Aptamer-Based Fluorescent Biosensor for the Rapid and Sensitive Detection of Allergens in Food Matrices
Abstract
:1. Introduction
2. Classification of Food Allergens
2.1. Common Allergens in Animal Food
2.1.1. Seafood
2.1.2. Milk
2.1.3. Egg
2.2. Common Allergens in Plant Food
2.2.1. Peanut
2.2.2. Wheat
2.2.3. Soybean
2.2.4. Nuts
3. Application of Aptamer-Based Fluorescence Biosensors in the Detection of Different Food Allergens
3.1. Nucleic Acid Aptamer Screening Procedure
3.2. Aptamer-Target Interaction Mechanisms
3.3. Detection of Animal Food Allergens
3.4. Detection of Plant Food Allergens
4. Conclusions and Prospective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sathe, S.K.; Liu, C.Q.; Zaffran, V.D. Food allergy. Annu. Rev. Food Sci. Technol. 2016, 7, 191–220. [Google Scholar] [CrossRef]
- Carter, C.A.; Frischmeyer-Guerrerio, P.A. The genetics of food allergy. Curr. Allergy Asthm. Rep. 2018, 18, 2. [Google Scholar] [CrossRef] [PubMed]
- Anvari, S.; Miller, J.; Yeh, C.Y.; Davis, C.M. IgE-Mediated food allergy. Clin. Rev. Allergy Immunol. 2019, 57, 244–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.R.; Qi, Q.Q.; Wang, C.; Qian, Y.F.; Liu, G.M.; Wang, Y.B.; Fu, L.L. Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens. Bioelectron. 2019, 142, 111449. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Cox, A.; Nowak-Wegrzyn, A.; Wang, J.L. Diagnosis of food allergy. Immunol. Allergy Clin. 2018, 38, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Quake, C.; Nadeau, K.C. The role of epigenetic mediation and the future of food allergy research. Semin. Cell. Dev. Biol. 2015, 43, 125–130. [Google Scholar] [CrossRef]
- He, S.F.; Li, X.; Wu, Y.; Wu, S.D.; Wu, Z.H.; Yang, A.S.; Tong, P.; Yuan, J.L.; Gao, J.Y.; Chen, H.B. A novel sandwich enzyme-linked immunosorbent assay with covalently bound monoclonal antibody and gold probe for sensitive and rapid detection of bovine beta-lactoglobulin. Anal. Bionanl. Chem. 2018, 410, 3693–3703. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Park, S.B.; Kang, H.B.; Lee, K.M.; Kim, H.Y. Development of ultrafast PCR for rapid detection of buckwheat allergen DNA (fag e 1) in processed foods. Food Control 2021, 130, 108334. [Google Scholar] [CrossRef]
- Xiong, W.L.; Parker, C.H.; Boo, C.C.; Fiedler, K.L. Comparison of allergen quantification strategies for egg, milk, and peanut in food using targeted LC-MS/MS. Anal. Bioanal. Chem. 2021, 413, 5755–5766. [Google Scholar] [CrossRef]
- Yu, Z.W.; Wang, Y.Q.; Li, Z.X.; Pramod, S.N.; Zhang, L.J.; Lin, H. Development of ELISA method for detecting crustacean major allergen tropomyosin in processed food samples. Food Anal. Method. 2019, 12, 2719–2729. [Google Scholar] [CrossRef]
- Liu, C.Q.; Zaffran, V.D.; Gupta, S.; Roux, K.H.; Sathe, S.K. Pecan (Carya illinoinensis) detection using a monoclonal antibody-based direct sandwich enzyme-linked immunosorbent assay. LWT-Food Sci. Technol. 2019, 116, 108516. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, H.I.; Kim, J.H.; Suh, S.M.; Kim, H.Y. Rapid on-site detection of shrimp allergen tropomyosin using a novel ultrafast PCR system. Food Sci. Biotechnol. 2019, 28, 591–597. [Google Scholar] [CrossRef]
- Linacero, R.; Sanchiz, A.; Ballesteros, I.; Cuadrado, C. Application of real-time PCR for tree nut allergen detection in processed foods. Crit. Rev. Food Sci. 2020, 60, 1077–1093. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, E.; Pilolli, R.; Monaci, L. Coupling SPE on-line pre-enrichment with HPLC and MS/MS for the sensitive detection of multiple allergens in wine. Food Control 2017, 73, 814–820. [Google Scholar] [CrossRef]
- Gezer, R.G.; Liu, G.L.; Kokini, J.L. Development of a biodegradable. sensor platform from gold coated zein nanophotonic films to detect peanut allergen, Ara h1, using surface enhanced raman spectroscopy. Talanta 2016, 150, 224–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, G.K.; Barfidokht, A.; Tehrani, F.; Mishra, R.K. Food safety analysis using electrochemical biosensors. Foods 2018, 7, 141. [Google Scholar] [CrossRef] [Green Version]
- Bragazzi, N.L.; Amicizia, D.; Panatto, D.; Tramalloni, D.; Valle, I.; Gasparini, R. Quartz-crystal microbalance (QCM) for public health: An overview of its applications. Adv. Protein Chem. Str. 2015, 101, 149–211. [Google Scholar]
- Xia, X.H.; He, Q.; Dong, Y.; Deng, R.J.; Li, J.H. Aptamer-based homogeneous analysis for food control. Curr. Anal. Chem. 2020, 16, 4–13. [Google Scholar] [CrossRef]
- Abbaspour, A.; Norouz-Sarvestani, F.; Noon, A.; Soltani, N. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosens. Bioelectron. 2015, 68, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Zhang, J.; Yao, L.; Xue, F.; Lu, J.F.; Li, B.G.; Chen, W. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food. Food Chem. 2018, 260, 208–212. [Google Scholar] [CrossRef]
- Song, S.H.; Gao, Z.F.; Guo, X.; Chen, G.H. Aptamer-based detection methodology studies in food safety. Food Anal. Methods 2019, 12, 966–990. [Google Scholar] [CrossRef]
- Liu, L.S.; Lu, X.L.; Zhao, Y.X. Aptamer-based strategies for cancer diagnosis and therapy. J. Nanosci. Nanotechnol. 2016, 16, 6611–6621. [Google Scholar] [CrossRef]
- Gray, B.P.; Kelly, L.; Ahrens, D.P.; Barry, A.P.; Kratschmer, C.; Levy, M.; Sullenger, B.A. Tunable cytotoxic aptamer-drug conjugates for the treatment of prostate cancer. Proc. Natl. Acad. Sci. USA 2018, 115, 4761–4766. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Zhang, J.; Lin, Y.; Wang, Q.; Zhang, X.X.; Ding, Y.H.; Cui, H.F.; Fan, H. An electrochemical molecular recognition-based aptasensor for multiple protein detection. Anal. Biochem. 2015, 491, 31–36. [Google Scholar] [CrossRef]
- Markova, L.V.; Myshkin, N.K.; Makarenko, V.M. Fluorescence method for quick transformer oil monitoring. Chem. Technol. Fuels Oils 2016, 52, 194–202. [Google Scholar] [CrossRef]
