Optimization of the Frying Temperature and Time for Preparation of Healthy Falafel Using Air Frying Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air-Fried Falafel Preparation
2.2. Measurement of the Quality Attributes of the Fried Falafel
2.2.1. Measurement of Moisture Content (MC)
2.2.2. Evaluation of Hardness
2.2.3. Assessment of Fat Content (FC)
2.2.4. Colour Analysis
2.3. Sensory Analysis of Fried Falafel
2.4. Comparison between Optimal Air-Fried and Deep-Fried Falafel
2.5. Design of the Experiment and Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Air-Fried Falafel as Affected by Frying Conditions
3.2. The Effect of Frying Conditions on the Sensory Attributes of the Air-Fried Falafel
3.3. Data Validation
3.4. Optimum Frying Conditions Determination
3.5. Comparison among Characeristics of Deep-Fat and Air-Fried Falafel
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heredia, A.; Castelló, M.; Argüelles, A.; Andrés, A. Evolution of mechanical and optical properties of French fries obtained by hot air-frying. LWT-Food Sci. Technol. 2014, 57, 755–760. [Google Scholar] [CrossRef]
- Abd Rahman, N.A.; Abdul Razak, S.; Lokmanalhakim, L.; Taip, F.; Mustapa Kamal, S. Response surface optimization for hot air-frying technique and its effects on the quality of sweet potato snack. J. Food Process Eng. 2017, 40, e12507. [Google Scholar] [CrossRef]
- Yu, X.; Li, L.; Xue, J.; Wang, J.; Song, G.; Zhang, Y.; Shen, Q. Effect of air-frying conditions on the quality attributes and lipidomic characteristics of surimi during processing. J Innov. Food Sci. Emerg. Technol. 2020, 60, 102305. [Google Scholar] [CrossRef]
- Mellema, M. Mechanism and reduction of fat uptake in deep-fat fried foods. J. Trends Food Sci. Technol. 2003, 14, 364–373. [Google Scholar] [CrossRef]
- Teruel, M.d.R.; Gordon, M.; Linares, M.B.; Garrido, M.D.; Ahromrit, A.; Niranjan, K. A comparative study of the characteristics of french fries produced by deep fat frying and air frying. J. Food Sci. 2015, 80, E349–E358. [Google Scholar] [CrossRef]
- Garayo, J.; Moreira, R. Vacuum frying of potato chips. J. Food Eng. 2002, 55, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Grootveld, M.; Percival, B.C.; Grootveld, K.L. Chronic non-communicable disease risks presented by lipid oxidation products in fried foods. J. Hepatobiliary Surg. 2018, 7, 305. [Google Scholar] [CrossRef]
- Ismail, M.; Kucukoner, E. Falafel: A meal with full nutrition. Food Nutr. Sci. 2017, 8, 1022–1027. [Google Scholar] [CrossRef] [Green Version]
- Zaghi, A.N.; Barbalho, S.M.; Guiguer, E.L.; Otoboni, A.M. Frying process: From conventional to air frying technology. Food Rev. Int. 2019, 35, 763–777. [Google Scholar] [CrossRef]
- Devi, S.; Zhang, M.; Ju, R.; Bhandari, B. Recent development of innovative methods for efficient frying technology. Crit. Rev. Food Sci. Nutr. 2020, 1–16. [Google Scholar] [CrossRef]
- Lalas, S. Quality of frying oil. In Adv. Deep-Fat Fry. Foods; Sahin, S., Sumnu, S.G., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 57–81. [Google Scholar]
- Asokapandian, S.; Swamy, G.J.; Hajjul, H. Deep fat frying of foods: A critical review on process and product parameters. Crit. Rev. Food Sci. Nutr. 2020, 60, 3400–3413. [Google Scholar] [CrossRef]
