Natural Products Self-Assembled Nanozyme for Cascade Detection of Glucose and Bacterial Viability in Food
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instrument
2.2. Synthesis of GOx@GA-Fe (ii)
2.3. GOx@GA-Fe (ii) Activity Assay
2.4. Enzymatic Kinetic Analysis
2.5. Detection of Glucose
2.6. Measurement of Microbial Levels
2.6.1. The Concentration of Sample
2.6.2. The Detection of Bacterial Viability
3. Results and Discussion
3.1. Structural and Morphological Studies of Nanostructured Materials
3.2. Optimization of Conditions
3.3. Investigation of Catalytic Activity of the Nanozyme GOx@GA-Fe (ii)
3.4. The Kinetic Curve and Selectivity of GOx@GA-Fe (ii)
3.5. Real Sample Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, F.; Chen, X.; Chen, L.; Yang, J.; Wang, Q. High-performance non-enzymatic glucose sensor by hierarchical flower-like nickel (II)-based MOF/carbon nanotubes composite. Mater. Sci. Eng. C 2019, 96, 41–50. [Google Scholar] [CrossRef]
- Nseir, W.; Nassar, F.; Assy, N. Soft drinks consumption and nonalcoholic fatty liver disease. World J. Gastroenterol. WJG 2010, 16, 2579. [Google Scholar] [CrossRef]
- International Diabetes Federation. IDF Diabetes Atlas, 8th ed.; International Diabetes Federation: Brussels, Belgium, 2017; pp. 905–911. [Google Scholar]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose sensing for diabetes monitoring: Recent developments. Sensors 2017, 17, 1866. [Google Scholar] [CrossRef] [Green Version]
- Batule, B.S.; Park, K.S.; Gautam, S.; Cheon, H.J.; Kim, M.I.; Park, H.G. Intrinsic peroxidase-like activity of sonochemically synthesized protein copper nanoflowers and its application for the sensitive detection of glucose. Sens. Actuators B Chem. 2019, 283, 749–754. [Google Scholar] [CrossRef]
- World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Ren, R.; Cai, G.; Yu, Z.; Zeng, Y.; Tang, D. Metal-polydopamine framework: An innovative signal-generation tag for colorimetric immunoassay. Anal. Chem. 2018, 90, 11099–11105. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Xu, M.; Hou, L.; Chen, G.; Tang, D. Magnetic bead-based reverse colorimetric immunoassay strategy for sensing biomolecules. Anal. Chem. 2013, 85, 6945–6952. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Jiao, L.; Yan, H.; Wu, Y.; Chen, L.; Gu, W.; Du, D.; Lin, Y.; Zhu, C. Glucose oxidase-integrated metal–organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl. Mater. Interfaces 2019, 11, 22096–22101. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, W.; Lei, L.; Bai, J.; Li, J.; Song, D.; Zhao, J.; Li, J.; Li, Y. One-step cascade detection of glucose at neutral pH based on oxidase-integrated copper (ii) metal–organic framework composites. New J. Chem. 2020, 44, 12741–12747. [Google Scholar] [CrossRef]
- Song, Y.; Wei, W.; Qu, X. Colorimetric biosensing using smart materials. Adv. Mater. 2011, 23, 4215–4236. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lian, X.; Fang, Y.; Zhou, H.-C. Applications of immobilized bio-catalyst in metal-organic frameworks. Catalysts 2018, 8, 166. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.; Xia, H.; Huang, W.; Li, Z.; Jiang, Y. Biomimetic metal-organic frameworks mediated hybrid multi-enzyme mimic for tandem catalysis. Chem. Eng. J. 2020, 381, 122758. [Google Scholar] [CrossRef]
- Sun, Z.; Duan, X.; Gnanasekarc, P.; Yan, N.; Shi, J. Cascade reactions for conversion of carbohydrates using heteropoly-acids as the solid catalysts. Biomass Convers. Biorefin. 2020, 1–19. [Google Scholar] [CrossRef]
- Hou, L.; Gao, Z.; Xu, M.; Cao, X.; Wu, X.; Chen, G.; Tang, D. DNAzyme-functionalized gold–palladium hybrid nanostructures for triple signal amplification of impedimetric immunosensor. Biosens. Bioelectron. 2014, 54, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, L.; Wang, Y.; Sun, J.; Yue, T.; Zhang, W.; Wang, J. One-pot bottom-up fabrication of a 2D/2D heterojuncted nanozyme towards optimized peroxidase-like activity for sulfide ions sensing. Sens. Actuators B Chem. 2020, 306, 127565. [Google Scholar] [CrossRef]
- Cheng, X.; Zheng, Z.; Zhou, X.; Kuang, Q. Metal–Organic Framework as a Compartmentalized Integrated Nanozyme Reactor to Enable High-Performance Cascade Reactions for Glucose Detection. ACS Sustain. Chem. Eng. 2020, 8, 17783–17790. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Huang, L.; Zhang, Z.; Dong, S. GOx@ ZIF-8 (NiPd) nanoflower: An artificial enzyme system for tandem catalysis. Angew. Chem. 2017, 129, 16298–16301. [Google Scholar] [CrossRef]