- Zienkiewicz, K.; Alche, J.D.; Zienkiewicz, A.; Tormo, A.; Castro, A.J. Identification of olive pollen allergens using a fluorescence-based 2D multiplex method. Electrophoresis 2015, 36, 1043–1050. [Google Scholar] [CrossRef]
- Wang, T.; Zeng, L.H.; Li, D.L. A review on the methods for correcting the fluorescence inner-filter effect of fluorescence spectrum. Appl. Spectrosc. Rev. 2017, 52, 883–908. [Google Scholar] [CrossRef]
- Fu, L.L.; Qian, Y.F.; Zhou, J.R.; Zheng, L.; Wang, Y.B. Fluorescence-based quantitative platform for ultrasensitive food allergen detection: From immunoassays to DNA sensors. Compr. Rev. Food Sci. Saf. 2020, 19, 3343–3364. [Google Scholar] [CrossRef]
- Zhang, G.X.; Liu, Y.L.; Yang, M.; Huang, W.S.; Xu, J.H. An aptamer-based, fluorescent and radionuclide dual-modality probe. Biochimie 2020, 171, 55–62. [Google Scholar] [CrossRef]
- Ma, P.F.; Guo, H.L.; Duan, N.; Ma, X.Y.; Yue, L.; Gu, Q.H.; Wang, Z.P. Label free structure-switching fluorescence polarization detection of chloramphenicol with truncated aptamer. Talanta 2021, 230, 122349. [Google Scholar] [CrossRef] [PubMed]
- Alhadrami, H.A.; Chinnappan, R.; Eissa, S.; Rahamn, A.A.; Zourob, M. High affinity truncated DNA aptamers for the development of fluorescence based progesterone biosensors. Anal. Biochem. 2017, 525, 78–84. [Google Scholar] [CrossRef]
- Liu, Y.X.; Zhao, Q. Direct fluorescence anisotropy assay for cocaine using tetramethylrhodamine-labeled aptamer. Anal. Bioanal. Chem. 2017, 409, 3993–4000. [Google Scholar] [CrossRef]
- Dijkema, D.; Emons, J.A.M.; Van de Ven, A.A.J.M.; Elberink, J.O. Fish allergy: Fishing for novel diagnostic and therapeutic options. Clin. Rev. Allergy Immunol. 2020. [Google Scholar] [CrossRef]
- Wai, C.Y.Y.; Leung, N.Y.H.; Leung, P.S.C.; Chu, K.H. Modulating shrimp tropomyosin-mediated allergy: Hypoallergen DNA vaccines induce regulatory T cells to reduce hypersensitivity in mouse model. Int. J. Mol. Sci. 2019, 20, 4656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, P.; Yu, H.Q.; Li, M.; Xiao, X.J.; Jiang, C.L.; Mo, L.H.; Zhang, M.; Yang, P.C.; Liu, Z.G. Characterization of arginine kinase, anovel allergen of dermatophagoides farinae (Der f 20). Am. J. Transl. Res. 2015, 7, 2815–2823. [Google Scholar] [PubMed]
- Wasik, M.; Nazimek, K.; Nowak, B.; Askenase, P.W.; Bryniarski, K. Delayed-type hypersensitivity underlying casein allergy is suppressed by extracellular vesicles carrying miRNA-150. Nutrients 2019, 11, 907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cong, Y.J.; Zhou, S.Y.; Li, L.F. Identification of the critical amino acid residues of immunoglobulin E and immunoglobulin G epitopes in alpha-lactalbumin by alanine scanning analysis. J. Food Sci. 2016, 81, T2597–T2603. [Google Scholar]
- Surucu, O.; Abaci, S. Electrochemical determination of beta-lactoglobulin in whey proteins. J. Food Meas. Charact. 2020, 14, 11–19. [Google Scholar] [CrossRef]
- Suprun, M.; Getts, R.; Grishina, G.; Suarez-Farinas, M.; Sampson, H.A. Epitope-specific antibody binding on major hen’s egg-white allergen, ovomucoid, using novel multiplex immunoassay. Allergy 2019, 74, 256–257. [Google Scholar]
- Bermingham, M.; Filep, S.; Reid-Black, K.; Thorpe, C.; Wuenschmann, S.; Chapman, M.; Hindley, J. Two-site immunoassays for the quantification of major egg allergens ovomucoid (Gal D 1) and ovalbumin (Gal D 2). Allergy 2019, 74, 438. [Google Scholar]
- Hwang, H.S.; Kim, B.S.; Park, H.; Park, H.Y.; Choi, H.D.; Kim, H.H. Type and branched pattern of N-glycans and their structural effect on the chicken egg allergen ovotransferrin: A comparison with ovomucoid. Glycoconj. J. 2014, 31, 41–50. [Google Scholar] [CrossRef]
- Tan, L.; Chong, K.W.; Goh, S.H. Lysozyme and mucolytics—The hidden allergen. Singap. Med. J. 2020, 61, 497. [Google Scholar] [CrossRef]
- Ramesh, M.; Yuenyongviwat, A.; Konstantinou, G.N.; Lieberman, J.; Pascal, M.; Masilamani, M.; Sampson, H.A. Peanut T-cell epitope discovery: Ara h 1. J. Allergy Clin. Immunol. 2016, 137, 1764–1771. [Google Scholar] [CrossRef] [Green Version]
- Shroba, J.; Barnes, C.; Nanda, M.; Dinakar, C.; Ciaccio, C. Ara h2 levels in dust from homes of individuals with peanut allergy and individuals with peanut tolerance. Allergy Asthma Proc. 2017, 38, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Varshney, R.K.; Sudini, H.K.; Pandey, M.K. An improved enzyme-linked immunosorbent assay (ELISA) based protocol using seeds for detection of five major peanut allergens Ara h 1, Ara h 2, Ara h 3, Ara h 6, and Ara h 8. Front. Nutr. 2019, 6, 68. [Google Scholar] [CrossRef] [PubMed]
- Gomes, R.; Loureiro, C.; Pita, C.; Todo-Bom, A. Tri a 19 and wheat exercised-dependent urticaria. Allergy 2015, 70, 605–606. [Google Scholar]
- Schmidt, M.A.; Hymowitz, T.; Herman, E.M. Breeding and characterization of soybean Triple Null; a stack of recessive alleles of Kunitz Trypsin Inhibitor, Soybean Agglutinin, and P34 allergen nulls. Plant Breed. 2015, 134, 310–315. [Google Scholar] [CrossRef]
- Geng, T.; Stojsin, D.; Liu, K.; Schaalje, B.; Postin, C.; Ward, J.; Wang, Y.C.; Liu, Z.L.; Li, B.; Glenn, K. Natural variability of allergen levels in conventional soybeans: Assessing variation across north and south america from five production years. J. Agric. Food Chem. 2017, 65, 463–472. [Google Scholar] [CrossRef]
- Archila, L.D.; Chow, I.T.; McGinty, J.W.; Renand, A.; Jeong, D.; Robinson, D.; Farrington, M.L.; Kwok, W.W. Ana o 1 and Ana o 2 cashew allergens share cross-reactive CD4(+) T cell epitopes with other tree nuts. Clin. Exp. Allergy 2016, 46, 871–883. [Google Scholar] [CrossRef] [Green Version]
- Schein, C.; Teuber, S.S.; Cheng, H.; Grimm, C.C.; Maleki, S.J. Antibodies to the physiochemical-consensus sequence of Jug r 2 containing glutamine-rich repeats bind allergens in peanuts and other tree nuts. J. Allergy Clin. Immunol. 2013, 131, AB21. [Google Scholar] [CrossRef]