- Andrés, A.; Arguelles, Á.; Castelló, M.L.; Heredia, A. Mass transfer and volume changes in french fries during air frying. Food Bioprocess Technol. 2013, 6, 1917–1924. [Google Scholar]
- Sansano, M.; Juan-Borrás, M.; Escriche, I.; Andrés, A.; Heredia, A. Effect of pretreatments and air-frying, a novel technology, on acrylamide generation in fried potatoes. J. Food Sci. 2015, 80, T1120–T1128. [Google Scholar] [CrossRef]
- Shaker, M.A. Air frying a new technique for produce of healthy fried potato strips. J. Food Nutr. Sci. 2014, 2, 200–206. [Google Scholar]
- Gouyo, T.; Rondet, É.; Mestres, C.; Hofleitner, C.; Bohuon, P. Microstructure analysis of crust during deep-fat or hot-air frying to understand French fry texture. J. Food Eng. 2021, 298, 110484. [Google Scholar] [CrossRef]
- Haddarah, A.; Naim, E.; Dankar, I.; Sepulcre, F.; Pujolà, M.; Chkeir, M. The effect of borage, ginger and fennel extracts on acrylamide formation in French fries in deep and electric air frying. Food Chem. 2021, 350, 129060. [Google Scholar] [CrossRef] [PubMed]
- Ghaitaranpour, A.; Koocheki, A.; Mohebbi, M.; Ngadi, M.O. Effect of deep fat and hot air frying on doughnuts physical properties and kinetic of crust formation. J. Cereal Sci. 2018, 83, 25–31. [Google Scholar] [CrossRef]
- Fang, M.; Huang, G.-J.; Sung, W.-C. Mass transfer and texture characteristics of fish skin during deep-fat frying, electrostatic frying, air frying and vacuum frying. LWT 2021, 137, 110494. [Google Scholar] [CrossRef]
- Nur ‘Aliaa, A.R.; Siti Mazlina, M.K.; Taip, F.S.; Liew Abdullah, A.G. Response surface optimization for clarification of white pitaya juice using a commercial enzyme. J. Food Process Eng. 2010, 33, 333–347. [Google Scholar] [CrossRef]
- Shyu, S.; Hau, L.; Hwang, L.S. Effects of processing conditions on the quality of vacuum fried carrot chips. J. Sci. Food Agric. 2005, 85, 1903–1908. [Google Scholar] [CrossRef]
- Shyu, S.; Hwang, L.S. Effects of processing conditions on the quality of vacuum fried apple chips. Food Res. Int. 2001, 34, 133–142. [Google Scholar] [CrossRef]
- Sobukola, O.P.; Awonorin, S.O.; Sanni, L.O.; Bamiro, F.O. Optimization of blanching conditions prior to deep fat frying of yam slices. Int. J. Food Prop. 2008, 11, 379–391. [Google Scholar] [CrossRef]
- Sobukola, O.P.; Awonorin, S.O.; Sanni, L.O.; Bamiro, F.O. Optimization of pre-fry drying of yam slices using response surface methodology. J. Food Process Eng. 2010, 33, 626–648. [Google Scholar] [CrossRef]
- Ismail, M.M.; Turgut, S.S.; Karacabey, E.; Kucukoner, E. Determination of physical properties of falafel (fried chickpea balls) under the effect of different cooking techniques. Int. J. Food Eng. 2018, 4. [Google Scholar] [CrossRef]
- Abu-Alruz, K. Effect of frying time and falafel ball size on fat uptake during deep fat frying. Am.-Eurasian J. Agric. Environ. Sci. 2015, 15, 648–1654. [Google Scholar]
- Massini, R.; Nicoli, M.; Cassarà, A.; Lerici, C. Study on physical and physico-chemical changes of coffee beans during roasting. note 1. Ital. J. Food Sci. 1990, 2, 123–130. [Google Scholar]
- Fikry, M.; Yusof, Y.A.; Al-Awaadh, A.M.; Rahman, R.A.; Chin, N.L.; Mousa, E.; Chang, L.S. Kinetics modelling of the colour, hardness, grinding energy consumption and oil yield changes during the conventional roasting of palm date seeds. Food Sci. Technol. Res. 2019, 25, 351–362. [Google Scholar] [CrossRef]
