Effect of In Vitro Digestion on the Antioxidant Compounds and Antioxidant Capacity of 12 Plum (Spondias purpurea L.) Ecotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plum Ecotypes
2.3. Sample Preparation
2.4. Analytical Methods
2.4.1. Determination of Carotenoids
2.4.2. Determination of Ascorbic Acid
2.4.3. Extraction and Determination of Phenolic Compounds
2.4.4. Determination of Flavonoids
2.4.5. Determination of Anthocyanins
2.4.6. Antioxidant Capacity
2.4.7. In Vitro Digestion
2.4.8. Statistical Analysis
3. Results
3.1. Total Carotenoids Content before and after In Vitro Digestion
3.2. Content of Ascorbic Acid before and after In Vitro Digestion
3.3. Total Phenolic Compounds Content before and after In Vitro Digestion
3.4. Total Flavonoid Content before and after In Vitro Digestion
3.5. Total Anthocyanins Content before and after In Vitro Digestion
3.6. Antioxidant Capacity before and after In Vitro Digestion
3.7. Correlation between Antioxidant Compounds and Antioxidant Capacity before and after In Vitro Digestion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duarte, O.; Paull, R.E. Exotic Fruits and Nuts of the New World; CABI: London, UK, 2015; pp. 1–5. [Google Scholar]
- Solórzano-Morán, S.; Alia-Tejacal, I.; Rivera-Cabrera, F.; López-Martínez, V.; Pérez-Flores, L.J.; Pelayo-Zaldívar, C.; Guillén-Sánchez, D.; Díaz de León-Sánchez, F.; Maldonado-Astudillo, Y.I. Quality attributes and functional compounds of Mexican plum (Spondias purpurea L.). Fruits 2015, 70, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Villa-Hernández, J.M.; Mendoza-Cardoso, G.; Mendoza-Espinoza, J.A.; Vela-Hinojosa, C.; Díaz de León-Sánchez, F.; Rivera-Cabrera, F.; Alia-Tejacal, I.; Pérez-Flores, L.J. Antioxidant capacity in vitro and in vivo of various ecotypes of Mexican plum (Spondias purpurea L.). J. Food Sci. 2017, 82, 2576–2582. [Google Scholar] [CrossRef]
- Elufioye, T.O.; Berida, T.I. GC-MS analysis and antioxidant activity of Spondias purpurea L. (Anacardiaceae). Pharmacogn. J. 2018, 10, 941–945. [Google Scholar] [CrossRef] [Green Version]
- Lutz, M. Biodisponibilidad de compuestos bioactivos en alimentos. Perspec. Nut. Hum. 2013, 15, 217–226. [Google Scholar]
- Cilla, A.; Bosch, L.; Barberá, R.; Alegría, A. Effect of processing on the bioaccessibility of bioactive compounds—A review focusing on carotenoids, minerals, ascorbic acid, tocopherols and polyphenols. J. Food Comp. Anal. 2018, 68, 3–15. [Google Scholar] [CrossRef]
- Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva, M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2013, 75, 588–602. [Google Scholar] [CrossRef] [Green Version]