- Iwan, M.; Vissers, Y.M.; Fiedorowicz, E.; Kostyra, H.; Kostyra, E.; Savelkoul, H.F.J.; Wichers, H.J. Impact of maillard reaction on immunoreactivity and allergenicity of the hazelnut allergen Cor a 11. J. Agric. Food Chem. 2011, 59, 7163–7171. [Google Scholar] [CrossRef]
- Mattison, C.P.; Grimm, C.C.; Li, Y.C.; Chial, H.J.; McCaslin, D.R.; Chung, S.Y.; Bren-Mattison, Y.; Wasserman, R.L. Identification and characterization of Ana o 3 modifications on arginine-111 residue in heated cashew nuts. J. Agric. Food Chem. 2017, 65, 411–420. [Google Scholar] [CrossRef]
- Sato, S.; Yamamoto, M.; Yanagida, N.; Ito, K.; Ohya, Y.; Imai, T.; Nagao, M.; Borres, M.P.; Moverare, R.; Ebisawa, M. Jug r 1 sensitization is important in walnut-allergic children and youth. J. Aller. Clin. Immunol. Pract. 2017, 5, 1784–1786. [Google Scholar] [CrossRef] [PubMed]
- Blankestijn, M.A.; Jager, C.F.D.; Blom, W.M.; Otten, H.G.; de Jong, G.A.H.; Gaspari, M.; Houben, G.F.; Knulst, A.C.; Verhoeckx, K.C.M. A subset of walnut allergic adults is sensitized to walnut 11S globulin Jug r 4. Clin. Exp. Allergy 2018, 48, 1206–1213. [Google Scholar] [CrossRef] [Green Version]
- Masthoff, L.J.N.; Mattsson, L.; Zuidmeer-Jongejan, L.; Lidholm, J.; Andersson, K.; Akkerdaas, J.H.; Versteeg, S.A.; Garino, C.; Meijer, Y.; Kentie, P.; et al. Sensitization to Cor a 9 and Cor a 14 is highly specific for a hazelnut allergy with objective symptoms in Dutch children and adults. J. Allergy Clin. Immunol. 2013, 132, 393–399. [Google Scholar] [CrossRef]
- Kabasser, S.; Hafner, C.; Chinthrajah, S.; Sindher, S.B.; Kumar, D.; Kost, L.E.; Long, A.J.; Nadeau, K.C.; Breiteneder, H.; Bublin, M. Identification of Pru du 6 as a potential marker allergen for almond allergy. Allergy 2021, 76, 1463–1472. [Google Scholar] [CrossRef]
- Fu, L.L.; Wang, C.; Zhu, Y.; Wang, Y.B. Seafood allergy: Occurrence, mechanisms and measures. Trends Food Sci. Technol. 2019, 88, 80–92. [Google Scholar] [CrossRef]
- Carrera, M.; Pazos, M.; Gasset, M. Proteomics-based methodologies for the detection and quantification of seafood allergens. Foods 2020, 9, 1134. [Google Scholar] [CrossRef] [PubMed]
- Prester, L. Seafood allergy, toxicity, and intolerance: A review. J. Am. Coll. Nutr. 2016, 35, 271–283. [Google Scholar] [CrossRef]
- Lee, H.L.; Tang, M.M.; Bakhtiar, M.F.; Yadzir, Z.H.M.; Johar, A. Sensitization to local seafood allergens in adult patients with atopic dermatitis in malaysia. Int. Arch. Allergy Immunol. 2021, 182, 153–157. [Google Scholar] [CrossRef]
- Li, J.L.; Wang, H.F.; Cheng, J.H. DNA, protein and aptamer-based methods for seafood allergens detection: Principles, comparisons and updated applications. Crit. Rev. Food Sci. 2021. [Google Scholar] [CrossRef]
- Sicherer, S.H.; Sampson, H.A. Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment. J. Allergy Clin. Immunol. 2014, 133, 291–307. [Google Scholar] [CrossRef]
- Khora, S.S. Seafood-associated shellfish allergy: A comprehensive review. Immunol. Investig. 2016, 45, 504–530. [Google Scholar] [CrossRef]
- Davis, C.M.; Gupta, R.S.; Aktas, O.N.; Diaz, V.; Kamath, S.D.; Lopata, A.L. Clinical management of seafood allergy. J. Aller. Clin. Immunol. Pract. 2020, 8, 37–44. [Google Scholar] [CrossRef]
- Ruethers, T.; Taki, A.C.; Johnston, E.B.; Nugraha, R.; Le, T.T.K.; Kalic, T.; McLean, T.R.; Kamath, S.D.; Lopata, A.L. Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol. Immunol. 2018, 100, 28–57. [Google Scholar] [CrossRef] [PubMed]
- Saptarshi, S.R.; Sharp, M.F.; Kamath, S.D.; Lopata, A.L. Antibody reactivity to the major fish allergen parvalbumin is determined by isoforms and impact of thermal processing. Food Chem. 2014, 148, 321–328. [Google Scholar] [CrossRef]
- Zhang, X.P.; Li, Y.R.; Tao, Y.; Wang, Y.; Xu, C.H.; Lu, Y. A novel method based on infrared spectroscopic inception-resnet networks for the detection of the major fish allergen parvalbumin. Food Chem. 2021, 337, 127986. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, A.; Morisset, M.; Hilger, C. Fish allergens beyond beta-parvalbumin. Rev. Francaise Allergol. 2016, 56, 260–261. [Google Scholar] [CrossRef]
- Gamboa, P.M.; Bartolome, B.; Lirio, E.G.; Cuesta-Herranz, J.; Pastor-Vargas, C. Aldolase a new crustacea allergen. Ann. Allergy Asthma Immunol. 2018, 121, 246–247. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.L.; Wan, Q.; Gao, A.J.; Jiang, C.L.; Liu, Y.L.; Liu, Z.G.; Yang, P.C.; Liu, X.Y. Characterization of a novel allergen Der f 25, homologous to triose-phosphate isomerase, from dermatophagoides farinae. Int. J. Clin. Exp. Med. 2016, 9, 10829–10837. [Google Scholar]
- Wu, C.C.; Lee, C.H.; Tyan, Y.C.; Huang, E.S.; Yu, W.T.; Yu, H.S. Identification of pyruvate kinase 2 as a possible crab allergen and analysis of allergenic proteins in crabs consumed in Taiwan. Food Chem. 2019, 289, 413–418. [Google Scholar] [CrossRef]
- Faber, M.A.; Pascal, M.; El Kharbouchi, O.; Sabato, V.; Hagendorens, M.M.; Decuyper, I.I.; Bridts, C.H.; Ebo, D.G. Shellfish allergens: Tropomyosin and beyond. Allergy 2017, 72, 842–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nugraha, R.; Kamath, S.D.; Johnston, E.; Karnaneedi, S.; Ruethers, T.; Lopata, A.L. Conservation analysis of B-cell allergen epitopes to predict clinical cross-reactivity between shellfish and inhalant invertebrate illergens. Front. Immunol. 2019, 10, 2676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fei, D.X.; Liu, Q.M.; Chen, F.; Yang, Y.; Chen, Z.W.; Cao, M.J.; Liu, G.M. Assessment of the sensitizing capacity and allergenicity of enzymatic cross-linked arginine kinase, the crab allergen. Mol. Nutr. Food Res. 2016, 60, 1707–1718. [Google Scholar] [CrossRef]
- Francis, F.; Doyen, V.; Debaugnies, F.; Mazzucchelli, G.; Caparros, R.; Alabi, T.; Blecker, C.; Haubruge, E.; Corazza, F. Limited cross reactivity among arginine kinase allergens from mealworm and cricket edible insects. Food Chem. 2019, 276, 714–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, J.Y.; Gao, Q.C.; Xiao, X.J.; Cao, H.; Yuan, R.Y.; Liu, Z.G.; Chen, T.Q. T cell epitope of arginine kinase with CpG co-encapsulated nanoparticles attenuates a shrimp allergen-induced Th2-bias food allergy. Biosci. Biotechnol. Biochem. 2019, 84, 804–814. [Google Scholar]
