High Protein Substitutes for Gluten in Gluten-Free Bread
Abstract
:1. Introduction
2. Plant-Based Gluten-Free Protein
3. Animal-Based Gluten-Free Protein
4. Sea Microorganisms- and Insect-Based Proteins
5. Optimizing the Structure of Gluten-Free Bread with Added High Protein Sources
6. Protein Digestibility
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Biesiekierski, J.R.; Iven, J. Non-coeliac gluten sensitivity: Piecing the puzzle together. Unit. Eur. Gastroenterol. J. 2015, 3, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Dubé, C.; Rostom, A.; Sy, R.; Cranney, A.; Saloojee, N.; Garritty, C.; Sampson, M.; Zhang, L.; Yazdi, F.; Mamaladze, V.; et al. The prevalence of celiac disease in average-risk and at-risk Western European populations: A systematic review. Gastroenterology 2005, 128, S57–S67. [Google Scholar] [CrossRef] [PubMed]
- Catassi, C.; Elli, L.; Bonaz, B.; Bouma, G.; Carroccio, A.; Castillejo, G.; Cellier, C.; Cristofori, F.; De Magistris, L.; Dolinsek, J.; et al. Diagnosis of Non-Celiac Gluten Sensitivity (NCGS): The Salerno Experts’ Criteria. Nutrients 2015, 7, 4966–4977. [Google Scholar] [CrossRef] [PubMed]
- Barbaro, M.R.; Cremon, C.; Stanghellini, V.; Barbara, G. Recent advances in understanding non-celiac gluten sensitivity. F1000Res 2018, 7, F1000 Faculty Rev-1631. [Google Scholar] [CrossRef] [Green Version]
- Wunsch, N.-G. Gluten-Free Food Market Value Worldwide 2020–2025. Available online: https://www.statista.com/statistics/248467/global-gluten-free-food-market-size/ (accessed on 1 June 2021).
- Skendi, A.; Papageorgiou, M. Chapter 1-Introduction in wheat and breadmaking. In Trends in Wheat and Bread Making; Galanakis, C.M., Ed.; Academic Press: Piscataway, NJ, USA, 2021; pp. 1–27. [Google Scholar] [CrossRef]
- Melini, V.; Melini, F. Gluten-Free Diet: Gaps and Needs for a Healthier Diet. Nutrients 2019, 11, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, B.; Orfila, C. The Availability and Nutritional Adequacy of Gluten-Free Bread and Pasta. Nutrients 2018, 10, 1370. [Google Scholar] [CrossRef] [Green Version]
- Van Hees, N.J.M.; Giltay, E.J.; Tielemans, S.M.A.J.; Geleijnse, J.M.; Puvill, T.; Janssen, N.; van der Does, W. Essential amino acids in the gluten-free diet and serum in relation to depression in patients with celiac disease. PLoS ONE 2015, 10, e0122619. [Google Scholar] [CrossRef] [Green Version]
- Akharume, F.U.; Aluko, R.E.; Adedeji, A.A. Modification of plant proteins for improved functionality: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 198–224. [Google Scholar] [CrossRef]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Taylor, C.; Nebl, T.; Ng, K.; Bennett, L.E. Effects of chemical composition and baking on in vitro digestibility of proteins in breads made from selected gluten-containing and gluten-free flours. Food Chem. 2017, 233, 514–524. [Google Scholar] [CrossRef]
- Sahagún, M.; Gómez, M. Assessing Influence of Protein Source on Characteristics of Gluten-Free Breads Optimising their Hydration Level. Food Bioproc. Technol. 2018, 11, 1686–1694. [Google Scholar] [CrossRef]
- Pico, J.; Reguilón, M.P.; Bernal, J.; Gómez, M. Effect of rice, pea, egg white and whey proteins on crust quality of rice flour-corn starch based gluten-free breads. J. Cereal Sci. 2019, 86, 92–101. [Google Scholar] [CrossRef]
- Phongthai, S.; D’Amico, S.; Schoenlechner, R.; Rawdkuen, S. Comparative study of rice bran protein concentrate and egg albumin on gluten-free bread properties. J. Cereal Sci. 2016, 72, 38–45. [Google Scholar] [CrossRef]
- Federici, E.; Selling, G.W.; Campanella, O.H.; Jones, O.G. Thermal treatment of dry zein to improve rheological properties in gluten-free dough. Food Hydrocol. 2021, 115, 106629. [Google Scholar] [CrossRef]