- Carbonell-Capella, J.; Buniowska, M.; Barba, F.; Esteve, M.; Frígola, A. Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 155–171. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Balance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food-an international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.L.; Chen, S.G.; Zhao, Y.Y.; Luo, C.; Li, J.; Gao, Y.Q. Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Ind. Crop. Prod. 2014, 57, 150–157. [Google Scholar] [CrossRef]
- Dutra, T.R.; Macedo, D.A.; Marquesa, A.D.; Batista, F.J.; Meireles, R.B.; Cordeiro, M.M.; Magnanic, M.; Borges, C.G. Bioaccessibility and antioxidant activity of phenolic compounds in frozen pulps of Brazilian exotic fruits exposed to simulated gastrointestinal conditions. Food Res. Int. 2017, 100, 650–657. [Google Scholar] [CrossRef]
- Dantas, M.A.; Meireles, M.I.; Oliveira, L.P.; Lima, D.M.; Magnanic, M.; Borges, C.G. Bioaccessibility of phenolic compounds in native and exotic frozen pulps explored in Brazil using a digestion model coupled with a simulated intestinal barrier. Food Chem. 2018, 274, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Simón, G.; Hernández-Cupil, R.; Moguel-Ordoñez, E. Caracterización morfológica de ciruela (Spondias purpurea L.) en tres municipios del estado de Tabasco, México. Bioagro 2011, 23, 141–149. [Google Scholar]
- Maldonado-Astudillo, Y.; Alia-Tejacal, I.; Núñez, C.; Jiménez, J.; Pelayo, C.; López, V.; Andrade, M.; Bautista, S.; Valle, S. Postharvest physiology and technology of Spondias purpurea L. and S. mombin L. Sci. Hort. 2014, 174, 193–206. [Google Scholar] [CrossRef]
- Álvarez-Vargas, J.M.; Alia-Tejacal, I.; Chávez-Franco, S.H.; Colinas-León, M.T.; Nieto-Ángel, D.; Rivera-Cabrera, F.; Aguilar-Pérez, L.A. Ciruelas Mexicanas (Spondias purpurea L.) de clima húmedo y seco: Calidad, metabolitos funcionales y actividad antioxidante. Interciencia 2017, 42, 653–660. [Google Scholar]
- Maldonado-Astudillo, Y.; Alia-Tejacal, I.; Núñez, C.; Jiménez, J.; Pelayo, C.; López, V. Chemical and phenotypic diversity of Mexican Plums (Spondias purpurea L.) from the states of Guerrero and Morelos, Mexico. Rev. Bras. Frutic. 2017, 39, e610. [Google Scholar]
- AOAC Association of Official Analytical Chemists (Ed.) Vitamin C (Ascorbic acid) in vitamin preparations and juices. 2,6-Dichloroindophenol titrimetric method. In AOAC Official Methods of Analysis; Procedure No. 967.21; Association of Official Analytical Chemists, Inc.: Arlington, VA, USA, 1990; pp. 1058–1059. [Google Scholar]