- Han, T.J.; Liu, M.; Huan, F.; Li, M.S.; Xia, F.; Chen, Y.Y.; Chen, G.X.; Cao, M.J.; Liu, G.M. Identification and cross-reactivity analysis of sarcoplasmic-calcium-binding protein: A novel allergen in crassostrea angulata. J. Agric. Food Chem. 2020, 68, 5221–5231. [Google Scholar] [CrossRef]
- Li, M.S.; Xia, F.; Liu, M.; He, X.R.; Chen, Y.Y.; Bai, T.L.; Chen, G.X.; Wang, L.; Cao, M.J.; Liu, G.M. Cloning, Expression, and epitope identification of myosin light chain 1: An allergen in mud crab. J. Agric. Food Chem. 2019, 67, 10458–10469. [Google Scholar] [CrossRef]
- Yu, C.; Gao, X.; Lin, H.; Lin, H.; Zhang, Z.Y.; Khan, M.U.; Li, Y.H.; Chen, Y.; Li, Z.X. Identification and amino acid analysis of allergenic epitopes of a novel allergen paramyosin (Rap v 2) from rapana venosa. J. Agric. Food Chem. 2021, 69, 5381–5391. [Google Scholar] [CrossRef]
- Villa, C.; Costa, J.; Oliveira, M.B.P.P.; Mafra, I. Bovine milk allergens: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 137–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastor-Vargas, C.; Maroto, A.S.; Diaz-Perales, A.; Villaba, M.; Diaz, N.C.; Vivanco, F.; Cuesta-Herranz, J. Sensitive detection of major food allergens in breast milk: First gateway for allergenic contact during breastfeeding. Allergy 2015, 70, 1024–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nehra, M.; Lettieri, M.; Dilbaghi, N.; Kumar, S.; Marrazza, G. Nano-biosensing platforms for detection of cow’s milk allergens: An overview. Sensors 2020, 20, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, G.; Ray, A.K.; Singh, P.K.; Pal, H. An exceptionally intense turn-on fluorescence sensor in the far-red region for common milk allergen, beta-lactoglobulin. Sensor Actuators B Chem. 2021, 327, 128864. [Google Scholar] [CrossRef]
- Ashley, J.; Shukor, Y.; D’Aurelio, R.; Trinh, L.; Rodgers, T.L.; Temblay, J.; Pleasants, M.; Tothill, I.E. Synthesis of molecularly imprinted polymer nanoparticles for alpha-casein detection using surface plasmon resonance as a milk allergen sensor. ACS Sensors 2018, 3, 418–424. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, B.; Yang, C.T.; Downs, M.L. Parallel reaction monitoring mass spectrometry method for detection of both casein and whey milk allergens from a baked food matrix. J. Proteome Res. 2020, 19, 2964–2976. [Google Scholar] [CrossRef]
- Xu, N.F.; Wang, Y.J.; Pan, L.; Wei, X.L.; Wang, Y.F. Dual-labelled immunoassay with goldmag nanoparticles and quantum dots for quantification of casein in milk. Food Agric. Immunol. 2017, 28, 1105–1115. [Google Scholar] [CrossRef] [Green Version]
- Ricciardi, C.; Santoro, K.; Stassi, S.; Lamberti, C.; Giuffrida, M.G.; Arlorio, M.; Decastelli, L. Microcantilever resonator arrays for immunodetection of beta-lactoglobulin milk allergen. Sensor. Actuators B Chem. 2018, 254, 613–617. [Google Scholar] [CrossRef]
- Yang, A.S.; Zheng, Y.C.; Long, C.Y.; Chen, H.B.; Liu, B.; Li, X.; Yuan, J.L.; Cheng, F.F. Fluorescent immunosorbent assay for the detection of alpha-lactalbumin in dairy products with monoclonal antibody bioconjugated with CdSe/ZnS quantum dots. Food Chem. 2014, 150, 73–79. [Google Scholar] [CrossRef]
- Montiel, V.R.V.; Campuzano, S.; Torrente-Rodriguez, R.M.; Reviejo, A.J.; Pingarron, J.M. Electrochemical magnetic beads-based immunosensing platform for the determination of alpha-lactalbumin in milk. Food Chem. 2016, 213, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Varlamova, E.G.; Zaripov, O.G. Beta-lactoglobulin-nutrition allergen and nanotransporter of different nature ligands therapy with therapeutic action. Res. Vet. Sci. 2020, 133, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.W.; Joshi, P. Egg allergy: An update. J. Paediatr. Child Health 2014, 50, 11–15. [Google Scholar] [CrossRef]
- Dona, D.W.; Suphioglu, C. Egg allergy: Diagnosis and immunotherapy. Int. J. Mol. Sci. 2020, 21, 5010. [Google Scholar] [CrossRef]
- Sogawa, K.; Takahashi, Y.; Shibata, Y.; Satoh, M.; Kodera, Y.; Nomura, F.; Tanaka, T.; Sato, H.; Yamaide, F.; Nakano, T.; et al. Search for a novel allergen in hen’s egg allergy using an IgE immunoblotting assay. Int. Arch. Allergy Immunol. 2018, 176, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Yanagida, N.; Sato, S.; Takahashi, K.; Asaumi, T.; Nagakura, K.; Ogura, K.; Takamatsu, N.; Ebisawa, M. Safe egg yolk consumption after a negative result for low-dose egg oral food challenge. Pediatric Allerg. Immunol.-UK 2021, 32, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Dhanapala, P.; Withanage-Dona, D.; Tang, M.L.K.; Doran, T.; Suphioglu, C. Hypoallergenic variant of the major egg white allergen gal d 1 produced by disruption of cysteine bridges. Nutrients 2017, 9, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dang, T.D.; Peters, R.L.; Koplin, J.J.; Dharmage, S.C.; Gurrin, L.C.; Ponsonby, A.L.; Martino, D.J.; Neeland, M.; Tang, M.L.K.; Allen, K.J. Egg allergen specific IgE diversity predicts resolution of egg allergy in the population cohort HealthNuts. Allergy 2019, 74, 318–326. [Google Scholar] [CrossRef]
- Pablos-Tanarro, A.; Lozano-Ojalvo, D.; Molina, E.; Lopez-Fandino, R. Assessment of the allergenic potential of the main egg white proteins in BALB/c mice. J. Agric. Food Chem. 2018, 66, 2970–2976. [Google Scholar] [CrossRef]
- Benede, S.; Lopez-Fandino, R.; Reche, M.; Molina, E.; Lopez-Exposito, I. Influence of the carbohydrate moieties on the immunoreactivity and digestibility of the egg allergen ovomucoid. PLoS ONE 2013, 8, e80810. [Google Scholar] [CrossRef]
- Kido, J.; Matsumoto, T. Attenuated allergenic activity of ovomucoid after electrolysis. Allergy Asthma Immunol. 2015, 7, 599–604. [Google Scholar] [CrossRef]