- Federici, E.; Jones, O.G.; Selling, G.W.; Tagliasco, M.; Campanella, O.H. Effect of zein extrusion and starch type on the rheological behavior of gluten-free dough. J. Cereal Sci. 2020, 91, 102866. [Google Scholar] [CrossRef]
- Berta, M.; Koelewijn, I.; Öhgren, C.; Stading, M. Effect of zein protein and hydroxypropyl methylcellulose on the texture of model gluten-free bread. J. Texture Stud. 2019, 50, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Ziobro, R.; Juszczak, L.; Witczak, M.; Korus, J. Non-gluten proteins as structure forming agents in gluten free bread. J. Food Sci. Technol. 2016, 53, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Horstmann, S.W.; Foschia, M.; Arendt, E.K. Correlation analysis of protein quality characteristics with gluten-free bread properties. Food Funct. 2017, 8, 2465–2474. [Google Scholar] [CrossRef]
- Srikanlaya, C.; Therdthai, N.; Ritthiruangdej, P.; Zhou, W. Effect of hydroxypropyl methylcellulose, whey protein concentrate and soy protein isolate enrichment on characteristics of gluten-free rice dough and bread. Int. J. Food Sci. Technol. 2018, 53, 1760–1770. [Google Scholar] [CrossRef]
- Masure, H.G.; Wouters, A.G.B.; Fierens, E.; Delcour, J.A. Impact of egg white and soy proteins on structure formation and crumb firming in gluten-free breads. Food Hydrocol. 2019, 95, 406–417. [Google Scholar] [CrossRef]
- Korus, J.; Chmielewska, A.; Witczak, M.; Ziobro, R.; Juszczak, L. Rapeseed protein as a novel ingredient of gluten-free bread. Eur. Food Res. Technol. 2021, 247, 2015–2025. [Google Scholar] [CrossRef]
- Witczak, M.; Chmielewska, A.; Ziobro, R.; Korus, J.; Juszczak, L. Rapeseed protein as a novel ingredient of gluten-free dough: Rheological and thermal properties. Food Hydrocol. 2021, 118, 106813. [Google Scholar] [CrossRef]
- Salah, K.; Olkhovatov, E.A.; Aïder, M. Effect of canola proteins on rice flour bread and mathematical modelling of the baking process. J. Food Sci. Technol. 2019, 56, 3744–3753. [Google Scholar] [CrossRef]
- Zorzi, C.Z.; Garske, R.P.; Flôres, S.H.; Thys, R.C.S. Sunflower protein concentrate: A possible and beneficial ingredient for gluten-free bread. Innovat. Food Sci. Emerg. Technol. 2020, 66, 102539. [Google Scholar] [CrossRef]
- Witczak, T.; Juszczak, L.; Ziobro, R.; Korus, J. Rheology of gluten-free dough and physical characteristics of bread with potato protein. J. Food Proc. Eng. 2017, 40, e12491. [Google Scholar] [CrossRef]
- Farzana, W.; Khalil, I.A. Protein quality of tropical food legumes. J. Sci. Technol. 1999, 23, 13–19. [Google Scholar]
- Iqbal, A.; Khalil, I.A.; Ateeq, N.; Sayyar Khan, M. Nutritional quality of important food legumes. Food Chem. 2006, 97, 331–335. [Google Scholar] [CrossRef]
- Lo, B.; Kasapis, S.; Farahnaky, A. Lupin protein: Isolation and techno-functional properties, a review. Food Hydrocoll. 2021, 112, 106318. [Google Scholar] [CrossRef]
- Nunes, M.C.; Raymundo, A.; Sousa, I. Rheological behaviour and microstructure of pea protein/kappa-carrageenan/starch gels with different setting conditions. Food Hydrocol. 2006, 20, 106–113. [Google Scholar] [CrossRef] [Green Version]
- E.U. Commission Implementing Decision of 1 July 2014 authorising the placing on the market of rapeseed protein as a novel food ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council. Off. J. Eur. Union 2014, L196, 27. [Google Scholar]
- FSANZ—Food Standards Australia New Zealand. Approval Report–Application A1175. Rapeseed Protein Isolate as a Novel Food. 15 December 2020. p. 34. Available online: https://www.foodstandards.gov.au/code/applications/Documents/A1175%20Approval%20Report.pdf (accessed on 1 June 2021).