- Jonkers, N.; van Dommelen, J.A.W.; Geers, M.G.D. Intrinsic mechanical properties of food in relation to texture parameters. Mech. Time-Depend. Mater. 2021. [Google Scholar] [CrossRef]
- Fikry, M.; Al-Awaadah, A.; Rahman, R. Production and characterization of palm date powder rich in dietary fiber. J. Food Meas. Charact. 2021, 15, 2285–2296. [Google Scholar] [CrossRef]
- Standardization IOf. ISO: 8586. Sensory Analysis–General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors; International Organization for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- Fikry, M.; Yusof, Y.; Al-Awaadh, A.; Rahman, R.; Chin, N.; Mousa, E.; Chang, L. Effect of the roasting conditions on the physicochemical, quality and sensory attributes of coffee-like powder and brew from defatted palm date seeds. Foods 2019, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Manzoor, S.; Yusof, Y.A.; Chin, N.L.; Tawakkal, A.; Mohamed, I.S.; Fikry, M.; Chang, L.S. Quality characteristics and sensory profile of stirred yogurt enriched with papaya peel powder. Pertanika J. Trop. Agric. Sci. 2019, 42, 519–533. [Google Scholar]
- Mendes, L.C.; de Menezes, H.C.; Aparecida, M.; Da Silva, A. Optimization of the roasting of robusta coffee (C. canephora conillon) using acceptability tests and RSM. Food Qual. Prefer. 2001, 12, 153–162. [Google Scholar] [CrossRef]
- Mauer, L.J.; Bradley, R.L. Moisture and total solids analysis. In Food Analysis; Cham, Germany; Springer: Berlin, Germany, 2017; pp. 257–286. [Google Scholar]
- Fikry, M.; Yusof, Y.A.; M Al-Awaadh, A.; Abdul Rahman, R.; Chin, N.L.; Ghazali, H.M. Antioxidative and Quality Properties of Full-Fat Date Seeds Brew as Influenced by the Roasting Conditions. Antioxidants 2019, 8, 226. [Google Scholar] [CrossRef] [Green Version]
- Fikry, M.; Yusof, Y.A.; Al-Awaadh, A.M.; Rahman, R.A.; Chin, N.L. Prediction of the shelf-life of date seeds brew by integration of acceptability and quality indices. J. Food Meas. Charact. 2020, 14, 1158–1171. [Google Scholar] [CrossRef]
- Bouchon, P.; Hollins, P.; Pearson, M.; Pyle, D.; Tobin, M. Oil distribution in fried potatoes monitored by infrared microspectroscopy. J. Food Sci. 2001, 66, 918–923. [Google Scholar] [CrossRef]
- Mariscal, M.; Bouchon, P. Comparison between atmospheric and vacuum frying of apple slices. Food Chem. 2008, 107, 1561–1569. [Google Scholar] [CrossRef]
- Muñoz, A.M.; Civille, V.G.; Carr, B.T. Sensory Evaluation in Quality Control; Reinhold: New York, NY USA, 1992. [Google Scholar]
- Özdemir, M.; Devres, O. Analysis of color development during roasting of hazelnuts using response surface methodology. J. Food Eng. 2000, 45, 17–24. [Google Scholar] [CrossRef]
- Manzocco, L.; Calligaris, S.; Mastrocola, D.; Nicoli, M.C.; Lerici, C.R. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Technol. 2000, 11, 340–346. [Google Scholar] [CrossRef]
- Prasad, K.; Nath, N. Comparison of sugarcane juice based beverage optimisation using response surface methodology with Fuzzy method. Sugar Technol. 2002, 4, 109–115. [Google Scholar] [CrossRef]