- Lin, Y.T.; Wu, C.T.; Huang, J.L.; Cheng, J.H.; Yeh, K.W. Correlation of ovalbumin of egg white components with allergic diseases in children. J. Microbiol. Immunol. 2016, 49, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Dantas, M.D.D.; Tenorio, H.D.; Lopes, T.I.B.; Pereira, H.J.V.; Marsaioli, A.J.; Figueiredo, I.M.; Santos, J.C.C. Interactions of tetracyclines with ovalbumin, the main allergen protein from egg white: Spectroscopic and electrophoretic studies. Int. J. Biol. Macromol. 2017, 102, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Mukae, T.; Yoshii, K.; Watanobe, T.; Tagami, T.; Oishi, I. Production and characterization of eggs from hens with ovomucoid gene mutation. Poult. Sci. 2021, 100, 452–460. [Google Scholar] [CrossRef]
- Tong, P.; Gao, L.; Gao, J.Y.; Li, X.; Wu, Z.H.; Yang, A.S.; Chen, H.B. Iron-induced chelation alleviates the potential allergenicity of ovotransferrin in a BALB/c mouse model. Nutr. Res. 2017, 47, 81–89. [Google Scholar] [CrossRef]
- Tong, P.; Gao, J.Y.; Chen, H.B.; Li, X.; Zhang, Y.; Jian, S. Preparation and immunological reactions of a purified egg allergen ovotransferrin. Int. J. Food Prop. 2014, 17, 293–308. [Google Scholar] [CrossRef]
- Chen, L.P.; Xia, N.; Li, T.T.; Bai, Y.H.; Chen, X.L. Aptasensor for visual and fluorometric determination of lysozyme based on the inner filter effect of gold nanoparticles on CdTe quantum dots. Microchim. Acta 2016, 183, 2917–2923. [Google Scholar] [CrossRef]
- Boushell, V.; Pang, S.; He, L.L. Aptamer-based SERS detection of lysozyme on a food-handling surface. J. Food Sci. 2017, 82, 225–231. [Google Scholar] [CrossRef]
- Pi, X.W.; Wan, Y.; Yang, Y.L.; Li, R.Y.; Wu, X.J.; Xie, M.Y.; Li, X.; Fu, G.M. Research progress in peanut allergens and their allergenicity reduction. Trends Food Sci. Technol. 2019, 93, 212–220. [Google Scholar] [CrossRef]
- Palladino, C.; Breiteneder, H. Peanut allergens. Mol. Immunol. 2018, 100, 58–70. [Google Scholar] [CrossRef]
- Bublin, M.; Breiteneder, H. Cross-reactivity of peanut allergens. Curr. Allergy Asthm. Rep. 2014, 14, 426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filep, S.; Block, D.S.; Smith, B.R.E.; King, E.M.; Commins, S.; Kulis, M.; Vickery, B.P.; Chapman, M.D. Specific allergen profiles of peanut foods and diagnostic or therapeutic allergenic products. J. Allergy Clin. Immunol. 2018, 141, 626–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.H.; Zhou, N.L.; Xiong, F.Q.; Li, X.; Yang, A.S.; Tong, P.; Tang, R.H.; Chen, H.B. Allergen composition analysis and allergenicity assessment of Chinese peanut cultivars. Food Chem. 2016, 196, 459–465. [Google Scholar] [CrossRef]
- Guillon, B.; Bernard, H.; Drumare, M.F. Heat processing of peanut seed enhances the sensitization potential of the major peanut allergen Ara h 6. Mol. Nutr. Food Res. 2016, 60, 2722–2735. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.Y.; Fang, T.J.; Li, Y.T.; Fung, Y.F.; Tsai, W.C.; Dai, H.Y.; Wen, H.W. Rapidly detecting major peanut allergen-Ara h2 in edible oils using a new immunomagnetic nanoparticle-based lateral flow assay. Food Chem. 2019, 271, 505–515. [Google Scholar] [CrossRef]
- Ramesh, M.; Masilamani, M.; Konstantinou, G.N.; Lieberman, J.A.; Sampson, H.A.; Sivakumar, M.; Yuenyongviwat, A.; Pascal, M. Peanut T cell epitope discovery: Ara h1 and Ara h3. J. Allergy Clin. Immunol. 2014, 133, AB233. [Google Scholar] [CrossRef]
- Zhao, L.P.; Zhao, L.; Zhang, B.C.; Robotham, J.M.; Roux, K.H.; Tang, H.L. Identification of a common Ara h 3 epitope recognized by both the capture and the detection monoclonal antibodies in an ELISA detection kit. PLoS ONE 2017, 12, e0182935. [Google Scholar] [CrossRef] [PubMed]
- Keser, M.; Gummadov, N.; Akin, B.; Belen, S.; Mert, Z.; Taner, S.; Topal, A.; Yazar, S.; Morgounov, A.; Sharma, R.C.; et al. Genetic gains in wheat in Turkey: Winter wheat for dryland conditions. Crop J. 2017, 5, 533–540. [Google Scholar] [CrossRef]
- Pequeno, D.N.L.; Hernandez-Ochoa, I.M.; Reynolds, M.; Sonder, K.; MoleroMilan, A.; Robertson, R.D.; Lopes, M.S.; Xiong, W.; Kropff, M.; Asseng, S. Climate impact and adaptation to heat and drought stress of regional and global wheat production. Environ. Res. Lett. 2021, 16, 054070. [Google Scholar] [CrossRef]
- Brouns, F.R.; van Rooy, G.; Shewry, P.; Rustgi, S.; Jonkers, D. Adverse reactions to wheat or wheat components. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1437–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wassmann, A.; Schafer, C. Wheat allergy: A challenging diagnosis for physicians and nutritionists. Allergologie 2014, 37, 466–475. [Google Scholar]
- Baatjies, R.; Meijster, T.; Heederik, D.; Jeebhay, M.F. Exposure-response relationships for inhalant wheat allergen exposure and asthma. Occup. Environ. Med. 2015, 72, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Muntean, I.A.; Bocsan, I.C.; Deleanu, D. Oral Immunotherapy to wheat in allergic asthmatic female: A case report. Iran. J. Allergy Asthm. 2018, 17, 291–294. [Google Scholar]
- Takemoto, K.; Asano, M.; Takahashi, K. Identification and and characterization of the major allergens in whole wheat norin 61. J. Jpn. Soc. Food. Sci. 2015, 62, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Pacharn, P.; Kumjim, S.; Tattiyapong, P.; Jirapongsananuruk, O.; Piboonpocanun, S. Identification of wheat sensitization using an in-house wheat extract On Coca-10% alcohol solution children with wheat anaphylaxis. Asian Pac. J. Allergy 2016, 34, 153–158. [Google Scholar]
- Hofer, G.; Wieser, S.; Bogdos, M.K.; Gattinger, P.; Nakamura, R.; Ebisawa, M.; Makela, M.; Papadopoulos, N.; Valenta, R.; Keller, W. Three-dimensional structure of the wheat-amylase Tri a 17, a clinically relevant food allergen. Allergy 2019, 74, 1009–1013. [Google Scholar] [CrossRef]
- Basaj, A.; Kennard, L.; Mirakian, R.; Wagner, A. Patients sensitised to the wheat lipid transfer protein Tri a 14 do not cross-react with omega-5 gliadin. Clin. Exp. Allergy 2019, 49, 1689. [Google Scholar]