- FDA. GRAS Notice No. GRN 000683 Canola Protein Isolate. Available online: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=683&sort=GRN_No&order=DESC&startrow=1&type=advanced&search=%C2%A4Canola%20protein%C2%A4%C2%A4 (accessed on 1 June 2021).
- Waglay, A.; Karboune, S.; Alli, I. Potato protein isolates: Recovery and characterization of their properties. Food Chem. 2014, 142, 373–382. [Google Scholar] [CrossRef]
- Santos, J.; Calero, N.; Guerrero, A.; Muñoz, J. Relationship of rheological and microstructural properties with physical stability of potato protein-based emulsions stabilized by guar gum. Food Hydrocol. 2015, 44, 109–114. [Google Scholar] [CrossRef]
- Komeroski, M.R.; Homem, R.V.; Schmidt, H.d.O.; Rockett, F.C.; de Lira, L.; Vitória da Farias, D.; Kist, T.L.; Doneda, D.; Rios, A.d.O.; Ruffo de Oliveira, V. Effect of whey protein and mixed flours on the quality parameters of gluten-free breads. Int. J. Gastron. Food Sci. 2021, 24, 100361. [Google Scholar] [CrossRef]
- Han, A.; Romero, H.M.; Nishijima, N.; Ichimura, T.; Handa, A.; Xu, C.; Zhang, Y. Effect of egg white solids on the rheological properties and bread making performance of gluten-free batter. Food Hydrocol. 2019, 87, 287–296. [Google Scholar] [CrossRef]
- Aprodu, I.; Banu, I. Effect of starch and dairy proteins on the gluten free bread formulation based on quinoa. J. Food Meas. Charact. 2021, 15, 2264–2274. [Google Scholar] [CrossRef]
- Diprat, A.B.; Silveira Thys, R.C.; Rodrigues, E.; Rech, R. Chlorella sorokiniana: A new alternative source of carotenoids and proteins for gluten-free bread. LWT 2020, 134, 109974. [Google Scholar] [CrossRef]
- Khemiri, S.; Khelifi, N.; Nunes, M.C.; Ferreira, A.; Gouveia, L.; Smaali, I.; Raymundo, A. Microalgae biomass as an additional ingredient of gluten-free bread: Dough rheology, texture quality and nutritional properties. Algal Res. 2020, 50, 101998. [Google Scholar] [CrossRef]
- Selmo, M.S.; Salas-Mellado, M.M. Technological quality of bread from rice flour with Spirulina. Int. Food Res. J. 2014, 21, 1523–1528. [Google Scholar]
- Różyło, R.; Hameed Hassoon, W.; Gawlik-Dziki, U.; Siastała, M.; Dziki, D. Study on the physical and antioxidant properties of gluten-free bread with brown algae. CyTA J. Food 2017, 15, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Kowalczewski, P.Ł.; Gumienna, M.; Rybicka, I.; Górna, B.; Sarbak, P.; Dziedzic, K.; Kmiecik, D. Nutritional value and biological activity of gluten-free bread enriched with cricket powder. Molecules 2021, 26, 1184. [Google Scholar] [CrossRef]
- Nissen, L.; Samaei, S.P.; Babini, E.; Gianotti, A. Gluten free sourdough bread enriched with cricket flour for protein fortification: Antioxidant improvement and Volatilome characterization. Food Chem. 2020, 333, 127410. [Google Scholar] [CrossRef]
- Da Rosa Machado, C.; Thys, R.C.S. Cricket powder (Gryllus assimilis) as a new alternative protein source for gluten-free breads. Innov. Food Sci. Emerg. Technol. 2019, 56, 102180. [Google Scholar] [CrossRef]