- Kim, D.-O.; Chun, O.K.; Kim, Y.J.; Moon, H.Y.; Lee, C.Y. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol. 1999, 299, 152–178. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr. Food Anal. Chem. 2001, 1, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Methods to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Bermúdez-Soto, M.J.; Tomas-Barberán, F.A.; García-Conesa, M.T. Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chem. 2007, 102, 865–874. [Google Scholar] [CrossRef]
- Martínez-Las Heras, R.; Pinazo, A.; Heredia, A.; Andrés, A. Evaluation studies of persimmon plant (Diospyros kaki) for physiological benefits and bioaccessibility of antioxidants by in vitro simulated gastrointestinal digestion. Food Chem. 2017, 214, 478–485. [Google Scholar] [CrossRef]
- Zielinski, A.A.; Ávila, S.; Nogueira, A.; Wosiacki, G.; Haminiuk, C.W.I. The association between chromaticity, phenolics, carotenoids, and in vitro activity of frozen fruit pulp in Brazil: An application of chemometrics. Food Chem. 2014, 79, C1–C10. [Google Scholar]
- Cervantes, P.B.; Ornelas, P.J.; Pérez, M.J.; Ruiz, C.S.; Rios, V.C.; Ibarra, J.V.; Yahia, M.E.; Gardea, B.A. Effect to pectin on lipid digestion and possible implications for carotenoid bioavailability during pre-absortive stanges: A review. Food Res. Int. 2017, 99, 917–927. [Google Scholar] [CrossRef]
- Cervantes, P.B.; Ornelas, P.J.; Pérez, M.J.; Reyes, H.J.; Zamudio, F.P.; Rios, V.C.; Ibarra, J.V.; Ruiz, C.S. Effect to pectin concentration and properties on digestive events involved on micellarization of free and esterified carotenoids. Food Hydrocoll. 2016, 60, 580–588. [Google Scholar] [CrossRef]
- Padayachee, A.; Netzel, G.; Netzel, M.; Day, L.; Zabaras, D.; Mikkelsen, D. Binding of polyphenols to plant cell wall analogues—Part 2: Phenolic acids. Food Chem. 2012, 135, 2287–2292. [Google Scholar] [CrossRef]
- Garret, A.; Failla, M.; Sarama, R. Development of an in vitro digestion method to assess carotenoid bioavailability from meals. J. Agric. Food Chem. 1999, 47, 4301–4309. [Google Scholar] [CrossRef]
- Estévez, R.S.; Olmedilla, B.A.; Fernandez, I.J. Bioaccessibility of provitamin A carotenoids from fruits: Application of a standardised static in vitro digestion method. Food Funct. 2016, 7, 1354–1366. [Google Scholar] [CrossRef]
- Almeida, B.M.; Machado, S.P.; Campos, A.A.; Matias, P.G.; Carvalho, M.C.; Arraes, M.G.; Gomes, L.T. Bioactive compounds and the antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Res. Int. 2011, 44, 2155–2159. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Vicente, A.; Gil-Izquierdo, A.; García-Viguera, C. In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds, anthocyanins and vitamin C. J. Agric. Food Chem. 2002, 50, 2308–2312. [Google Scholar] [CrossRef] [PubMed]