- Baar, A.; Pahr, S.; Constantin, C.; Giavi, S.; Manoussaki, A.; Papadopoulos, N.G.; Ebner, C.; Mari, A.; Vrtala, S.; Valenta, R. Specific IgE reactivity to Tri a 36 in children with wheat food allergy. J. Allergy Clin. Immunol. 2014, 133, 585–587. [Google Scholar] [CrossRef]
- Matsuo, A.; Matsushita, K.; Fukuzumi, A.; Tokumasu, N.; Yano, E.; Zaima, N.; Moriyama, T. Comparison of various soybean allergen levels in genetically and non-genetically modified soybeans. Foods 2020, 9, 522. [Google Scholar] [CrossRef] [Green Version]
- Yoshimitsu, M.; Kiyota, K.; Kajimura, K.; Yamano, T. Development of an LC-MS/MS-based analytical method for quantification of soybean allergen Gly m 4 in soybean grains and processed foods. Food Agric. Immunol. 2019, 30, 25–33. [Google Scholar] [CrossRef]
- Murakami, H.; Ogawa, T.; Takafuta, A.; Yano, E.; Zaima, N.; Moriyama, T. Identification of the 7S and 11S globulins as percutaneously sensitizing soybean allergens as demonstrated through epidermal application of crude soybean extract. Biosci. Biotechnol. Biochem. 2018, 82, 1408–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhunia, R.K.; Chakraborty, A.; Kaur, R.; Gayatri, T.; Bhattacharyya, J.; Basu, A.; Maiti, M.K.; Sen, S.K. Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops. Plant Mol. Biol. 2014, 86, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Ueberham, E.; Spiegel, H.; Havenith, H.; Rautenberger, P.; Lidzba, N.; Schillberg, S.; Lehmann, J. Simplified tracking of a soy allergen in processed food using a monoclonal antibody-based sandwich ELISA targeting the soybean 2S albumin Gly m 8. J. Agric. Food Chem. 2019, 67, 8660–8667. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Qu, Y.Z.; Li, J.T.; Liu, X.Q.; Wu, R.N.; Wu, J.R. Improvement of the protein quality and degradation of allergens in soybean meal by combination fermentation and enzymatic hydrolysis. LWT-Food Sci. Technol. 2020, 128, 109442. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, X.D.; Teng, S.; Fan, Q.J.; Qian, H. Label-free biochips for rapid detection of soybean allergen GlymBd 30K (P34) in foods. Trop. J. Pharm. Res. 2017, 16, 755–760. [Google Scholar] [CrossRef] [Green Version]
- Xi, J.; Shi, Q.Q. Development of an indirect competitive ELISA kit for the detection of soybean allergenic protein Gly m Bd 28K. Food Anal. Methods 2016, 9, 2998–3005. [Google Scholar] [CrossRef]
- Xi, J.; He, M.X. Location of destroyed antigenic sites of Gly m Bd 60 K after three processing technologies. Food Res. Int. 2020, 134, 109199. [Google Scholar] [CrossRef]
- Yilmaz, C.; Tas, N.G.; Kocadagli, T.; Gokmen, V. Determination of serotonin in nuts and nut containing products by liquid chromatography tandem mass spectrometry. Food Chem. 2019, 272, 347–353. [Google Scholar] [CrossRef]
- Hummel, M.; Wigger, T.; Hoper, T.; Westkamp, I.; Brockmeyer, J. Simple, rapid, and selective isolation of 2S albumins from allergenic seeds and nuts. J. Agric. Food Chem. 2015, 63, 6035–6040. [Google Scholar] [CrossRef]
- Dreskin, S.C.; Koppelman, S.J.; Andorf, S.; Nadeau, K.C.; Kalra, A.; Braun, W.; Negi, S.S.; Chen, X.N.; Schein, C.H. The importance of the 2S albumins for allergenicity and cross-reactivity of peanuts, tree nuts, and sesame seeds. J. Allergy Clin. Immunol. 2021, 147, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Reitsma, M.; Bastiaan-Net, S.; Sforza, S.; van der Valk, J.P.M.; van Wijk, R.V.; Savelkoul, H.F.J.; de Jong, N.W.; Wichers, H.J. Purification and characterization of anacardium occidentale (cashew) allergens Ana o 1, Ana o 2, and Ana o 3. J. Agric. Food Chem. 2016, 64, 1191–1201. [Google Scholar] [CrossRef]
- Chen, L.; Rashid, F.; Shah, A.; Awan, H.M.; Wu, M.M.; Liu, A.; Wang, J.; Zhu, T.; Luo, Z.F.; Shan, G. The isolation of an RNA aptamer targeting to p53 protein with single amino acid mutation. Proc. Natl. Acad. Sci. USA 2015, 112, 10002–10007. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.P.; Yang, G.; Zhang, X.M.; Qu, F. Development of apatmer screening against proteins and its applications. Chin. J. Anal. Chem. 2020, 48, 560–572. [Google Scholar] [CrossRef]
- Kohlberger, M.; Gadermaier, G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol. Appl. Biochem. 2021. [Google Scholar] [CrossRef]
- Daems, E.; Moro, G.; Campos, R.; De Wael, K. Mapping the gaps in chemical analysis for the characterisation of aptamer-target interactions. TrAC-Trends Anal. Chem. 2021, 142, 116311. [Google Scholar] [CrossRef]
- Entzian, C.; Schubert, T. Studying small molecule-aptamer interactions using MicroScale Thermophoresis (MST). Methods 2016, 97, 27–34. [Google Scholar] [CrossRef]
- Drabik, A.; Ner-Kluza, J.; Mielczarek, P.; Civit, L.; Mayer, G.; Silberring, J. Advances in the study of aptamer-protein target identification using the chromatographic approach. J. Proteome Res. 2018, 17, 2174–2181. [Google Scholar] [CrossRef] [PubMed]
- Arib, C.; Liu, Q.Q.; Djaker, N.; Fu, W.L.; de la Chapelle, M.L.; Spadavecchia, J. Influence of the aptamer grafting on its conformation and its interaction with targeted protein. Plasmonics 2019, 14, 1029–1038. [Google Scholar] [CrossRef]
- Zhou, C.; Xin, L.; Duan, X.Y.; Urban, M.J.; Liu, N. Dynamic plasmonic system that responds to thermal and aptamer-target regulations. Nano Lett. 2018, 18, 7395–7399. [Google Scholar] [CrossRef]
- Szameit, K.; Berg, K.; Kruspe, S.; Valentini, E.; Magbanua, E.; Kwiatkowski, M.; de Beauchene, I.C.; Krichel, B.; Schamoni, K.; Uetrecht, C.; et al. Structure and target interaction of a G-quadruplex RNA-aptamer. RNA Biol. 2016, 13, 973–987. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Tao, J.F.; Feng, W.; Uppal, J.S.; Peng, H.Y.; Le, X.C. Aptamer binding assays and molecular interaction studies using fluorescence anisotropy—A review. Anal. Chim. Acta 2020, 1125, 267–278. [Google Scholar] [CrossRef]