- Becker, E.W. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Aneiros, A.; Garateix, A. Bioactive peptides from marine sources: Pharmacological properties and isolation procedures. J. Chromatogr. B 2004, 803, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.V.; Hachemi, I.; Mäki-Arvela, P.; Smeds, A.; Aho, A.; Freitas, S.P.; da Silva Gorgônio, C.M.; Carbonetti, G.; Peurla, M.; Paranko, J.; et al. Algal products beyond lipids: Comprehensive characterization of different products in direct saponification of green alga Chlorella sp. Algal Res. 2015, 11, 156–164. [Google Scholar] [CrossRef]
- Galland-Irmouli, A.-V.; Fleurence, J.; Lamghari, R.; Luçon, M.; Rouxel, C.; Barbaroux, O.; Bronowicki, J.-P.; Villaume, C.; Guéant, J.-L. Nutritional value of proteins from edible seaweed Palmaria palmata (dulse). J. Nutr. Biochem. 1999, 10, 353–359. [Google Scholar] [CrossRef]
- Fitzgerald, C.; Gallagher, E.; Doran, L.; Auty, M.; Prieto, J.; Hayes, M. Increasing the health benefits of bread: Assessment of the physical and sensory qualities of bread formulated using a renin inhibitory Palmaria palmata protein hydrolysate. LWT Food Sci. Technol. 2014, 56, 398–405. [Google Scholar] [CrossRef]
- Fitzgerald, C.; Mora-Soler, L.; Gallagher, E.; O’Connor, P.; Prieto, J.; Soler-Vila, A.; Hayes, M. Isolation and Characterization of Bioactive Pro-Peptides with in Vitro Renin Inhibitory Activities from the Macroalga Palmaria palmata. J. Agric. Food Chem. 2012, 60, 7421–7427. [Google Scholar] [CrossRef]
- Verkerk, M.C.; Tramper, J.; van Trijp, J.C.M.; Martens, D.E. Insect cells for human food. Biotechnol. Adv. 2007, 25, 198–202. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Walkowiak, K.; Masewicz, Ł.; Smarzyński, K.; Thanh-Blicharz, J.L.; Kačániová, M.; Baranowska, H.M. LF NMR spectroscopy analysis of water dynamics and texture of Gluten-Free bread with cricket powder during storage. Food Sci. Technol. Int. 2021. [Google Scholar] [CrossRef]
- Felipe da Silva, F.; Tainara de Morais, C.; Camila Rubira, S.; Myriam de las Mercedes, S.-M. Pão sem gluten enriquecido com a microalga Spirulina platensis/ Elaboration of gluten-free bread enriched with the microalgae Spirulina platensis. Brazil. J. Food Technol. 2011, 14, 308–316. [Google Scholar] [CrossRef]
- Dłużewska, E.; Marciniak-Lukasiak, K.; Kurek, N. Effect of transglutaminase additive on the quality of gluten-free bread. CyTA J. Food 2015, 13, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Shin, M.; Gang, D.-O.; Song, J.-Y. Effects of protein and transglutaminase on the preparation of gluten-free rice bread. Food Sci. Biotechnol. 2010, 19, 951–956. [Google Scholar] [CrossRef]
- Kuraishi, C.; Yamazaki, K.; Susa, Y. Transglutaminase: Its utilization in the food industry. Food Rev. Int. 2001, 17, 221–246. [Google Scholar] [CrossRef]
- Moore, M.M.; Heinbockel, M.; Dockery, P.; Ulmer, H.M.; Arendt, E.K. Network Formation in Gluten-Free Bread with Application of Transglutaminase. Cereal Chem. 2006, 83, 28–36. [Google Scholar] [CrossRef]
- Skendi, A.; Mouselemidou, P.; Papageorgiou, M.; Papastergiadis, E. Effect of acorn meal-water combinations on technological properties and fine structure of gluten-free bread. Food Chem. 2018, 253, 119–126. [Google Scholar] [CrossRef]
