Changes in Physicochemical and Biological Properties of Polyphenolic-Protein-Polysaccharide Ternary Complexes from Hovenia dulcis after In Vitro Simulated Saliva-Gastrointestinal Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Extraction of Polyphenolic-Protein-Polysaccharide Ternary Complexes
2.3. In Vitro Simulated Saliva-Gastrointestinal Digestion of PPP
2.4. Physicochemical Characterization of PPP after In Vitro Digestion
2.5. Evaluation of In Vitro Antioxidant and Antiglycation Effects, as Well as In Vitro Inhibitory Effect against α-Glucosidase of PPP after In Vitro Digestion
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effects of In Vitro Digestion on Physicochemical Properties of PPP
3.1.1. Changes in Reducing Sugars, Total Polysaccharides, Total Bound Polyphenolics, and Total Proteins of PPP after In Vitro Digestion
3.1.2. Changes in Molecular Weight and Apparent Viscosity of PPP after In Vitro Digestion
3.1.3. Changes in Monosaccharide Compositions and FT-IR Spectra of PPP after In Vitro Digestion
3.1.4. Changes in Amino Acid Compositions of PPP after In Vitro Digestion
3.2. Effects of In Vitro Simulated Saliva-Gastrointestinal Digestion on Biological Functions of PPP
3.2.1. Stability of Antioxidant Activities of PPP after In Vitro Digestion
3.2.2. Stability of Antiglycation Activity of PPP after In Vitro Digestion
3.2.3. Stability of Inhibitory Activity against α-Glucosidase of PPP after In Vitro Digestion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, B.; Wu, Q.J.; Luo, Y.X.; Yang, Q.; Chen, G.J.; Wei, X.Y.; Kan, J.Q. Japanese grape (Hovenia dulcis) polysaccharides: New insight into extraction, characterization, rheological properties, and bioactivities. Int. J. Biol. Macromol. 2019, 134, 631–644. [Google Scholar] [CrossRef]
- Wu, D.T.; Liu, W.; Xian, M.L.; Du, G.; Liu, X.; He, J.J.; Wang, P.; Qin, W.; Zhao, L. Polyphenolic-protein-polysaccharide complexes from Hovenia dulcis: Insights into extraction methods on their physicochemical properties and in vitro bioactivities. Foods 2020, 9, 456. [Google Scholar] [CrossRef] [Green Version]
- Sferrazza, G.; Brusotti, G.; Zonfrillo, M.; Temporini, C.; Tengattini, S.; Bononi, M.; Tateo, F.; Calleri, E.; Pierimarchi, P. Hovenia dulcis Thumberg: Phytochemistry, pharmacology, toxicology and regulatory framework for its use in the European Union. Molecules 2021, 26, 903. [Google Scholar] [CrossRef]
- Hyun, T.K.; Eom, S.H.; Yu, C.Y.; Roitsch, T. Hovenia dulcis—An Asian traditional herb. Planta Med. 2010, 76, 943–949. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Li, F.; Wang, P.; Liu, X.; He, J.J.; Xian, M.L.; Zhao, L.; Qin, W.; Gan, R.Y.; Wu, D.T. Effects of drying methods on the physicochemical characteristics and bioactivities of polyphenolic-protein-polysaccharide conjugates from Hovenia dulcis. Int. J. Biol. Macromol. 2020, 148, 1211–1221. [Google Scholar] [CrossRef]
- Meng, Y.H.; Su, A.P.; Yuan, S.; Zhao, H.G.; Tan, S.Y.; Hu, C.Y.; Deng, H.; Guo, Y.R. Evaluation of total flavonoids, myricetin, and quercetin from Hovenia dulcis Thunb. As inhibitors of α-amylase and α-glucosidase. Plant Food. Hum. Nutr. 2016, 71, 444–449. [Google Scholar] [CrossRef]
- Yang, B.; Wu, Q.J.; Luo, Y.X.; Yang, Q.; Chen, G.J.; Wei, X.Y.; Kan, J.Q. High-pressure ultrasonic-assisted extraction of polysaccharides from Hovenia dulcis: Extraction, structure, antioxidant activity and hypoglycemic. Int. J. Biol. Macromol. 2019, 137, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.X.; Yao, S.W.; Zhang, Y.J.; Liu, Q.B.; Xu, F.; Wu, G.; Dong, W.J.; Tan, L.H. Effects of in vitro saliva, gastric and intestinal digestion on the chemical properties, antioxidant activity of polysaccharide from Artocarpus heterophyllus Lam. (Jackfruit) Pulp. Food Hydrocoll. 2019, 87, 952–959. [Google Scholar] [CrossRef]