- Soh, J.H.; Lin, Y.Y.; Rana, S.; Ying, J.Y.; Stevens, M.M. Colorimetric detection of small molecules in complex matrixes via target-mediated growth of aptamer-functionalized gold nanoparticles. Anal. Chem. 2015, 87, 7644–7652. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.J.; Bai, X.; Gao, F.; Lu, C.C.; Wang, Y.; Zhai, G.J.; Tian, S.S.; Fan, E.G.; Zhang, Y.K.; Zhang, K. DNA-templated aptamer probe for identification of target proteins. Anal. Chem. 2017, 89, 4071–4076. [Google Scholar] [CrossRef]
- Ilgu, M.; Yan, S.T.; Khounlo, R.M.; Lamm, M.H.; Nilsen-Hamilton, M. Common secondary and tertiary structural features of aptamer-ligand interaction shared by RNA aptamers with different primary sequences. Molecules 2019, 24, 4535. [Google Scholar] [CrossRef] [Green Version]
- Tong, W.S.; Yuen, A.W.T.; Wai, C.Y.Y.; Leung, N.Y.H.; Chu, K.H.; Leung, P.S.C. Diagnosis of fish and shellfish allergies. J. Asthma Allergy. 2018, 11, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.X.; Wu, Q.P.; Sun, M.; Zhang, J.M.; Mo, S.P.; Wang, J.; Wei, X.H.; Bai, J.L. Magnetic-assisted aptamer-based fluorescent assay for allergen detection in food matrix. Sensor. Actuators B-Chem. 2018, 263, 43–49. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Wu, Q.P.; Wei, X.H.; Zhang, J.M.; Mo, S.P. DNA aptamer for use in a fluorescent assay for the shrimp allergen tropomyosin. Microchim. Acta 2017, 184, 633–639. [Google Scholar] [CrossRef]
- Chinnappan, R.; Rahamn, A.A.; AlZabn, R.; Kamath, S.; Lopata, A.L.; Abu-Salah, K.M.; Khalid, M.; Zourob, M. Aptameric biosensor for the sensitive detection of major shrimp allergen, Tropomyosin. Food Chem. 2020, 314, 126133. [Google Scholar] [CrossRef]
- Shokoufi, N.; Heshi, S.V. Enhancmentation of photo-thermal lens of fluorescence molecules by fluorescence resonance energy transfer mechanism. J. Fluoresc. 2021, 31, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.R.; Ai, R.; Weng, J.J.; Li, L.F.; Zhou, C.S.; Ma, A.J.; Fu, L.L.; Wang, Y.B. A “on-off-on” fluorescence aptasensor using carbon quantum dots and graphene oxide for ultrasensitive detection of the major shellfish allergen arginine kinase. Microchem. J. 2020, 158, 105171. [Google Scholar] [CrossRef]
- Wang, Y.B.; Li, H.; Zhou, J.R.; Qi, Q.Q.; Fu, L.L. A colorimetric and fluorescent gold nanoparticle-based dual-mode aptasensor for parvalbumin detection. Microchem. J. 2020, 159, 105413. [Google Scholar] [CrossRef]
- Shi, Y.P.; Pan, Y.; Zhang, H.; Zhang, Z.M.; Li, M.J.; Yi, C.Q.; Yang, M.S. A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma. Biosens. Bioelectron. 2014, 56, 39–45. [Google Scholar] [CrossRef]
- Liu, T.; Li, N.; Dong, J.X.; Zhang, Y.; Fan, Y.Z.; Lin, S.M.; Luo, H.Q.; Li, N.B. A colorimetric and fluorometric dual-signal sensor for arginine detection by inhibiting the growth of gold nanoparticles/carbon quantum dots composite. Biosens. Bioelectron. 2017, 87, 772–778. [Google Scholar] [CrossRef] [PubMed]
- Phadke, C.; Tada, S.; Kono, I.; Hiyama, A.; Takase, Y.; Gayama, S.; Aigaki, T.; Ito, Y.; Uzawa, T. Instantaneous detection of alpha(s)-casein in cow’s milk using fluorogenic peptide aptamers. Anal. Methods-UK 2020, 12, 1368–1373. [Google Scholar] [CrossRef]
- Lozano-Ojalvo, D.; Perez-Rodriguez, L.; Pablos-Tanarro, A.; Lopez-Fandino, R.; Molina, E. Pepsin treatment of whey proteins under high pressure produces hypoallergenic hydrolysates. Innov. Food Sci. Emerg. 2017, 43, 154–162. [Google Scholar] [CrossRef]
- Shi, M.L.; Cen, Y.; Sohail, M.; Xu, G.H.; Wei, F.D.; Ma, Y.S.; Xu, X.M.; Ma, Y.J.; Song, Y.Y.; Hu, Q. Aptamer based fluorometric beta-lactoglobulin assay based on the use of magnetic nanoparticles and carbon dots. Microchim. Acta 2018, 185, 40. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Duan, N.; Sun, Y.H.; Zhou, Y.; Ma, P.F.; Wu, S.J.; Wang, Z.P. High-affinity aptamer of allergen beta-lactoglobulin: Selection, recognition mechanism and application. Sensor Actuators B-Chem. 2021, 340, 129956. [Google Scholar] [CrossRef]
- Panahipour, L.; Tabatabaei, A.A.; Gruber, R. Hypoallergenic infant formula lacks transforming growth factor beta activity and has a lower anti-inflammatory activity than regular infant formula. J. Dairy Sci. 2020, 103, 6771–6781. [Google Scholar] [CrossRef]
- Wu, J.; Hou, Y.; Wang, P.Y.; Wang, Z.N.; Li, Y.J.; Wang, S.; Yang, M. Detection of lysozyme with aptasensor based on fluorescence resonance energy transfer from carbon dots to graphene oxide. Luminescence 2016, 31, 1207–1212. [Google Scholar] [CrossRef]
- Sapkota, K.; Dhakal, S. FRET-based aptasensor for the selective and sensitive detection of lysozyme. Sensors 2020, 20, 914. [Google Scholar] [CrossRef] [Green Version]
- Li, X.L.; Yu, Z.S. Determination of selenium in biological samples with an energy -dispersive X-ray fluorescence spectrometer. Appl. Radiat. Isot. 2016, 111, 45–49. [Google Scholar] [CrossRef]
- Ou, X.Y.; Chen, Y.Y.; Xie, L.L.; Chen, J.; Zan, J.; Chen, X.F.; Hong, Z.Z.; He, Y.; Li, J.; Yang, H.H. X-ray nanocrystal scintillator-based aptasensor for autofluorescence-free detection. Anal. Chem. 2019, 19, 10149–10155. [Google Scholar] [CrossRef]
- Jimenez-Lopez, J.C.; Foley, R.C.; Brear, E.; Clarke, V.C.; Lima-Cabello, E.; Florido, J.F.; Singh, K.B.; Alche, J.D.; Smith, P.M.C. Characterization of narrow-leaf lupin (Lupinus angustifolius L.) recombinant major allergen IgE-binding proteins and the natural beta-conglutin counterparts in sweet lupin seed species. Food Chem. 2018, 244, 60–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villa, C.; Costa, J.; Mafra, I. Lupine allergens: Clinical relevance, molecular characterization, cross-reactivity, and detection strategies. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3886–3915. [Google Scholar] [CrossRef] [PubMed]
- Mairal, T.; Nadal, P.; Svobodova, M.; O’Sullivan, C.K. FRET-based dimeric aptamer probe for selective and sensitive Lup an 1 allergen detection. Biosens. Bioelectron. 2014, 54, 207–210. [Google Scholar] [CrossRef] [PubMed]