- Sengul, H.; Surek, E.; Nilufer, D. Investigating the effects of food matrix and food components on bioaccessibility of pomegranate (Punica granatum) phenolics and anthocyanins using an in vitro gastrointestinal digestion model. Food Res. Int. 2014, 62, 1069–1079. [Google Scholar] [CrossRef] [Green Version]
- Bouayed, J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 2011, 128, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Moo-Huchin, V.; Estrada-Mota, I.; Estrada-León, R.; Cuevas-Glory, L.; Ortiz-Vázquez, E.; Vargas y Vargas, M.L.; Betancur-Ancona, D.; Sauri-Duch, E. Determination of some physicochemical characteristics, bioactive compounds and antioxidant activity of tropical fruits from Yucatan, Mexico. Food Chem. 2014, 152, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Mateus, N.; de Freitas, V. Anthocyanins as food colorants. In Anthocyanins, Biosynthesis, Functions, and Applications; Gould, K., Davies, K., Winefiled, C., Eds.; Springer: New York, NY, USA, 2009; pp. 284–304. [Google Scholar]
Ecotype | Sampling Location in Mexico | Epicarp Color |
---|---|---|
Atoyaxi | Jojutla, Guerrero | Red |
Carnuda | Chilpancingo, Guerrero | Red |
Chabacana | Sinahua, Guerrero | Yellow-orange |
Chicamerito | Chicamerito, Guerrero | Red |
Costeña | Tierra colorada, Guerrero | Red |
Cuernavaqueña | Chilpancingo, Guerrero | Red |
Guingure amarilla | Cd. Altamirano, Guerrero | Yellow |
Guingure roja | Cd. Altamirano, Guerrero | Red |
Morada | Chilpancingo, Guerrero | Red |
Conservera | Chilpancingo, Guerrero | Red-purple |
Amarilla | Chilpancingo, Guerrero | Yellow |
Silvestre | Chilpancingo, Guerrero | Orange |
Ecotype | Chemical Extraction (mg β-Carotene/100 g) | Gastric Phase (mg β-Carotene/100 g) | BI (%) | Intestinal Phase (mg β-Carotene/100 g) | BI (%) |
---|---|---|---|---|---|
Atoyaxi | 1.68 ± 0.65 bc, A | ND | 0.00 | 0.19 ± 0.16 d, B | 11.31 |
Carnuda | 2.91 ± 0.04 a, A | ND | 0.00 | 0.46 ± 0.05 abcd, B | 15.81 |
Chabacana | 2.21 ± 0.32 abc, A | ND | 0.00 | 0.48 ± 0.02 abc, B | 21.72 |
Chicamerito | 1.24 ± 0.36 c, A | ND | 0.00 | 0.32 ± 0.22 bcd, B | 25.81 |
Costeña | 1.82 ± 0.16 abc, A | ND | 0.00 | 0.35 ± 0.08 bcd, B | 19.23 |
Cuernavaqueña | 2.57 ± 0.70 ab, A | ND | 0.00 | 0.68 ± 0.03 a, B | 26.46 |
Guingure amarilla | 1.93 ± 0.12 abc, A | ND | 0.00 | 0.66 ± 0.12 a, B | 34.20 |
Guingure roja | 2.55 ± 0.41 ab, A | ND | 0.00 | 0.54 ± 0.08 ab, B | 21.18 |
Morada | 1.37 ± 0.44 c, A | ND | 0.00 | 0.24 ± 0.09 cd, B | 17.52 |
Conservera | 2.78 ± 0.37 ab, A | ND | 0.00 | 0.53 ± 0.09 ab, B | 19.06 |
Amarilla | 2.55 ± 0.17 ab, A | ND | 0.00 | 0.64 ± 0.09 a, B | 25.10 |
Silvestre | 2.14 ± 0.12 abc, A | ND | 0.00 | 0.58 ± 0.08 ab, B | 27.10 |
Ecotype | Chemical Extraction (mg AA/100 g) | Gastric Phase (mg AA/100 g) | BI (%) | Intestinal Phase (mg AA/100 g) | BI (%) |
---|---|---|---|---|---|
