Elucidating the Calcium-Binding Site, Absorption Activities, and Thermal Stability of Egg White Peptide–Calcium Chelate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Egg White Peptide and Egg White Peptide–Calcium Complex
2.3. Scanning Electron Microscope Analysis and Energy-Dispersive X-ray Spectroscope Analysis
2.4. Fourier Transform Infrared Spectroscopy
2.5. Raman Spectrum Analysis
2.6. Promote Calcium Absorption Analysis
2.7. Nano LC-ESI-MS/MS Analysis
2.8. Analysis of Stability of EWP-Ca during the Sterilization Process
2.8.1. Fluorescence Spectra
2.8.2. Circular Dichroism Spectra
2.8.3. Calcium-Binding Capacity Analysis
2.9. Statistical Analysis
3. Results
3.1. SEM and EDS Analysis
3.2. Fourier Transform Infrared (FTIR) Spectroscopy Measurement
3.3. Raman Spectrum Analysis
3.4. Promote Calcium Absorption Analysis of EWP-Ca
3.5. Nano LC-ESI-MS/MS Analysis
3.6. Stability of EWP-Ca during the Sterilization Process
3.6.1. Fluorescence Spectra and CD Spectra
3.6.2. Calcium-Binding Capacity Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mine, Y. Recent advances in the understanding of egg white protein functionality. Trends Food Sci. Technol. 1995, 6, 225–232. [Google Scholar] [CrossRef]
- Ge, H.; Cai, Z.; Chai, J.; Liu, J.; Liu, B.; Yu, Y.; Liu, J.; Zhang, T. Egg white peptides ameliorate dextran sulfate sodium-induced acute colitis symptoms by inhibiting the production of pro-inflammatory cytokines and modulation of gut microbiota composition. Food Chem. 2021, 360, 129981. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.P.; Vij, S.; Hati, S. Functional significance of bioactive peptides derived from soybean. Peptides 2014, 54, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Sarmadi, B.H.; Ismail, A. Antioxidative peptides from food proteins: A review. Peptides 2010, 31, 1949–1956. [Google Scholar] [CrossRef]
- Manso, M.A.; Miguel, M.; Even, J.; Hernández, R.; Aleixandre, A.; López-Fandiño, R. Effect of the long-term intake of an egg white hydrolysate on the oxidative status and blood lipid profile of spontaneously hypertensive rats. Food Chem. 2008, 109, 361–367. [Google Scholar] [CrossRef]
- Sun, S.; Niu, H.; Yang, T.; Lin, Q.; Luo, F.; Ma, M. Antioxidant and anti-fatigue activities of egg white peptides prepared by pepsin digestion. J. Sci. Food Agric. 2014, 94, 3195–3200. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, H.; Wang, Y.; Yu, Y.; Liu, J.; Liu, B.; Zhang, T. Identification of antioxidant peptides derived from egg-white protein and its protective effects on H2O2-induced cell damage. Int. J. Food Sci. Technol. 2019, 54, 2219–2227. [Google Scholar] [CrossRef]
- Carrillo, W.; Gómez-Ruiz, J.A.; Miralles, B.; Ramos, M.; Barrio, D.; Recio, I. Identification of antioxidant peptides of hen egg-white lysozyme and evaluation of inhibition of lipid peroxidation and cytotoxicity in the Zebrafish model. Eur. Food Res. Technol. 2016, 242, 1777–1785. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wang, B.; Sun, X.; Tang, Y.; Wei, X.; Ge, B.; Tang, Y.; Deng, Y.; He, C.; Yuan, J. Upregulation of intestinal barrier function in mice with DSS-induced colitis by a defined bacterial consortium is associated with expansion of IL-17A producing gamma delta T cells. Front. Immunol. 2017, 8, 824. [Google Scholar] [CrossRef] [Green Version]
- Daengprok, W.; Garnjanagoonchorn, W.; Naivikul, O.; Pornsinlpatip, P.; Issigonis, K.; Mine, Y. Chicken Eggshell Matrix Proteins Enhance Calcium Transport in the Human Intestinal Epithelial Cells, Caco-2. J. Agric. Food Chem. 2003, 51, 6056–6061. [Google Scholar] [CrossRef]
- Erfanian, A.; Rasti, B.; Manap, Y. Comparing the calcium bioavailability from two types of nano-sized enriched milk using in-vivo assay. Food Chem. 2017, 214, 606–613. [Google Scholar] [CrossRef]