- Bravo-Núñez, Á.; Sahagún, M.; Gómez, M. Assessing the Importance of Protein Interactions and Hydration Level on Protein-Enriched Gluten-Free Breads: A Novel Approach. Food Bioproc. Technol. 2019, 12, 820–828. [Google Scholar] [CrossRef]
- Manik, L.C.M.; Nur, M. The recent development of gluten-free bread quality using hydrocolloids. IOP Conf. Ser. Earth Environ. Sci. 2021, 733, 012101. [Google Scholar] [CrossRef]
- Simonato, B.; Pasini, G.; Giannattasio, M.; Peruffo, A.D.B.; De Lazzari, F.; Curioni, A. Food Allergy to Wheat Products: The Effect of Bread Baking and in Vitro Digestion on Wheat Allergenic Proteins. A Study with Bread Dough, Crumb, and Crust. J. Agric. Food Chem. 2001, 49, 5668–5673. [Google Scholar] [CrossRef]
- Smith, F.; Pan, X.; Bellido, V.; Toole, G.A.; Gates, F.K.; Wickham, M.S.J.; Shewry, P.R.; Bakalis, S.; Padfield, P.; Mills, E.N.C. Digestibility of gluten proteins is reduced by baking and enhanced by starch digestion. Mol. Nutr. Food Res. 2015, 59, 2034–2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villarino, C.B.J.; Jayasena, V.; Coorey, R.; Chakrabarti-Bell, S.; Foley, R.; Fanning, K.; Johnson, S.K. The effects of lupin (Lupinus angustifolius) addition to wheat bread on its nutritional, phytochemical and bioactive composition and protein quality. Food Res. Int. 2015, 76, 58–65. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Sivam, A.S.; Cooney, J.; Zhou, J.; Perera, C.O.; Waterhouse, G.I.N. Effects of added fruit polyphenols and pectin on the properties of finished breads revealed by HPLC/LC-MS and Size-Exclusion HPLC. Food Res. Int. 2011, 44, 3047–3056. [Google Scholar] [CrossRef]
- Świeca, M.; Gawlik-Dziki, U.; Dziki, D.; Baraniak, B.; Czyz, J. The influence of protein-flavonoid interactions on protein digestibility in vitro and the antioxidant quality of breads enriched with onion skin. Food Chem. 2013, 141, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Kies, A.K.; De Jonge, L.H.; Kemme, P.A.; Jongbloed, A.W. Interaction between Protein, Phytate, and Microbial Phytase. In Vitro Studies. J. Agric. Food Chem. 2006, 54, 1753–1758. [Google Scholar] [CrossRef]
Source | Concentration (% in the Starchy Flour Mixture) | Control Bread | Literature |
---|---|---|---|
Gluten-free cereals | |||
rice protein | 30% | 100% maize starch | [13] |
rice protein | 5%, 10% | 50% rice flour: 50% maize starch | [14] |
rice bran protein concentrate | 2%, 4% | 100% rice flour | [15] |
Zein | 15% | 15% vital wheat gluten: 85% rice starch | [16] |
Zein | 15% | 100% wheat flour, 100% starch from: rice, maize, potato | [17] |
Zein | 2.5%, 5%, 10% | 100% wheat flour, ~88% maize starch: ~12% potato starch | [18] |
Legumes | |||
Pea protein | 30% | 100% maize starch | [13] |
Pea protein | 5%, 10% | 50% rice flour: 50% maize starch | [14] |
Pea protein | ~10% | 80% maize starch: 20% potato starch | [19] |
Pea protein | 2% | 100% potato starch | [20] |
Lupin protein | ~10% | 80% maize starch: 20% potato starch | [19] |
Lupin protein | 2% | 100% potato starch | [20] |
Soy protein | ~10% | 80% maize starch: 20% potato starch | [19] |
Soy protein | 2%, 4%, 6% | 100% rice flour | [21] |
Soy protein | 4% | 100% rice flour | [22] |
Soy protein | 2% | 100% potato starch | [20] |
