Effects of Long-Term Non-Pruning on Main Quality Constituents in ‘Dancong’ Tea (Camellia sinensis) Leaves Based on Proteomics and Metabolomics Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Sample Preparation
2.2. Sensory Evaluation (Organoleptic Experiments)
2.3. Chlorophyll Assays
2.4. Concentration of Tea Polyphenols and Composition of Catechins and Caffeine
2.5. Free Amino Acid Content Analysis
2.6. Analysis of Tea Volatiles
2.7. Protein Extraction, Digestion, Tandem Mass Tag (TMT) Labeling, and Mass Spectrometry
2.8. Sequence Database Search and Data Analysis
2.9. Quantitative Real Time Polymerase Chain Reaction (qRT-PCR) Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Tea Leaves from Unpruned Tea Plants Were Superior in Taste and Flavor and Higher in Total Amino Acid and Chlorophyll Contents
3.2. Analysis of Differentially Expressed Proteins between Leaves from Long-Term Unpruned and Pruned Tea Plants
3.3. Catechin Content Decreased in Fresh Leaves of Long-Term Unpruned Tea Plants, and Most Enzymes Involved in Catechins Biosynthesis Were Downregulated
3.4. Most Free Amino Acids Were More Abundant in Fresh Leaves of Long-Term Unpruned Tea Plants
3.5. Characteristic Floral and Honey Aroma Compounds Accumulated in the Leaves of Unpruned Tea Plants
3.6. Proteins Involved in Chlorophyll Biosynthesis and Light-Dependent Reactions of Photosynthesis Accumulated in Unpruned Tea Plants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANS | Anthocyanidin synthase |
C | Catechin |
DEP | Differentially expressed protein |
DW | Dry weight |
EC | (Epicatechin |
ECG | Epicatechin-3-gallate |
EGC | Epigallocatechin |
EGCG | Epigallocatechin gallate |
F3H | Flavanone 3-hydroxylase |
GA | Gallic acid; |
GC | Gallocatechin; |
GCG | Gallocatechin-3-gallate; |
GC-MS | Gas chromatography–mass spectrometry; |
GO | Gene Ontology; |
GS | L-glutamine synthetase |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
MS | Mass spectrometry |
MS/MS | Tandem mass spectrometry; |
PAL | Phenylalanine ammonia lyase; |
POR | Protochlorophyllide oxidoreductase; |
PSII | Photosystem II |
qRT-PCR | Quantitative real time polymerase chain reaction |
TMT | Tandem mass tag |
UPLC | Ultra-performance liquid chromatography |
References
- Macfarlane, A.; Macfarlane, I. The Empire of Tea: The Remarkable History of the Plant That Took over the World; Overlook Press: New York, NY, USA, 2004. [Google Scholar]
- Mancini, E.; Beglinger, C.; Drewe, J.; Zanchi, D.; Lang, U.E.; Borgwardt, S. Green tea effects on cognition, mood and human brain function: A systematic review. Phytomedicine 2017, 15, 26–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, E.W.C.; Lim, Y.Y.; Wong, L.F.; Lianto, F.S.; Wong, S.K.; Lim, K.K.; Joe, C.E.; Lim, T.Y. Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species. Food Chem. 2008, 109, 477–483. [Google Scholar] [CrossRef]
- Malenčić, D.; Popović, M.; Miladinović, J. Phenolic content and antioxidant properties of soybean (Glycine max (L.) Merr.) seeds. Molecules 2007, 12, 576. [Google Scholar] [CrossRef]
- Scharbert, S.; Hofmann, T. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. J. Agric. Food Chem. 2005, 53, 5377–5384. [Google Scholar] [CrossRef]