- Wang, X.; Gao, A.; Chen, Y.; Zhang, X.; Li, S. Preparation of cucumber seed peptide-calcium chelate by liquid state fermentation and its characterization. Food Chem. 2017, 229, 487–494. [Google Scholar] [CrossRef]
- De Barboza, G.D.; Guizzardi, S.; de Talamoni, N.T. Molecular aspects of intestinal calcium absorption. World J. Gastroenterol. WJG 2015, 21, 7142–7154. [Google Scholar] [CrossRef]
- Sun, N.; Wu, H.; Du, M.; Tang, Y.; Liu, H.; Fu, Y.; Zhu, B. Food protein-derived calcium chelating peptides: A review. Trends Food Sci. Technol. 2016, 58, 140–148. [Google Scholar] [CrossRef]
- Sun, N.; Cui, P.; Lin, S.; Yu, C.; Tang, Y.; Wei, Y.; Xiong, Y.; Wu, H. Characterization of sea cucumber (Stichopus japonicus) ovum hydrolysates: Calcium chelation, solubility and absorption into intestinal epithelial cells. J. Sci. Food Agric. 2017, 97, 4604–4611. [Google Scholar] [CrossRef]
- Chen, D.; Mu, X.; Huang, H.; Nie, R.; Liu, Z.; Zeng, M. Isolation of a calcium-binding peptide from tilapia scale protein hydrolysate and its calcium bioavailability in rats. J. Funct. Foods 2014, 6, 575–584. [Google Scholar] [CrossRef]
- Zhu, K.-X.; Wang, X.-P.; Guo, X.-N. Isolation and characterization of zinc-chelating peptides from wheat germ protein hydrolysates. J. Funct. Foods 2015, 12, 23–32. [Google Scholar] [CrossRef]
- Liu, F.-R.; Wang, L.; Wang, R.; Chen, Z.-X. Calcium-binding capacity of wheat germ protein hydrolysate and characterization of peptide–calcium complex. J. Agric. Food Chem. 2013, 61, 7537–7544. [Google Scholar] [CrossRef]
- Wu, W.; He, L.; Liang, Y.; Yue, L.; Peng, W.; Jin, G.; Ma, M. Preparation process optimization of pig bone collagen pep-tide-calcium chelate using response surface methodology and its structural characterization and stability analysis. Food Chem. 2019, 284, 80–89. [Google Scholar] [CrossRef]
- Malison, A.; Arpanutud, P.; Keeratipibul, S. Chicken foot broth byproduct: A new source for highly effective pep-tide-calcium chelate. Food Chem. 2021, 345, 128713. [Google Scholar] [CrossRef]
- Lin, S.; Jin, Y.; Liu, M.; Yang, Y.; Zhang, M.; Guo, Y.; Jones, G.; Liu, J.; Yin, Y. Research on the preparation of antioxidant peptides derived from egg white with assisting of high-intensity pulsed electric field. Food Chem. 2013, 139, 300–306. [Google Scholar] [CrossRef]
- Bao, Z.; Kang, D.; Li, C.; Zhang, F.; Lin, S. Effect of salting on the water migration, physicochemical and textural characteristics, and microstructure of quail eggs. LWT 2020, 132, 109847. [Google Scholar] [CrossRef]
- Xue, P.; Na, S.; Yong, L.; Sheng, C.; Lin, S. Targeted regulation of hygroscopicity of soybean antioxidant pentapeptide powder by zinc ions binding to the moisture absorption sites. Food Chem. 2018, 242, 83–90. [Google Scholar] [CrossRef]
- Wang, T.; Lin, S.; Cui, P.; Bao, Z.; Liu, K.; Jiang, P.; Zhu, B.; Sun, N. Antarctic krill derived peptide as a nanocarrier of iron through the gastrointestinal tract. Food Biosci. 2020, 36, 100657. [Google Scholar] [CrossRef]
- Bao, Z.; Kang, D.; Xu, X.; Sun, N.; Lin, S. Variation in the structure and emulsification of egg yolk high-density lipoprotein by lipid peroxide. J. Food Biochem. 2019, 43, e13019. [Google Scholar] [CrossRef]
- Hou, T.; Wang, C.; Ma, Z.; Shi, W.; Weiwei, L.; He, H. Desalted Duck Egg White Peptides: Promotion of Calcium Uptake and Structure Characterization. J. Agric. Food Chem. 2015, 63, 8170–8176. [Google Scholar] [CrossRef]
- Wang, D.; Liu, K.; Cui, P.; Bao, Z.; Wang, T.; Lin, S.; Sun, N. Egg-White-Derived Antioxidant Peptide as an Efficient Nanocarrier for Zinc Delivery through the Gastrointestinal System. J. Agric. Food Chem. 2020, 68, 2232–2239. [Google Scholar] [CrossRef]