Oil seeds | |||
Rapeseed protein | 6%, 9%, 12%, 15% | 80% corn starch: 20% potato starch | [23] |
Rapeseed protein | 6%, 9%, 12%, 15% | 80% corn starch: 20% potato starch | [24] |
Canola protein extract | 3%, 6%, 9% | 100% wheat flour, 100% rice flour | [25] |
Sunflower protein | 5%, 10%, 20% | 70% rice flour: 30% maize starch | [26] |
Tubers | |||
Potato protein | 2%, 6%, 10% | 80% maize starch: 20% potato starch | [27] |
Potato protein | 2% | 100% potato starch | [20] |
Source | Concentration (% of Starchy Flour Mixture) | Control Bread | Literature |
---|---|---|---|
Dairy | |||
whey protein | 10%, 20%, 30% | 100% wheat flour, 50% cassava starch: 50% chickpea flour | [37] |
whey protein | 30% | 100% maize starch | [13] |
whey protein | 5%, 10% | 50% rice flour: 50% maize starch | [14] |
whey protein | 2%, 4%, 6% | 100% rice flour | [21] |
whey protein | 12% * | 50% quinoaflour: 50% (maize starch, potato starch, modified maize starch, modified potato starch) | [38] |
Eggs | |||
egg white powder | 30% | 100% maize starch | [13] |
egg white powder | 5%, 10% | 50% rice flour: 50% maize starch | [14] |
egg white powder | 2%, 4% | 100% rice flour | [15] |
egg white powder | ~10% | 80% maize starch: 20% potato starch | [19] |
egg white powder | 5%, 10%, 15% | Commercial gluten-free flour (mixture of garbanzo bean flour, potato starch, tapioca flour, whole grain sorghum flour and fava bean flour) | [39] |
egg white powder | 4% | 100% rice flour | [22] |
Other animal sources | |||
collagen | ~10% | 80% maize starch: 20% potato starch | [19] |
Source | Concentration (% of Starchy Flour Mixture) | Control Bread | Literature |
---|---|---|---|
Algae | |||
Chlorella powder (Chlorella sorokiniana) | 2.1%, 4.2% | 25% rice flour: 58.3% maize starch: 16.7% pea flour | [40] |
Microalgae powder (Nannochloropsis gaditana L2; Chlamydomonas sp. EL5) | 1%, 3% | 31% rice flour: 46% buckwheat: 23% potato starch | [41] |
Spirulina (strain LEB -18) | 1–4% | 100% rice flour | [42] |
Brown algae powder (Ascophyllum nodosum) | 2%, 4%, 6%, 8%, 10% | 45% white rice flour: 45% maize flour: 10% millet flour | [43] |
Insects | |||
Cricket powder (Acheta domesticus) | 2%, 6%, 10% | 80% maize starch: 20% potato starch | [44] |
Cricket powder (Acheta domesticus) | 5.5% | 80% maize flour: 20% rice flour | [45] |
Cricket powder (Gryllus assimilis) | 10%, 20% | 70% rice flour: 30% maize starch | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skendi, A.; Papageorgiou, M.; Varzakas, T. High Protein Substitutes for Gluten in Gluten-Free Bread. Foods 2021, 10, 1997. https://doi.org/10.3390/foods10091997
Skendi A, Papageorgiou M, Varzakas T. High Protein Substitutes for Gluten in Gluten-Free Bread. Foods. 2021; 10(9):1997. https://doi.org/10.3390/foods10091997
Chicago/Turabian StyleSkendi, Adriana, Maria Papageorgiou, and Theodoros Varzakas. 2021. "High Protein Substitutes for Gluten in Gluten-Free Bread" Foods 10, no. 9: 1997. https://doi.org/10.3390/foods10091997
APA StyleSkendi, A., Papageorgiou, M., & Varzakas, T. (2021). High Protein Substitutes for Gluten in Gluten-Free Bread. Foods, 10(9), 1997. https://doi.org/10.3390/foods10091997