- Wright, L.P.; Mphangwe, N.I.K.; Nyrenda, H.E.; Apostolides, Z. Analysis of caffeine and flavan-3-ol composition in the fresh leaf of Camellia sinensis for predicting the quality of the black tea produced in Central and Southern Africa. J. Sci. Food Agric. 2000, 80, 1823–1830. [Google Scholar] [CrossRef]
- Kim, S.Y.; Ahn, B.H.; Min, K.J.; Lee, Y.H.; Joe, E.H.; Min, D.S. Phospholipase D isozymes mediate epigallocatechin gallate-induced cyclooxygenase-2 expression in astrocyte cells. J. Biol. Chem. 2004, 279, 38125–38133. [Google Scholar] [CrossRef] [Green Version]
- Battestin, V.; Macedo, G.A.; De Freitas, V.A.P. Hydrolysis of epigallocatechin gallate using a tannase from Paecilomyces variotii. Food Chem. 2008, 108, 228–233. [Google Scholar] [CrossRef]
- He, Q.; Yao, K.; Jia, D.Y.; Fan, H.J.; Liao, X.P.; Shi, B. Determination of total catechins in tea extracts by HPLC and spectrophotometry. Nat. Prod. Res. 2009, 23, 93–100. [Google Scholar] [CrossRef]
- Scharbert, S.; Holzmann, N.; Hofmann, T. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. J. Agric. Food Chem. 2004, 52, 3498–3508. [Google Scholar] [CrossRef]
- Xu, W.P.; Song, Q.S.; Li, D.X.; Wan, X.C. Discrimination of the production season of Chinese green tea by chemical analysis in combination with supervised pattern recognition. J. Agric. Food Chem. 2012, 60, 7064. [Google Scholar] [CrossRef]
- Li, Y.Y.; Ogita, S.; Keya, C.A.; Ashihara, H. Expression of caffeine biosynthesis genes in tea (Camellia sinensis). Z. Naturforsch. C 2008, 63, 267–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.Y.; Zeng, L.T.; Liao, Y.Y.; Li, J.L.; Zhou, B.; Yang, Z.Y. Enzymatic reaction-related protein degradation and proteinaceous amino acid metabolism during the black tea (Camellia sinensis) manufacturing process. Foods 2020, 9, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lea, P.J. Primary Nitrogen Metabolism. Plant Biochemistry; Academic Press: San Diego, CA, USA, 1997; pp. 273–313. [Google Scholar]
- Wei, K.; Wang, L.Y.; Zhou, J.; He, W.; Zeng, J.M.; Jiang, Y.W.; Cheng, H. Catechin contents in tea (Camellia sinensis) as affected by cultivar and environment and their relation to chlorophyll contents. Food Chem. 2011, 125, 44–48. [Google Scholar] [CrossRef]
- Zeng, L.; Watanabe, N.; Yang, Z. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Crit. Rev. Food Sci. 2018, 59, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Arkorful, E.; Yu, Y.; Chen, C.S.; Lu, L.; Hu, S.K.; Yu, H.P.; Ma, Q.P.; Thangaraj, K.; Periakaruppan, R.; Jeyaraj, A.; et al. Untargeted metabolomic analysis using UPLC-MS/MS identifies metabolites involved in shoot growth and development in pruned tea plants (Camellia sinensis (L.) o. kuntz). Sci. Hortic. 2020, 264, 109164. [Google Scholar] [CrossRef]
- Lee, L.S.; Choi, J.H.; Son, N.; Kim, S.H.; Park, J.D.; Jang, D.J.; Jeong, Y.; Kim, H.J. Metabolomic analysis of the effect of shade treatment on the nutritional and sensory qualities of green tea. J. Agric. Food Chem. 2013, 61, 332–338. [Google Scholar] [CrossRef]
- Sun, M.F.; Zhang, C.R.; Lu, M.Q.; Gan, N.; Chen, Z.C.; Deng, W.W.; Zhang, Z.Z. Metabolic flux enhancement and transcriptomic analysis displayed the changes of catechins following long-term pruning in tea trees (Camellia sinensis). J. Agric. Food Chem. 2018, 66, 8566–8573. [Google Scholar] [CrossRef]
