Odd- and Branched-Chain Fatty Acids in Lamb Meat as Potential Indicators of Fattening Diet Characteristics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sañudo, C.; Alfonso, M.; San Julián, R.; Thorkelsson, G.; Valdimarsdottir, T.; Zygoyiannis, D.; Stamataris, C.; Piasentier, E.; Mills, C.; Berge, P.; et al. Regional variation in the hedonic evaluation of lamb meat from diverse production systems by consumers in six European countries. Meat Sci. 2007, 75, 610–621. [Google Scholar] [CrossRef]
- Watkins, P.J.; Frank, D.; Singh, T.K.; Young, O.A.; Warner, R.D. Sheepmeat flavor and the effect of different feeding systems: A review. J. Agric. Food Chem. 2013, 61, 3561–3579. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda, W.S.; Maza, M.T.; Pardos, L. Aspects of quality related to the consumption and production of lamb meat. Consumers versus producers. Meat Sci. 2011, 87, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Monahan, F.J.; Schmidt, O.; Moloney, A.P. Meat provenance: Authentication of geographical origin and dietary background of meat. Meat Sci. 2018, 144, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Acciaro, M.; Decandia, M.; Sitzia, M.; Manca, C.; Giovanetti, V.; Cabiddu, A.; Addis, M.; Rassu, S.P.G.; Molle, G.; Dimauro, C. Discriminant analysis as a tool to identify bovine and ovine meat produced from pasture or stall-fed animals. Ital. J. Anim. Sci. 2020, 19, 1065–1070. [Google Scholar] [CrossRef]
- Erasmus, S.W.; Muller, M.; Van Der Rijst, M.; Hoffman, L.C. Stable isotope ratio analysis: A potential analytical tool for the authentication of South African lamb meat. Food Chem. 2016, 192, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Guo, B.; Wei, Y.; Fan, M. Classification of geographical origins and prediction of δ13C and δ15N values of lamb meat by near infrared reflectance spectroscopy. Food Chem. 2012, 135, 508–514. [Google Scholar] [CrossRef]
- Vasta, V.; Ratel, J.; Engel, E. Mass spectrometry analysis of volatile compounds in raw meat for the authentication of the feeding background of farm animals. J. Agric. Food Chem. 2007, 55, 4630–4639. [Google Scholar] [CrossRef]
- Wang, J.; Xu, L.; Xu, Z.; Wang, Y.; Niu, C.; Yang, S. Liquid chromatography quadrupole time-of-flight mass spectrometry and rapid evaporative ionization mass spectrometry were used to develop a lamb authentication method: A preliminary study. Foods 2020, 9, 1723. [Google Scholar] [CrossRef]
- Arshad, M.S.; Sohaib, M.; Ahmad, R.S.; Nadeem, M.T.; Imran, A.; Arshad, M.U.; Kwon, J.H.; Amjad, Z. Ruminant meat flavor influenced by different factors with special reference to fatty acids. Lipids Health Dis. 2018, 17, 223. [Google Scholar] [CrossRef] [Green Version]
- Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Bermingham, E.N.; Watkins, P.J.; Proctor, S.D.; Dugan, M.E. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Sci. 2020, 165, 108114. [Google Scholar] [CrossRef] [PubMed]
- Fievez, V.; Colman, E.; Castro-Montoya, J.M.; Stefanov, I.; Vlaeminck, B. Milk odd- and branched-chain fatty acids as biomarkers of rumen function-An update. Anim. Feed Sci. Technol. 2012, 172, 51–65. [Google Scholar] [CrossRef]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd-and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Juárez, M.; de la Fuente, M.A. Milk fatty acids and potential health benefits: An updated vision. Trends Food Sci. Technol. 2018, 81, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bessa, R.J.B.; Maia, M.R.G.; Jeronimo, E.; Belo, A.T.; Cabrita, A.R.J.; Dewhurst, R.J.; Fonseca, A.J.M. Using microbial fatty acids to improve understanding of the contribution of solid associated bacteria to microbial mass in the rumen. Anim. Feed Sci. Technol. 2009, 150, 197–206. [Google Scholar] [CrossRef]