- Li, C.; Yu, W.W.; Wu, P.; Chen, X.D. Current in vitro digestion systems for understanding food digestion in human upper gastrointestinal tract. Trends Food Sci. Technol. 2020, 96, 114–126. [Google Scholar] [CrossRef]
- Ji, H.H.; Hu, J.L.; Zuo, S.; Zhang, S.S.; Li, M.Z.; Nie, S.P. In vitro gastrointestinal digestion and fermentation models and their applications in food carbohydrates. Crit. Rev. Food Sci. Nutr. 2021. [Google Scholar] [CrossRef]
- Hu, J.L.; Nie, S.P.; Min, F.F.; Xie, M.Y. Artificial simulated saliva, gastric and intestinal digestion of polysaccharide from the seeds of Plantago asiatica L. Carbohydr. Polym. 2013, 92, 1143–1150. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.W.; Chen, Z.Q.; Gao, X.D.; Yuan, G.Q.; Pan, Y.X.; Chen, H.X. Effects of simulated gastrointestinal digestion in vitro on the chemical properties, antioxidant activity, α-amylase and α-glucosidase inhibitory activity of polysaccharides from Inonotus obliquus. Food Res. Int. 2018, 103, 280–288. [Google Scholar] [CrossRef]
- Moyo, S.M.; Serem, J.C.; Bester, M.J.; Mavumengwana, V.; Kayitesi, E. The impact of boiling and in vitro human digestion of Solanum nigrum complex (Black nightshade) on phenolic compounds bioactivity and bioaccessibility. Food Res. Int. 2020, 137, 109720. [Google Scholar] [CrossRef]
- Lorieau, L.; Halabi, A.; Ligneul, A.; Hazart, E.; Dupont, D.; Floury, J. Impact of the dairy product structure and protein nature on the proteolysis and amino acid bioaccessiblity during in vitro digestion. Food Hydrocoll. 2018, 82, 399–411. [Google Scholar] [CrossRef]
- Wu, D.T.; Yuan, Q.; Guo, H.; Fu, Y.; Li, F.; Wang, S.P.; Gan, R.Y. Dynamic changes of structural characteristics of snow chrysanthemum polysaccharides during in vitro digestion and fecal fermentation and related impacts on gut microbiota. Food Res. Int. 2021, 141, 109888. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Yuan, Q.; Lin, S.; Liu, W.; Du, G.; Zhao, L.; Zhang, Q.; Lin, D.R.; Liu, Y.T.; Qin, W.; et al. Physicochemical characteristics and biological activities of polysaccharides from the leaves of different loquat (Eriobotrya japonica) cultivars. Int. J. Biol. Macromol. 2019, 135, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Li, F.; Ding, Y.; Li, H.Y.; Xiang, X.R.; Ye, Q.; Zhang, J.; Zhao, L.; Qin, W.; Gan, R.Y.; et al. Polysaccharides from loquat (Eriobotrya japonica) leaves: Impacts of extraction methods on their physicochemical characteristics and biological activities. Int. J. Biol. Macromol. 2020, 146, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.P.V. Change of phenolics, carotenoids, and antioxidant capacity following simulated gastrointestinal digestion and dialysis of selected edible green leaves. Food Chem. 2018, 245, 371–379. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, L.; Liu, Y.F.; Zhang, Q.Y.; Li, Y.X.; Wu, Z.Q. Release of phenolics compounds from Rubus idaeus L. dried fruits and seeds during simulated in vitro digestion and their bioactivities. J. Funct. Foods 2018, 46, 57–65. [Google Scholar] [CrossRef]
- Chandrasekara, A.; Shahidi, F. Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. J. Funct. Foods 2012, 4, 226–237. [Google Scholar] [CrossRef]
- Mosele, J.I.; Macià, A.; Romero, M.P.; Motilva, M.J. Stability and metabolism of Arbutus unedo bioactive compounds (phenolics and antioxidants) under in vitro digestion and colonic fermentation. Food Chem. 2016, 201, 120–130. [Google Scholar] [CrossRef]