- He, Y.; Li, X.; Xu, X.; Pan, J.; Niu, X. A cobalt-based polyoxometalate nanozyme with high peroxidase-mimicking activity at neutral pH for one-pot colorimetric analysis of glucose. J. Mater. Chem. B 2018, 6, 5750–5755. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Jiang, S.; Yuan, Q.; Li, G.; Wang, F.; Zhang, Z.; Liu, J. Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: Improved stability and an enzyme cascade for glucose detection. Nanoscale 2016, 8, 6071–6078. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tsitkov, S.; Hess, H. Proximity does not contribute to activity enhancement in the glucose oxidase–horseradish peroxidase cascade. Nat. Commun. 2016, 7, 13982. [Google Scholar] [CrossRef]
- Wu, K.; Zhao, X.; Chen, M.; Zhang, H.; Liu, Z.; Zhang, X.; Zhu, X.; Liu, Q. Synthesis of well-dispersed Fe3O4 nanoparticles loaded on montmorillonite and sensitive colorimetric detection of H2O2 based on its peroxidase-like activity. New J. Chem. 2018, 42, 9578–9587. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, K.; Li, H.; Chen, W.; Fu, M.; Yue, K.; Zhu, X.; Liu, Q. Glutathione detection based on peroxidase-like activity of Co3O4–Montmorillonite nanocomposites. Sens. Actuators B Chem. 2018, 273, 1635–1639. [Google Scholar] [CrossRef]
- Liu, J.; Bai, L.; Li, W.; Han, H.; Fu, P.; Ma, X.; Bi, Z.; Yang, X.; Zhang, X.; Zhen, S.; et al. Trends of foodborne diseases in China: Lessons from laboratory-based surveillance since 2011. Front. Med. 2018, 12, 48–57. [Google Scholar] [CrossRef]
- Darabdhara, G.; Bordoloi, J.; Manna, P.; Das, M.R. Biocompatible bimetallic Au-Ni doped graphitic carbon nitride sheets: A novel peroxidase-mimicking artificial enzyme for rapid and highly sensitive colorimetric detection of glucose. Sens. Actuators B Chem. 2019, 285, 277–290. [Google Scholar] [CrossRef]
- Sun, J.; Huang, J.; Warden, A.R.; Ding, X. Real-time detection of foodborne bacterial viability using a colorimetric bienzyme system in food and drinking water. Food Chem. 2020, 320, 126581. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Dong, Z.; Chen, M.; Chao, Y.; Liu, Z.; Feng, L.; Hao, Y.; Dong, Z.; Chen, M.; Chao, Y. Near-infrared light and glucose dual-responsive cascading hydroxyl radical generation for in situ gelation and effective breast cancer treatment. Biomaterials 2020, 228, 119568. [Google Scholar] [CrossRef]
- Dong, Z.; Feng, L.; Chao, Y.; Hao, Y.; Chen, M.; Gong, F.; Han, X.; Zhang, R.; Cheng, L.; Liu, Z. Amplification of tumor oxidative stresses with liposomal fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Lett. 2018, 19, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Bankar, S.B.; Bule, M.V.; Singhal, R.S.; Ananthanarayan, L. Glucose oxidase—An overview. Biotechnol. Adv. 2009, 27, 489–501. [Google Scholar] [CrossRef]
- Singh, V.; Singh, D. Glucose Oxidase Immobilization on Guar Gum–Gelatin Dual-Templated Silica Hybrid Xerogel. Ind. Eng. Chem. Res. 2014, 53, 3854–3860. [Google Scholar] [CrossRef]
- Nery, E.W.; Kubota, L.T. Evaluation of enzyme immobilization methods for paper-based devices—A glucose oxidase study. J. Pharm. Biomed. Anal. 2016, 117, 551–559. [Google Scholar] [CrossRef]
- Singh, J.; Verma, N. Glucose oxidase from Aspergillus niger: Production, characterization and immobilization for glucose oxidation. Adv. Appl. Sci. Res. 2013, 4, 250–257. [Google Scholar]
- Eisele, T.A.; Drake, S.R. The partial compositional characteristics of apple juice from 175 apple varieties. J. Food Compos. Anal. 2005, 18, 213–221. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Wang, X.; Kang, Y.; Sun, H.; Liang, Y.; Liu, J.; Su, Z.; Dan, J.; Luo, L.; Yue, T.; et al. Natural Products Self-Assembled Nanozyme for Cascade Detection of Glucose and Bacterial Viability in Food. Foods 2021, 10, 2596. https://doi.org/10.3390/foods10112596
Zhang Q, Wang X, Kang Y, Sun H, Liang Y, Liu J, Su Z, Dan J, Luo L, Yue T, et al. Natural Products Self-Assembled Nanozyme for Cascade Detection of Glucose and Bacterial Viability in Food. Foods. 2021; 10(11):2596. https://doi.org/10.3390/foods10112596
Chicago/Turabian StyleZhang, Qiuping, Xinze Wang, Yi Kang, Hao Sun, Yanmin Liang, Jie Liu, Zehui Su, Jie Dan, Linpin Luo, Tianli Yue, and et al. 2021. "Natural Products Self-Assembled Nanozyme for Cascade Detection of Glucose and Bacterial Viability in Food" Foods 10, no. 11: 2596. https://doi.org/10.3390/foods10112596
APA StyleZhang, Q., Wang, X., Kang, Y., Sun, H., Liang, Y., Liu, J., Su, Z., Dan, J., Luo, L., Yue, T., Wang, J., & Zhang, W. (2021). Natural Products Self-Assembled Nanozyme for Cascade Detection of Glucose and Bacterial Viability in Food. Foods, 10(11), 2596. https://doi.org/10.3390/foods10112596