Atoyaxi | 28.21 ± 1.97 a, A | 18.88 ± 1.32 a, B | 66.93 | 7.91 ± 1.35 a, C | 28.04 |
Carnuda | 26.52 ± 0.84 a, A | 19.99 ± 1.12 a, B | 75.38 | 6.73 ± 0.83 a, C | 25.38 |
Chabacana | 26.31 ± 2.01 a, A | 19.16 ± 0.98 a, B | 72.82 | 7.51 ± 1.02 a, C | 28.54 |
Chicamerito | 27.60 ± 0.66 a, A | 18.15 ± 1.17 a, B | 65.76 | 7.20 ± 1.04 a, C | 26.09 |
Costeña | 23.81 ± 2.01 a, A | 18.73 ± 0.57 a, B | 78.66 | 6.49 ± 1.07 a, C | 27.26 |
Cuernavaqueña | 26.46 ± 3.01 a, A | 18.63 ± 0.68 a, B | 70.41 | 7.22 ± 1.12 a, C | 27.29 |
Guingure amarilla | 29.36 ± 4.01 a, A | 19.73 ± 0.46 a, B | 67.20 | 8.41 ± 1.08 a, C | 28.64 |
Guingure roja | 28.39 ± 4.56 a, A | 18.18 ± 0.71 a, B | 64.04 | 6.77 ± 0.79 a, C | 23.85 |
Morada | 27.13 ± 4.07 a, A | 18.31 ± 1.01 a, B | 67.49 | 6.53 ± 1.08 a, C | 24.07 |
Conservera | 25.07 ± 5.01 a, A | 18.86 ± 0.89 a, B | 75.23 | 7.12 ± 1.07 a, C | 28.40 |
Amarilla | 26.72 ± 4.88 a, A | 19.86 ± 1.02 a, B | 74.33 | 6.04 ± 1.05 a, C | 22.60 |
Silvestre | 28.53 ± 4.71 a, A | 18.99 ± 1.01 a, B | 66.56 | 8.29 ± 1.25 a, C | 29.06 |
Ecotype | Chemical Extraction (mg GAE/100 g) | Gastric Phase (mg GAE/100 g) | BI (%) | Intestinal Phase (mg GAE/100 g) | BI (%) |
---|---|---|---|---|---|
Atoyaxi | 431.57 ± 2.71 d, A | 233.55 ± 3.02 de, C | 54.12 | 296.09 ± 3.21 fg, B | 68.61 |
Carnuda | 464.44 ± 3.32 c A | 261.01 ± 3.42 c, C | 56.20 | 403.40 ± 3.24 c, B | 86.86 |
Chabacana | 326.09 ± 2.94 i, A | 215.51 ± 2.65 f, C | 66.09 | 304.07 ± 4.23 f, B | 93.25 |
Chicamerito | 596.12 ± 2.41 b, A | 236.93 ± 2.41 de, C | 39.75 | 465.97 ± 2.18 i, B | 78.17 |
Costeña | 461.11 ± 3.18 c, A | 282.92 ± 2.71 a, C | 61.36 | 439.73 ± 1.23 b, B | 95.36 |
Cuernavaqueña | 344.82 ± 3.27 g, A | 213.44 ± 3.22 f, C | 61.90 | 276.69 ± 1.14 h, B | 80.24 |
Guingure amarilla | 364.98 ± 1.71 f, A | 230.20 ± 3.91 e, C | 63.07 | 281.01 ± 2.35 h, B | 76.99 |
Guingure roja | 379.58 ± 1.63 e, A | 272.48 ± 3.62 b, C | 71.78 | 354.98 ± 3.74 d, B | 93.52 |
Morada | 620.18 ± 2.14 a, A | 233.81 ± 3.38 de, C | 37.70 | 511.75 ± 2.95 a, B | 82.52 |
Conservera | 332.06 ± 3.24 hi, A | 240.25 ± 2.02 d, C | 72.35 | 291.08 ± 2.23 g, B | 87.66 |
Amarilla | 334.69 ± 2.47 h, A | 233.55 ± 3.71 de, C | 69.78 | 241.57 ± 3.39 j, B | 72.18 |
Silvestre | 339.31 ± 3.07 gh, A | 263.20 ± 3.53 bc, C | 77.57 | 314.28 ± 2.49 e, B | 92.62 |
Ecotype | Chemical Extraction (mg QE/100 g) | Gastric Phase (mg QE/100 g) | BI (%) | Intestinal Phase (mg QE/100 g) | BI (%) |
---|---|---|---|---|---|
Atoyaxi | 214.70 ± 1.76 h, A | 121.72 ± 1.15 fg, C | 56.69 | 169.30 ± 1.55 g, B | 78.85 |
Carnuda | 195.95 ± 0.96 i, A | 124.86 ± 1.40 ef, C | 63.72 | 144.37 ± 1.80 h, B | 73.68 |
Chabacana | 245.84 ± 4.49 g, A | 145.78 ± 3.68 b, C | 59.30 | 205.15 ± 1.62 e, B | 83.45 |