- Bao, Z.-J.; Wu, J.-P.; Cheng, Y.; Chi, Y.-J. Effects of lipid peroxide on the structure and gel properties of ovalbumin. Process. Biochem. 2017, 57, 124–130. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Xu, H.; Li, X.; Hao, X. Preparation of sheep bone collagen peptide–calcium chelate using enzymoly-sis-fermentation methodology and its structural characterization and stability analysis. RSC Adv. 2020, 10, 11624–11633. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, F.; Liu, X.; Zhao, M. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity. Food Chem. 2018, 258, 269–277. [Google Scholar] [CrossRef]
- Brodowski, S.; Amelung, W.; Haumaier, L.; Abetz, C.; Zech, W. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 2005, 128, 116–129. [Google Scholar] [CrossRef]
- Qian, J.-Y.; Chen, W.; Zhang, W.-M.; Zhang, H. Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation: A primary approach. Carbohydr. Polym. 2009, 78, 620–625. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, X.; Ai, T.; Cheng, X.; Guo, H.; Teng, G.; Mao, X. Preparation and characterization of β-lactoglobulin hydrolysate-iron complexes. J. Dairy Sci. 2012, 95, 4230–4236. [Google Scholar] [CrossRef] [PubMed]
- Da Rosa, Z.E.; Telles, A.C.; el Halal, S.L.M.; da Rocha, M.; Colussi, R.; de Assis, L.M.; de Castro, L.A.S.; Dias, A.R.G.; Prentice-Hernández, C. Production and characterization of encapsulated antioxidative protein hydrolysates from Whitemouth croaker (Micropogonias furnieri) muscle and byproduct. LWT-Food Sci. Technol. 2014, 59, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Sun, N.; Cui, P.; Jin, Z.; Wu, H.; Wang, Y.; Lin, S. Contributions of molecular size, charge distribution, and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates. Food Chem. 2017, 230, 627–636. [Google Scholar] [CrossRef]
- Zhang, K.; Li, B.; Chen, Q.; Zhang, Z.; Zhao, X.; Hou, H. Functional Calcium Binding Peptides from Pacific Cod (Gadus macrocephalus) Bone: Calcium Bioavailability Enhancing Activity and Anti-Osteoporosis Effects in the Ovariectomy-Induced Osteoporosis Rat Model. Nutrients 2018, 10, 1325. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Ji, H.; Zhang, Z.; Zeng, X.; Su, W.; Liu, S. A novel calcium-chelating peptide purified from Auxis thazard protien hydrolysate and its binding properties with calcium. J. Funct. Foods 2019, 60, 103447. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, S.; Cai, X.; Hong, J.; Wang, S. A specific peptide with calcium chelating capacity isolated from whey protein hydrolysate. J. Funct. Foods 2014, 10, 46–53. [Google Scholar] [CrossRef]
- Zhang, P.; Bao, Z.; Jiang, P.; Zhang, S.; Zhang, X.; Lin, S.; Sun, N. Nanoliposomes for encapsulation and calcium delivery of egg white peptide–calcium complex. J. Food Sci. 2021, 86, 1418–1431. [Google Scholar] [CrossRef]
- Zhang, D.; Ortiz, C.; Xie, Y.; Davisson, V.J.; Ben-Amotz, D. Detection of the site of phosphorylation in a peptide using Raman spectroscopy and partial least squares discriminant analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 471–475. [Google Scholar] [CrossRef]
- Rygula, A.; Majzner, K.; Marzec, K.M.; Kaczor, A.; Pilarczyk, M.; Baranska, M. Raman spectroscopy of proteins: A review. J. Raman Spectrosc. 2013, 44, 1061–1076. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). Food Composition Databases. 2019; FoodData Central; Available online: usda.gov; https://fdc.nal.usda.gov/fdc-app.html#/food-details/323793/nutrients; (accessed on 21 August 2017). [Google Scholar]
- Karoui, R.; Baerdemaeker, J.D. A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products. Food Chem. 2007, 102, 621–640. [Google Scholar] [CrossRef]
- Kelly, S.M.; Jess, T.J.; Price, N.C. How to study proteins by circular dichroism. Biochim. Biophys. Acta Proteins Proteom. 2005, 1751, 119–139. [Google Scholar] [CrossRef]