- Prado, L.A.; Ferlay, A.; Noziere, P.; Schmidely, P. Predicting duodenal flows and absorption of fatty acids from dietary characteristics in ovine and bovine species: A meta-analysis approach. Animal 2019, 13, 727–739. [Google Scholar] [CrossRef] [Green Version]
- Ellison, M.J.; Conant, G.C.; Lamberson, W.R.; Cockrum, R.R.; Austin, K.J.; Rule, D.C.; Cammack, K.M. Diet and feed efficiency status affect rumen microbial profiles of sheep. Small Rumin. Res. 2017, 156, 12–19. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, P.; Wang, L.; Zhao, Z.; Chen, Y.; Yang, Y. Bacterial community diversity associated with different levels of dietary nutrition in the rumen of sheep. Appl. Microbiol. Biotechnol. 2017, 101, 3717–3728. [Google Scholar] [CrossRef]
- Vlaeminck, B.; Fievez, V.; Demeyer, D.; Dewhurst, R.J. Effect of forage: Concentrate ratio on fatty acid composition of rumen bacteria isolated from ruminal and duodenal digesta. J. Dairy Sci. 2006, 89, 2668–2678. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, K.; Hao, X.; Xin, H. The relationships between odd-and branched-chain fatty acids to ruminal fermentation parameters and bacterial populations with different dietary ratios of forage and concentrate. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1103–1114. [Google Scholar] [CrossRef]
- Avilés Ramirez, C.; Peña Blanco, F.; Horcada, A.; Nuñez Sánchez, N.; Requena Domenech, F.; Guzman Medina, P.; Martínez Marín, A.L. Effects of concentrates rich in by-products on growth performance, carcass characteristics and meat quality traits of light lambs. Anim. Prod. Sci. 2019, 59, 593–599. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Galisteo, O.O.; Avilés Ramirez, C.; Peña Blanco, F.; de la Fuente, M.A.; Núñez Sánchez, N.; Martínez Marín, A.L. Intramuscular fatty acid profile of feedlot lambs fed concentrates with alternative ingredients. Anim. Prod. Sci. 2019, 59, 914–920. [Google Scholar] [CrossRef]
- Klecka, W.R. Discriminant Analysis; Sage Publications: Beverly Hills, CA, 1980. [Google Scholar]
- Costa, M.; Alves, S.P.; Francisco, A.; Almeida, J.; Alfaia, C.M.; Martins, S.V.; Prates, J.A.M.; Santos-Silva, J.; Doran, O.; Bessa, R.J.B. The reduction of starch in finishing diets supplemented with oil does not prevent the accumulation of trans-10 18:1 in lamb meat. J. Anim. Sci. 2017, 95, 3745–3761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, M.A.; Alves, S.P.; Santos-Silva, J.; Bessa, R.J.B. Effect of dietary starch level and its rumen degradability on lamb meat fatty acid composition. Meat Sci. 2017, 123, 166–172. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Francisco, A.; Alves, S.P.; Portugal, P.; Dentinho, T.; Almeida, J.; Soldado, D.; Jeronimo, E.; Bessa, R.J.B. Effect of dietary neutral detergent fibre source on lambs growth, meat quality and biohydrogenation intermediates. Meat Sci. 2019, 147, 28–36. [Google Scholar] [CrossRef]
- Zhang, Z.; Niu, X.; Li, F.; Li, F.; Guo, L. Ruminal cellulolytic bacteria abundance leads to the variation in fatty acids in the rumen digesta and meat of fattening lambs. J. Anim. Sci. 2020, 98, skaa228. [Google Scholar] [CrossRef]