Chicamerito | 346.18 ± 1.50 b, A | 172.74 ± 3.41 a, C | 49.90 | 294.85 ± 1.21 a, B | 85.17 |
Costeña | 368.78 ± 1.70 a, A | 117.50 ± 1.25 gh, C | 31.86 | 281.64 ± 4.78 b, B | 76.37 |
Cuernavaqueña | 321.37 ± 3.25 c, A | 121.14 ± 3.82 fg, C | 37.69 | 263.24 ± 3.84 c, B | 81.91 |
Guingure amarilla | 274.51 ± 3.36 e, A | 103.44 ± 1.44 i, C | 37.68 | 213.07 ± 4.05 e, B | 77.62 |
Guingure roja | 199.54 ± 2.52 i, A | 129.90 ± 2.65 de, C | 65.10 | 190.71 ± 2.48 f, B | 95.57 |
Morada | 257.97 ± 1.27 f, A | 130.65 ± 2.34 de, C | 50.65 | 206.64 ± 3.19 e, B | 80.10 |
Conservera | 212.77 ± 1.48 h, A | 112.54 ± 1.95 h, C | 52.89 | 176.23 ± 3.84 g, B | 82.83 |
Amarilla | 299.59 ± 2.84 d, A | 142.39 ± 1.67 bc, C | 47.53 | 226.97 ± 3.93 d, B | 75.76 |
Silvestre | 293.81 ± 1.93 d, A | 136.52 ± 1.75 cd, C | 46.47 | 273.77 ± 2.17 b, B | 72.76 |
Ecotype | Chemical Extraction (mg C3-GE/100 g) | Gastric Phase (mg C3-GE/100 g) | BI (%) | Intestinal Phase (mg C3-GE/100 g) | BI (%) |
---|---|---|---|---|---|
Atoyaxi | 14.92 ± 1.19 a, A | 19.58 ± 0.37 a, B | 131.23 | ND | 0.00 |
Carnuda | 6.35 ± 0.77 c, A | 9.24 ± 0.95 d, B | 145.51 | ND | 0.00 |
Chabacana | ND | ND | 0.00 | ND | 0.00 |
Chicamerito | 7.74 ± 1.54 bc, A | 10.56 ± 0.96 cd, B | 136.43 | ND | 0.00 |
Costeña | 7.46 ± 0.15 bc, A | 10.65 ± 0.57 cd, B | 142.76 | ND | 0.00 |
Cuernavaqueña | 3.40 ± 0.26 d, A | 7.16 ± 0.21 e, B | 210.59 | ND | 0.00 |
Guingure amarilla | ND | ND | 0.00 | ND | 0.00 |
Guingure roja | 13.14 ± 1.01 a, A | 17.58 ± 0.77 b, B | 133.79 | ND | 0.00 |
Morada | 6.35 ± 0.29 c, A | 9.17 ± 0.16 d, B | 144.41 | ND | 0.00 |
Conservera | 9.35 ± 0.83 b, A | 12.01 ± 0.73 cd, B | 128.45 | ND | 0.00 |
Amarilla | ND | ND | 0.00 | ND | 0.00 |
Silvestre | 2.00 ± 0.29 d, A | 5.61 ± 0.69 e, B | 280.50 | ND | 0.00 |
Ecotype | Chemical Extraction (mM TE/100 g) | Gastric Phase (mM TE/100 g) | Intestinal Phase (mM TE/100 g) |
---|---|---|---|
Atoyaxi | 6.71 ± 0.07 efg, A | 1.19 ± 0.04 a, C | 2.97 ± 0.14 a, B |
Carnuda | 8.23 ± 0.06 a, A | 1.01 ± 0.16 ab, C | 2.35 ± 0.16 abc, B |
Chabacana | 7.28 ± 0.18 cd, A | 0.88 ± 0.13 bc, C | 1.93 ± 0.03 bc, B |
Chicamerito | 7.65 ± 0.16 bc, A | 0.68 ± 0.04 cd, C | 2.43 ± 0.12 abc, B |
Costeña | 6.35 ± 0.11 g, A | 1.01 ± 0.05 ab, C | 2.18 ± 0.06 abc, B |
Cuernavaqueña | 6.80 ± 0.14 ef, A | 0.97 ± 0.05 ab, C | 2.55 ± 0.21 abc, B |
Guingure amarilla | 5.18 ± 0.13 h, A | 0.52 ± 0.12 d, C | 1.82 ± 0.21 c, B |
Guingure roja | 6.51 ± 0.21 efg, A | 1.04 ± 0.09 ab, C | 2.87 ± 0.14 ab, B |
Morada | 7.71 ± 0.19 b, A | 1.25 ± 0.16 a, C | 2.72 ± 0.08 abc, B |
Conservera | 7.39 ± 0.11 bc, A | 0.88 ± 0.02 bc, C | 2.29 ± 0.06 abc, B |
Amarilla | 6.88 ± 0.05 de, A | 0.83 ± 0.05 bc, C | 2.82 ± 0.17 abc, B |