- Sun, N.; Wang, Y.; Bao, Z.; Cui, P.; Wang, S.; Lin, S. Calcium binding to herring egg phosphopeptides: Binding characteristics, conformational structure and intermolecular forces. Food Chem. 2020, 310, 125867. [Google Scholar] [CrossRef]
- Li, W.; Ding, Y.; Zhang, X.; Li, Y.; Chen, Z. Isolation of a novel calcium-binding peptide from wheat germ protein hydrolysates and the prediction for its mechanism of combination. Food Chem. 2017, 239, 416–426. [Google Scholar]
- Hou, H.; Wang, S.; Zhu, X.; Li, Q.; Fan, Y.; Cheng, D.; Li, B. A novel calcium-binding peptide from Antarctic krill protein hydrolysates and identification of binding sites of calcium-peptide complex. Food Chem. 2018, 243, 389–395. [Google Scholar] [CrossRef]
- Guo, L.; Harnedy, P.A.; O’Keeffe, M.B.; Zhang, L.; Li, B.; Hou, H.; FitzGerald, R.J. Fractionation and identification of Alaska pollock skin collagen-derived mineral chelating peptides. Food Chem. 2015, 173, 536–542. [Google Scholar] [CrossRef]
- Cui, P.; Lin, S.; Han, W.; Jiang, P.; Zhu, B.; Sun, N. The formation mechanism of a sea cucumber ovum derived heptapeptide–calcium nanocomposite and its digestion/absorption behavior. Food Funct. 2019, 10, 8240–8249. [Google Scholar] [CrossRef]
- Cui, P.; Lin, S.; Han, W.; Jiang, P.; Zhu, B.-W.; Sun, N. Calcium Delivery System Assembled by a Nanostructured Peptide Derived from the Sea Cucumber Ovum. J. Agric. Food Chem. 2019, 67, 12283–12292. [Google Scholar] [CrossRef]
No. | Peptide Sequence | Molecular Weight (Da) |
---|---|---|
1 | FAGDD | 523.19 |
2 | NFGPKG | 618.31 |
3 | GFGFVTF | 773.37 |
4 | FAGDDAPR | 847.38 |
5 | SYELPDGQV | 1006.46 |
6 | ADLIAYLKK | 1033.62 |
7 | ALESPERPF | 1044.52 |
8 | FLFDKPVSPL | 1161.64 |
9 | KLDKENAIDRA | 1271.68 |
10 | SLGTADVHFERK | 1358.69 |
11 | RGDLGIEIPAEKV | 1395.77 |
12 | GDLGIEIPAEKV | 1395.77 |
13 | KLEEAEKAADESE | 1447.67 |
14 | VEPEILPDGDHDL | 1447.68 |
15 | ARFEELNADLFR | 1479.75 |
16 | FVGGIKEDTEEHH | 1496.69 |
17 | HLEINPDHPIVET | 1512.76 |
18 | NDLFENTNHTQVQ | 1558.7 |
19 | DGFIDKEDLHDML | 1562.69 |
20 | HQGVMVGMGQKDSY | 1567.68 |
21 | VEPEILPDGDHDLK | 1575.78 |
22 | VGGIKEDTEEHHLR | 1618.81 |
23 | VVSSIEQKTEGAEKK | 1631.87 |
24 | KLEEAEKAADESERG | 1660.79 |
25 | QKLEEAEKAADESE | 1731.83 |
26 | DVSNADRLGFSEVELV | 1748.86 |
27 | EKNPLPSKETIEQEK | 1768.92 |
28 | GIITNWDDMEKIWH | 1772.82 |
29 | DIFEANDLFENTNHT | 1778.77 |
30 | IQLVEEELDRAQERL | 1839.97 |
31 | KLEEAEKAADESER | 1844.91 |
32 | QLIDDHFLFDKPVSPL | 1882.98 |
33 | RIQLVEEELDRAQER | 1882.99 |
34 | WIDNPTVDDRGVGQAAIR | 1982 |
35 | DIFEANDLFENTNHTQV | 2005.9 |
36 | DIFEANDLFENTNHTQVQ | 2133.96 |
37 | AVAGNISDPGLQKSFLDSGYR | 2194.1 |
38 | DDHDPVDKIVLQKYHTINGH | 2343.16 |
39 | GFGFVTFDDHDPVDKIVLQKY | 2439.21 |
Room Temperature | 85 °C 10 s | |
---|---|---|
Calcium-binding capacity (%) | 65.25 ± 2.73 a | 41.19 ± 3.48 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, Z.; Zhang, P.; Sun, N.; Lin, S. Elucidating the Calcium-Binding Site, Absorption Activities, and Thermal Stability of Egg White Peptide–Calcium Chelate. Foods 2021, 10, 2565. https://doi.org/10.3390/foods10112565
Bao Z, Zhang P, Sun N, Lin S. Elucidating the Calcium-Binding Site, Absorption Activities, and Thermal Stability of Egg White Peptide–Calcium Chelate. Foods. 2021; 10(11):2565. https://doi.org/10.3390/foods10112565
Chicago/Turabian StyleBao, Zhijie, Penglin Zhang, Na Sun, and Songyi Lin. 2021. "Elucidating the Calcium-Binding Site, Absorption Activities, and Thermal Stability of Egg White Peptide–Calcium Chelate" Foods 10, no. 11: 2565. https://doi.org/10.3390/foods10112565
APA StyleBao, Z., Zhang, P., Sun, N., & Lin, S. (2021). Elucidating the Calcium-Binding Site, Absorption Activities, and Thermal Stability of Egg White Peptide–Calcium Chelate. Foods, 10(11), 2565. https://doi.org/10.3390/foods10112565