- Bouayed, J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 2011, 128, 14–21. [Google Scholar] [CrossRef]
- Mackie, A. Insights and gaps on protein digestion. Curr. Opin. Food Sci. 2020, 31, 96–101. [Google Scholar] [CrossRef]
- Velickovic, T.D.C.; Stanic-Vucinic, D.J. The role of dietary phenolic compounds in protein digestion and processing technologies to improve their antinutritive properties. Compr. Rev. Food Sci. Food Saf. 2018, 17, 82–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, F.; Hong, R.Y.; Yi, Y.; Bai, Y.J.; Dong, L.H.; Jia, X.C.; Zhang, R.F.; Wang, G.J.; Zhang, M.W.; Wu, J. In vitro digestion and human gut microbiota fermentation of longan pulp polysaccharides as affected by Lactobacillus fermentum fermentation. Int. J. Biol. Macromol. 2020, 147, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Carnachan, S.M.; Bootten, T.J.; Mishra, S.; Monro, J.A.; Sims, I.M. Effects of simulated digestion in vitro on cell wall polysaccharides from kiwifruit (Actinidia spp.). Food Chem. 2012, 133, 132–139. [Google Scholar] [CrossRef]
- Yuan, Q.; He, Y.; Xiang, P.Y.; Wang, S.P.; Cao, Z.W.; Gou, T.; Shen, M.M.; Zhao, L.; Qin, W.; Gan, R.Y.; et al. Effects of simulated saliva-gastrointestinal digestion on the physicochemical properties and bioactivities of okra polysaccharides. Carbohydr. Polym. 2020, 238, 116183. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.J.; Ma, X.B.; Jiang, P.; Hu, L.L.; Zhi, Z.J.; Chen, J.L.; Ding, T.; Ye, X.Q.; Liu, D.H. Characterization of pectin from grapefruit peel: A comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocolloids. 2016, 61, 730–739. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Wang, X.M.; Liu, C.B.; Li, J.F. The degradation, antioxidant and antimutagenic activity of the mucilage polysaccharide from Dioscorea opposita. Carbohydr. Polym. 2016, 150, 227–231. [Google Scholar] [CrossRef]
- Zhang, M.; Mu, T.H. Optimisation of antioxidant hydrolysate production from sweet potato protein and effect of in vitro gastrointestinal digestion. Int. J. Food Sci. Tech. 2016, 51, 1844–1850. [Google Scholar] [CrossRef]
- Jiang, S.S.; Liu, L.; Xu, J.J.; Zeng, M.Y.; Zhao, Y.H. Amino acid composition and digestibility of Pacific oyster (Crassostrea gigas) proteins isolated from different parts. LWT Food Sci. Technol. 2019, 116, 108591. [Google Scholar] [CrossRef]
- Yuan, Q.; He, Y.; Xiang, P.Y.; Huang, Y.J.; Cao, Z.W.; Shen, S.W.; Zhao, L.; Zhang, Q.; Qin, W.; Wu, D.T. Influences of different drying methods on the structural characteristics and multiple bioactivities of polysaccharides from okra (Abelmoschus esculentus). Int. J. Biol. Macromol. 2020, 147, 1053–1063. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Wu, D.T.; Ren, G.-X.; Hu, Y.C.; Peng, L.X.; Zhao, J.L.; Garcia-Perez, P.; Carpena, M.; Prieto, M.A.; Cao, H.; et al. Bioactive compounds, health benefits, and industrial applications of Tartary buckwheat (Fagopyrum tataricum). Crit. Rev. Food Sci. Nutr. 2021, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.G.; Wang, C.Y.; Zhang, L.J.; Wang, Y.; Chen, G.; Fan, J.G.; Jia, Y.F.; Yan, F.W.; Ning, C. Pectin oligosaccharides from fruit of Actinidia arguta: Structure-activity relationship of prebiotic and antiglycation potentials. Carbohydr. Polym. 2019, 217, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Li, X.; Wang, Y.; Zhang, X.Q.; Jia, H.; Guo, L.P.; Huang, L.Q.; Gao, W.Y. Comparative studies on characterization, saccharide mapping and antiglycation activity of polysaccharides from different Polygonatum ssp. J. Pharm. Biomed. Anal. 2020, 186, 113243. [Google Scholar] [CrossRef]