Silvestre | 6.43 ± 0.17 fg, A | 0.52 ± 0.10 d, C | 2.09 ± 1.11 abc, B |
Ecotype | Chemical Extraction (mM TE/100 g) | Gastric Phase (mM TE/100 g) | Intestinal Phase (mM TE/100 g) |
---|---|---|---|
Atoyaxi | 1.79 ± 0.04 bcd, A | 1.05 ± 0.05 ab, C | 1.49 ± 0.13 a, B |
Carnuda | 1.89 ± 0.02 a, A | 0.99 ± 0.22 ab, C | 1.48 ± 0.15 a, B |
Chabacana | 1.84 ± 0.03 abc, A | 0.95 ± 0.28 b, C | 1.36 ± 0.15 a, B |
Chicamerito | 1.87 ± 0.01 ab, A | 0.93 ± 0.15 b, C | 1.45 ± 0.14 a, B |
Costeña | 1.86 ± 0.04 abc, A | 1.26 ± 0.13 ab, C | 1.57 ± 0.08 a, B |
Cuernavaqueña | 1.88 ± 0.01 a, A | 1.14 ± 0.25 ab, C | 1.43 ± 0.16 a, B |
Guingure amarilla | 1.86 ± 0.01 abc, A | 1.42 ± 0.05 a, C | 1.51 ± 0.14 a, B |
Guingure roja | 1.71 ± 0.06 d, A | 1.18 ± 0.01 ab, C | 1.37 ± 0.26 a, B |
Morada | 1.86 ± 0.02 abc, A | 1.18 ± 0.13 ab, C | 1.46 ± 0.12 a, B |
Conservera | 1.86 ± 0.01 abc, A | 1.29 ± 0.09 ab, C | 1.55 ± 0.16 a, B |
Amarilla | 1.87 ± 0.01 ab, A | 1.23 ± 0.14 ab, C | 1.56 ± 0.07 a, B |
Silvestre | 1.78 ± 0.03 cd, A | 0.99 ± 0.07 ab, C | 1.28 ± 0.02 a, B |
Before In Vitro Digestion | After In Vitro Digestion | |||||
---|---|---|---|---|---|---|
Gastric Phase | Intestinal Phase | |||||
ABTS | DPPH | ABTS | DPPH | ABTS | DPPH | |
TCC | 0.44 | 0.62 | −0.48 | −0.58 | −0.30 | 0.22 |
AA | 0.65 | 0.43 | 0.83 | 0.84 | 0.44 | 0.29 |
TPC | 0.94 | 0.83 | −0.27 | −0.30 | 0.81 | 0.86 |
TFC | 0.91 | 0.82 | −0.18 | −0.28 | 0.82 | 0.83 |
TAC | 0.82 | 0.73 | −0.15 | −0.41 | −0.25 | −0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sollano-Mendieta, X.C.; Meza-Márquez, O.G.; Osorio-Revilla, G.; Téllez-Medina, D.I. Effect of In Vitro Digestion on the Antioxidant Compounds and Antioxidant Capacity of 12 Plum (Spondias purpurea L.) Ecotypes. Foods 2021, 10, 1995. https://doi.org/10.3390/foods10091995
Sollano-Mendieta XC, Meza-Márquez OG, Osorio-Revilla G, Téllez-Medina DI. Effect of In Vitro Digestion on the Antioxidant Compounds and Antioxidant Capacity of 12 Plum (Spondias purpurea L.) Ecotypes. Foods. 2021; 10(9):1995. https://doi.org/10.3390/foods10091995
Chicago/Turabian StyleSollano-Mendieta, Xochitl Cruz, Ofelia Gabriela Meza-Márquez, Guillermo Osorio-Revilla, and Darío Iker Téllez-Medina. 2021. "Effect of In Vitro Digestion on the Antioxidant Compounds and Antioxidant Capacity of 12 Plum (Spondias purpurea L.) Ecotypes" Foods 10, no. 9: 1995. https://doi.org/10.3390/foods10091995
APA StyleSollano-Mendieta, X. C., Meza-Márquez, O. G., Osorio-Revilla, G., & Téllez-Medina, D. I. (2021). Effect of In Vitro Digestion on the Antioxidant Compounds and Antioxidant Capacity of 12 Plum (Spondias purpurea L.) Ecotypes. Foods, 10(9), 1995. https://doi.org/10.3390/foods10091995