- Chambers, E.; Wolf, M.B. Sensory Testing Methods; ASTM International: Lancaster, PA, USA, 2005. [Google Scholar]
- Baik, O.D.; Mittal, G.S. Kinetics of tofu color changes during deep-fat frying. LWT Food Sci. Technol. 2003, 36, 43–48. [Google Scholar] [CrossRef]
- Ngadi, M.; Li, Y.; Oluka, S. Quality changes in chicken nuggets fried in oils with different degrees of hydrogenation. LWT Food Sci. Technol. 2007, 40, 1784–1791. [Google Scholar] [CrossRef]
Run. | ||||
---|---|---|---|---|
Coded | Actual | Coded | Actual | |
1 | −1 | 140 | −1 | 5 |
2 | −1 | 140 | 0 | 10 |
3 | −1 | 140 | 1 | 15 |
4 | 0 | 170 | −1 | 5 |
5 | 0 | 170 | 0 | 10 |
6 | 0 | 170 | 1 | 15 |
7 | 1 | 200 | −1 | 5 |
8 | 1 | 200 | 0 | 10 |
9 | 1 | 200 | 1 | 15 |
Property | Statistical Constants of The Second-Degree Model | |||||||
---|---|---|---|---|---|---|---|---|
Lack of Fit | R2 | |||||||
MC (%w.b) | 7.40 | 0.738 * | −1.379 * | 0.0068 * | −0.0028 * | −0.0871 * | 0.507 | 0.979 |
Hardness (N) | −76.90 * | 0.932 * | −2.40 * | 0.0114 * | −0.0022 * | 0.1057 * | 0.058 | 0.955 |
FC (%d.b) | 3.61 | 0.215 * | −0.83 * | −0.000978 | −0.000782 * | 0.02471 * | 0.422 | 0.965 |
L*-value | 46.1 * | 0.412 * | −1.276 * | −0.0028 | −0.001945 * | 0.0611 * | 0.557 | 0.976 |
Sensory appearance | −33.67 * | 0.3549 * | 1.56 * | −0.0067 * | −0.0008 * | −0.0178 * | 0.133 | 0.929 |
Sensory aroma | −64.12 * | 0.7307 * | 1.383 * | −0.0073 * | −0.0019 * | −0.0020 | 0.487 | 0.934 |
Sensory taste | −55.16 * | 0.6094 * | 1.511 * | −0.0077 * | −0.0015 * | −0.0060 | 0.087 | 0.910 |
Crispness | −74.09 * | 0.8399 * | 1.456 * | −0.0073 * | −0.0022 * | −0.0049 | 0.514 | 0.931 |
Overall preference | −55.26 * | 0.6094 * | 1.511 * | −0.0077 * | −0.0015 * | −0.0060 * | 0.087 | 0.910 |
Response | Fit | SE Fit * | 95% CI ** |
---|---|---|---|
MC (% w.b.) | 36.48 | 0.548 | (35.34; 37.62) |
Hardness (N) | 29.12 | 0.918 | (27.21; 31.03) |
FC (% d.b.) | 8.99 | 0.201 | (8.55; 9.38) |
L*-value | 45.46 | 0.465 | (44.49; 46.43) |
Appearance | 7.61 | 0.129 | (7.34; 7.88) |
Taste | 7.86 | 0.176 | (7.49; 8.22) |
Crispiness | 7.61 | 0.16 | (7.28; 7.95) |
Aroma | 7.89 | 0.146 | (7.58; 8.19) |
Overall preference | 7.76 | 0.176 | (7.39; 8.12) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fikry, M.; Khalifa, I.; Sami, R.; Khojah, E.; Ismail, K.A.; Dabbour, M. Optimization of the Frying Temperature and Time for Preparation of Healthy Falafel Using Air Frying Technology. Foods 2021, 10, 2567. https://doi.org/10.3390/foods10112567
Fikry M, Khalifa I, Sami R, Khojah E, Ismail KA, Dabbour M. Optimization of the Frying Temperature and Time for Preparation of Healthy Falafel Using Air Frying Technology. Foods. 2021; 10(11):2567. https://doi.org/10.3390/foods10112567
Chicago/Turabian StyleFikry, Mohammad, Ibrahim Khalifa, Rokkaya Sami, Ebtihal Khojah, Khadiga Ahmed Ismail, and Mokhtar Dabbour. 2021. "Optimization of the Frying Temperature and Time for Preparation of Healthy Falafel Using Air Frying Technology" Foods 10, no. 11: 2567. https://doi.org/10.3390/foods10112567
APA StyleFikry, M., Khalifa, I., Sami, R., Khojah, E., Ismail, K. A., & Dabbour, M. (2021). Optimization of the Frying Temperature and Time for Preparation of Healthy Falafel Using Air Frying Technology. Foods, 10(11), 2567. https://doi.org/10.3390/foods10112567