- Pantidos, N.; Boath, A.; Lund, V.; Conner, S.; McDougall, G.J. Phenolic-rich extracts from the edible seaweed, ascophyllum nodosum, inhibit α-amylase and α-glucosidase: Potential anti-hyperglycemic effects. J. Funct. Foods 2014, 10, 201–209. [Google Scholar] [CrossRef]
- Wu, D.T.; He, Y.; Fu, M.X.; Gan, R.Y.; Hu, Y.C.; Peng, L.X.; Zhao, G.; Zou, L. Structural characteristics and biological activities of a pectic-polysaccharide from okra affected by ultrasound assisted metal-free Fenton reaction. Food Hydrocoll. 2022, 122, 107085. [Google Scholar] [CrossRef]
PPP | PPP-I | |
---|---|---|
Reducing sugar content (mg/mL) | 0.27 ± 0.02 | |
Total polysaccharides (%) | 43.94 ± 1.52 a | 40.33 ± 4.37 a |
Total uronic acids (%) | 22.41 ± 1.17 a | 17.68 ± 0.73 b |
Total polyphenolics (mg GAE/g) | 281.93 ± 2.36 a | 54.89 ± 0.42 b |
Total protein (%) | 17.62 ± 0.75 b | 22.43 ± 0.89 a |
PPP | PPP-I | |
---|---|---|
Mw × 104 (Da) | ||
Peak 1 | 5.97 (±0.59%) | |
Peak 2 | 4.68 (±1.21%) | |
Peak 3 | 1.39 (±4.34%) | |
Mw/Mn | ||
Peak 1 | 1.76 (±1.11%) | |
Peak 2 | 1.50 (±2.29%) | |
Peak 3 | 1.07 (±4.59%) | |
Monosaccharide compositions and molar ratios | ||
Galactose | 1.00 | 1.00 |
Galacturonic acid | 1.78 | 1.30 |
Arabinose | 1.12 | 1.11 |
Glucose | 0.96 | 0.34 |
Rhamnose | 0.64 | 0.83 |
Mannose | 0.15 | 0.11 |
Glucuronic acid | 0.07 | 0.06 |
Xylose | 0.06 | 0.06 |
Amino Acids | PPP (%) | PPP-I (%) |
---|---|---|
Glutamic acid | 12.50 ± 0.59 a | 13.19 ± 0.55 a |
Aspartic acid | 9.65 ± 0.44 b | 13.28 ± 0.62 a |
Proline | 8.83 ± 0.41 a | 6.68 ± 0.31 b |
Leucine | 8.30 ± 0.40 a | 5.33 ± 0.24 b |
Serine | 7.61 ± 0.37 a | 7.44 ± 0.32 a |
Glycine | 7.59 ± 0.32 b | 9.80 ± 0.41 a |
Tyrosine | 7.30 ± 0.22 a | 3.11 ± 0.12 b |
Threonine | 6.92 ± 0.33 a | 6.98 ± 0.32 a |
Isoleucine | 6.26 ± 0.21 a | 3.90 ± 0.17 b |
Alanine | 6.08 ± 0.30 a | 6.46 ± 0.27 a |
Valine | 4.73 ± 0.23 a | 4.99 ± 0.23 a |
Phenylalanine | 4.38 ± 0.11 a | 4.61 ± 0.13 a |
Arginine | 3.69 ± 0.17 a | 3.11 ± 0.14 b |
Lysine | 3.49 ± 0.13 b | 6.07 ± 0.28 a |
Cystine | 1.39 ± 0.05 a | 0.84 ± 0.03 b |
Histidine | 1.08 ± 0.04 b | 2.71 ± 0.13 a |
Methionine | 0.20 ± 0.01 b | 1.47 ± 0.07 a |
Essential amino acids | 41.59 ± 2.01 a | 36.49 ± 1.76 b |
Non-essential amino acids | 58.41 ± 1.92 b | 63.51 ± 2.14 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.-T.; He, Y.; Fu, M.-X.; Gan, R.-Y.; Hu, Y.-C.; Zou, L. Changes in Physicochemical and Biological Properties of Polyphenolic-Protein-Polysaccharide Ternary Complexes from Hovenia dulcis after In Vitro Simulated Saliva-Gastrointestinal Digestion. Foods 2021, 10, 2322. https://doi.org/10.3390/foods10102322
Wu D-T, He Y, Fu M-X, Gan R-Y, Hu Y-C, Zou L. Changes in Physicochemical and Biological Properties of Polyphenolic-Protein-Polysaccharide Ternary Complexes from Hovenia dulcis after In Vitro Simulated Saliva-Gastrointestinal Digestion. Foods. 2021; 10(10):2322. https://doi.org/10.3390/foods10102322
Chicago/Turabian StyleWu, Ding-Tao, Yuan He, Meng-Xi Fu, Ren-You Gan, Yi-Chen Hu, and Liang Zou. 2021. "Changes in Physicochemical and Biological Properties of Polyphenolic-Protein-Polysaccharide Ternary Complexes from Hovenia dulcis after In Vitro Simulated Saliva-Gastrointestinal Digestion" Foods 10, no. 10: 2322. https://doi.org/10.3390/foods10102322
APA StyleWu, D. -T., He, Y., Fu, M. -X., Gan, R. -Y., Hu, Y. -C., & Zou, L. (2021). Changes in Physicochemical and Biological Properties of Polyphenolic-Protein-Polysaccharide Ternary Complexes from Hovenia dulcis after In Vitro Simulated Saliva-Gastrointestinal Digestion. Foods, 10(10), 2322. https://doi.org/10.3390/foods10102322