- O’ Sullivan, C.K.; Mairal, T.; Jauset-Rubio, M.; Svobodova, M.; Skouridou, V.; Esposito, V.; Virgilio, A.; Galeone, A. Aptamers Against the beta-conglutin allergen: Insights into the behavior of the shortest multimeric(Intra)molecular DNA G-Quadruplex. Int. J. Mol. Sci. 2021, 22, 1150. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.; Neethirajan, S. A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosens. Bioelectron. 2016, 85, 649–656. [Google Scholar] [CrossRef]
Food | Major Allergens | Molecular Mass (kDa) | Types of Proteins | The Structure of Proteins | Allergy Symptoms | Reference |
---|---|---|---|---|---|---|
Fish | Pan h 1 | 10–13 | Calbindin | Contains 3 EF-hand regions (a motif composed of a 12-residue loop with a 12-residue-α-helix domain on each side), 2 of which can bind calcium. | Blushing, hives, nausea, stomach pain, and intestinal bleeding. | [33] |
Shellfish | Cra c 1 | 33–39 | Protein bound to actin | Adopting an α-helix structure, two molecules are entangled with each other to form a parallel dimeric α-helix structure. | Nausea, diarrhea, abdominal pain, and muscle paralysis. | [34] |
Cra c 2 | 38–45 | Phosphoglycoprotein | Arginine kinase consists of an N-terminal domain (1–111) and a C-terminal domain (112–357). The N-terminal domain is all α-helices, and the C-terminal domain is an 8-strand anti-parallel β-sheet structure surrounded by 7 α-helices. | [35] | ||
Milk | Bos d 8 | 57–37.5 | Phosphate calcium binding protein | Consists of 4 independent proteins: αs1-casein, αs2-casein, β-casein, and κ-casein. | Skin rash, urticaria, eczema, vomiting, diarrhea, abdominal cramps, etc. | [36] |
Bos d 4 | 14.4 | Combine with metal ions and participate in lactose synthesis | With a two-piece structure containing α-single loop and 310 helix larger subdomain. | [37] | ||
Bos d 5 | 18 | Lipid transporter | Consists of two subunits connected by non-covalent bonds, mainly in the form of dimers. | [38] | ||
Egg | Gal d1 | 28 | Phosphoglycoprotein | Contains 3 independent homologous structural energy domains, and 3 functional domains are arranged consecutively in space. | Eczema, dermatitis, urticaria, vomiting, diarrhea, gastroesophageal reflux, etc. | [39] |
Gal d2 | 45 | Phosphoglycoprotein | Containing 4 free sulfhydryl groups, composed of 385 amino acid residues, these amino acid residues are twisted and folded to form a spherical structure with high secondary structure, most of which are α-helix and β-sheet. | [40] | ||
Gal d3 | 77 | Iron-binding glycoprotein | Consisting of 686 amino acids, including 12 disulfide bonds, the N-terminal and C-terminal 2 domains each contain a binding site for Fe3+. | [41] | ||
Gal d4 | 14.3 | Basic globulin | A single peptide chain composed of 18 kinds of 129 amino acid residues, with 4 pairs of disulfide bonds to maintain the enzyme configuration, with lysine at the N-terminus and leucine at the C-terminus. | [42] | ||
Peanut | Ara h 1 | 63.5 | 7S Globulin | The secondary structure contains β-turns, and the quaternary structure is a trimeric complex formed by 3 monomers. | Angioedema, hypotension, asthma, anaphylactic shock, etc. | [43] |
Ara h 2 | 17–20 | 2S Albumin | A monomeric protein. | [44] | ||
Ara h 3 | 57 | 11S Globulin | The N-terminal and C-terminal domains of the monomer form contain 2 ciupin folds (composed of two sets of parallel β-turns, random coils and 3 α-helices). | [45] | ||
Wheat | Tri a 36 | 40 | Gluten | - | Wheat exercise stimulates allergies, urticaria, dermatitis, bread asthma, nausea, and diarrhea. | [46] |
Soybean | Gly m 5 | 150–200 | 7S Globulin | Trimer composed of α’-subunit, α-subunit and β subunit. | Red and itchy skin, asthma and allergic rhinitis, abdominal pain, diarrhea, etc. | [47] |
Gly m 6 | 320–360 | 11S Globulin | A hexamer composed of the interaction of G1, G2, G3, G4, and G5 subunits. | [48] | ||
Nuts | Ana o 1 | 50 | 7S legumin | Exist as a trimer in natural state. | Metallic taste in the mouth, edema of the tongue or throat, difficulty breathing and swallowing, urticaria all over the body, flushing of the skin, cramping abdominal pain, nausea. | [49] |
Jug r 2 | 44 | Consists of 593 amino acid residues. | [50] | |||
Cor a 11 | 48 | Consists of 401 amino acid residues, with two potential N-glycosylation sites (Asn38 and Asn254) and a leader peptide of 46 amino acids. | [51] | |||
Ana o 3 | 14 | 2S albumin | Composed of 5 helical structures, containing 2 subunits, connected by cysteine disulfide bonds. | [52] | ||
Jug r 1 | 15–16 | Consists of 142 amino acid residues. | [53] | |||
Jug r 4 | 58.1 | 11S globulin | Except for the first 23 amino acid residues which are predicted as signal peptides, the remaining part has a total of 507 amino acid residues. | [54] | ||
Cor a 9 | 40 | Composed of 515 amino acid residues, the sequence homology with Ara h 3 is about 45%. | [55] | |||
Pru du 6 | 350 | Exist in the form of hexamers, each monomer subunit is composed of one acid chain of 40 to 42 kDa and one alkaline chain of 20 kDa. | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, L.; Pan, M.; Xie, X.; Liu, K.; Yang, J.; Wang, S.; Wang, S. Aptamer-Based Fluorescent Biosensor for the Rapid and Sensitive Detection of Allergens in Food Matrices. Foods 2021, 10, 2598. https://doi.org/10.3390/foods10112598
Hong L, Pan M, Xie X, Liu K, Yang J, Wang S, Wang S. Aptamer-Based Fluorescent Biosensor for the Rapid and Sensitive Detection of Allergens in Food Matrices. Foods. 2021; 10(11):2598. https://doi.org/10.3390/foods10112598
Chicago/Turabian StyleHong, Liping, Mingfei Pan, Xiaoqian Xie, Kaixin Liu, Jingying Yang, Shan Wang, and Shuo Wang. 2021. "Aptamer-Based Fluorescent Biosensor for the Rapid and Sensitive Detection of Allergens in Food Matrices" Foods 10, no. 11: 2598. https://doi.org/10.3390/foods10112598
APA StyleHong, L., Pan, M., Xie, X., Liu, K., Yang, J., Wang, S., & Wang, S. (2021). Aptamer-Based Fluorescent Biosensor for the Rapid and Sensitive Detection of Allergens in Food Matrices. Foods, 10(11), 2598. https://doi.org/10.3390/foods10112598