- Huws, S.A.; Kim, E.J.; Cameron, S.J.S.; Girdwood, S.E.; Davies, L.; Tweed, J.; Vallin, H.; Scollan, N.D. Characterization of the rumen lipidome and microbiome of steers fed a diet supplemented with flax and echium oil. Microb. Biotechnol. 2015, 8, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Zhang, Z.; Li, X.; Zhu, B.; Guo, L.; Li, F.; Weng, X. Effect of duration of linseed diet supplementation before slaughter on the performances, meat fatty acid composition and rumen bacterial community of fattening lambs. Anim. Feed Sci. Technol. 2020, 263, 114457. [Google Scholar] [CrossRef]
Treatments 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Fatty Acids | CON | CAM | FIB | ||||||
Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | |
Total saturated | 32.6 ± 1.76 | 29.2 | 34.8 | 33.3 ± 1.58 | 30.9 | 35.3 | 31.1 ± 2.04 | 27.1 | 33.7 |
Odd | 2.99 ± 0.57 | 2.08 | 3.90 | 2.66 ± 0.39 | 2.25 | 3.25 | 1.68 ± 0.22 | 1.42 | 2.12 |
Iso | 0.70 ± 0.09 | 0.56 | 0.83 | 0.59 ± 0.07 | 0.48 | 0.65 | 0.65 ± 0.06 | 0.54 | 0.75 |
Anteiso | 0.37 ± 0.06 | 0.30 | 0.45 | 0.54 ± 0.07 | 0.42 | 0.66 | 0.55 ± 0.09 | 0.43 | 0.76 |
Monounsaturated | 36.1 ± 2.56 | 31.6 | 41.5 | 40.1 ± 2.42 | 37.3 | 44.7 | 38.1 ± 2.59 | 35.6 | 43.5 |
Trans 18:1 | 4.47 ± 1.31 | 2.14 | 6.18 | 6.49 ± 0.74 | 5.70 | 8.08 | 8.86 ± 1.38 | 6.80 | 11,0 |
Polyunsaturated | 17.3 ± 1.30 | 14.7 | 18.8 | 15.4 ± 1.81 | 12.1 | 17.9 | 18.3 ± 2.60 | 14.1 | 21.2 |
CLA | 0.46 ± 0.07 | 0.36 | 0.62 | 0.57 ± 0.07 | 0.44 | 0.64 | 1.07 ± 0.24 | 0.75 | 1.51 |
Standardized Canonical Coefficients | Canonical Structure | |||
---|---|---|---|---|
DF1 1 | DF2 | DF1 | DF2 | |
Odd FA 2 | 1.00 | −0.47 | 0.81 | −0.56 |
Iso FA | 0.40 | 0.60 | 0.36 | 0.76 |
Anteiso FA | −0.85 | −0.34 | −0.76 | −0.46 |
Eigenvalues | 5.37 | 0.54 | ||
Variance explained (%) | 90.92 | 9.08 | ||
Bartlett test | p < 0.001 | p < 0.01 | ||
Canonical correlation | 0.92 | 0.59 | ||
Wilk’s lambda test | p < 0.001 | p < 0.01 | ||
Centroids 3 | ||||
CON | 2.88 | 0.37 | ||
CAM | −0.43 | −0.97 | ||
FIB | −2.45 | 0.61 |
Treatments 1 | |||
---|---|---|---|
CON | CAM | FIB | |
Intersection | −97.266 | −79.860 | −75.070 |
Odd FA 2 | 23.388 | 16.984 | 10.411 |
Iso FA | 168.825 | 139.528 | 141.459 |
Anteiso FA | 17.119 | 59.838 | 75.023 |
Treatments 1 | ||||
---|---|---|---|---|
CON (0.31) | CAM (0.40) | FIB (1.54) | SEM 3 | |
DF1: Odd FA/Anteiso FA 2 | 8.15 a | 4.93 b | 3.12 c | 0.419 |
DF2: Iso FA/(Anteiso FA+Odd FA) | 0.22 b | 0.19 b | 0.29 a | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Cortés, P.; Requena Domenech, F.; Correro Rueda, M.; de la Fuente, M.Á.; Schiavone, A.; Martínez Marín, A.L. Odd- and Branched-Chain Fatty Acids in Lamb Meat as Potential Indicators of Fattening Diet Characteristics. Foods 2021, 10, 77. https://doi.org/10.3390/foods10010077
Gómez-Cortés P, Requena Domenech F, Correro Rueda M, de la Fuente MÁ, Schiavone A, Martínez Marín AL. Odd- and Branched-Chain Fatty Acids in Lamb Meat as Potential Indicators of Fattening Diet Characteristics. Foods. 2021; 10(1):77. https://doi.org/10.3390/foods10010077
Chicago/Turabian StyleGómez-Cortés, Pilar, Francisco Requena Domenech, Marta Correro Rueda, Miguel Ángel de la Fuente, Achille Schiavone, and Andrés L. Martínez Marín. 2021. "Odd- and Branched-Chain Fatty Acids in Lamb Meat as Potential Indicators of Fattening Diet Characteristics" Foods 10, no. 1: 77. https://doi.org/10.3390/foods10010077
APA StyleGómez-Cortés, P., Requena Domenech, F., Correro Rueda, M., de la Fuente, M. Á., Schiavone, A., & Martínez Marín, A. L. (2021). Odd- and Branched-Chain Fatty Acids in Lamb Meat as Potential Indicators of Fattening Diet Characteristics. Foods, 10(1), 77. https://doi.org/10.3390/foods10010077