the Bioactive Content by Preharvest Conditions. Foods. 2021; 10(1):188. https://doi.org/10.3390/foods10010188
Chicago/Turabian StyleHernández, Virginia, M. Ángeles Botella, Pilar Hellín, Juana Cava, Jose Fenoll, Teresa Mestre, Vicente Martínez, and Pilar Flores. 2021. "Phenolic and Carotenoid Profile of Lamb’s Lettuce and Improvement of the Bioactive Content by Preharvest Conditions" Foods 10, no. 1: 188. https://doi.org/10.3390/foods10010188
APA StyleHernández, V., Botella, M. Á., Hellín, P., Cava, J., Fenoll, J., Mestre, T., Martínez, V., & Flores, P. (2021). Phenolic and Carotenoid Profile of Lamb’s Lettuce and Improvement of the Bioactive Content by Preharvest Conditions. Foods, 10(1), 188. https://doi.org/10.3390/foods10010188