- Rubel Mozumder, N.H.M.; Hwan Hwang, K.; Lee, M.S.; Kim, E.H.; Hong, Y.S. Metabolomic understanding of the difference between unpruning and pruning cultivation of tea (Camellia sinensis) plants. Food Res. Int. 2020, 140, 109978. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J. Identification and similarity analysis of aroma substances in main types of Fenghuang Dancong tea. PLoS ONE 2020, 15, e0244224. [Google Scholar] [CrossRef]
- Miao, A.Q.; Wu, X.Y.; Pang, S.; Zhao, C.Y.; Jia, B.J. Changes of aromatic constituents during the processing of Lingtou Dancong oolong tea. Chin. Agric. Sci. Bull. 2006, 22, 330–333. (In Chinese) [Google Scholar]
- Lichtenthaler, H.K.; Wellburn, A.R. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.S.; Li, S.; Tang, Q.; Li, H.X.; Chen, S.X.; Li, P.W.; Xu, J.Y.; Xu, Y.; Guo, X. The dark-purple tea cultivar ‘Ziyan’ accumulates a large amount of delphinidin-related anthocyanins. J. Agric. Food Chem. 2016, 64, 2719–2726. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Fu, X.M.; Mei, X.; Zhou, Y.; Cheng, S.H.; Zeng, L.T.; Dong, F.; Yang, Z.Y. Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves. J. Proteom. 2017, 157, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Kivrak, I.; Kivrak, S.; Harmandar, M. Free amino acid profiling in the giant puffball mushroom (Calvatia gigantea) using UPLC–MS/MS. Food Chem. 2014, 158, 88–92. [Google Scholar] [CrossRef]
- Zeng, L.T.; Wang, X.Q.; Dong, F.; Watanabe, N.; Yang, Z.Y. Increasing postharvest high-temperatures lead to increased volatile phenylpropanoids/benzenoids accumulation in cut rose (Rosa hybrida) flowers. Postharvest Biol. Technol. 2019, 148, 68–75. [Google Scholar] [CrossRef]
- Chu, P.; Yan, G.X.; Yang, Q.; Zhai, L.N.; Zhang, C.; Zhang, F.Q.; Guan, R.Z. ITRAQ-based quantitative proteomics analysis of Brassica napus leaves reveals pathways associated with chlorophyll deficiency. J. Proteom. 2015, 113, 244–259. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.W.; Deng, H.L.; Wu, Q.Y.; Liu, B.B.; Yue, C.; Deng, T.T.; Lai, Z.X.; Sun, Y. Validation of reference genes for gene expression studies in post-harvest leaves of tea plant (Camellia sinensis). PeerJ 2019, 7, e6385. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.Y.; Huang, X.J.; Liu, S.R.; Liu, J.H.; Guo, Y.Q.; Sun, Y.; Lin, J.K.; Guo, Y.L.; Wei, S. Understanding the formation mechanism of oolong tea characteristic non-volatile chemical constitutes during manufacturing processes by using integrated widely-targeted metabolome and DIA proteome analysis. Food Chem. 2020, 310, 125941.1–125941.8. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.C.; Xia, T. Secondary Metabolism of Tea Plant, 1st ed.; Science Press: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Singh, K.; Kumar, S.; Rani, A.; Gulati, A.; Ahuja, P.S. Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Funct. Integr. Genomic. 2009, 9, 125–134. [Google Scholar] [CrossRef]
- Alcázar, A.; Ballesteros, O.; Jurado, J.M.; Pablos, F.; Martín, M.J.; Vilches, J.L.; Navalón, A. Differentiation of green, white, black, oolong, and pu-erh teas according to their free amino acids content. J. Agric. Food Chem. 2007, 55, 5960–5965. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.B.; Ruan, J.Y. Analysis of chemical components in green tea in relation with perceived quality, a case study with Longjing teas. Int. J. Food Sci. Technol. 2009, 44, 913–920. [Google Scholar] [CrossRef]
- Ashihara, H. Occurrence, biosynthesis and metabolism of theanine (gamma-glutamyl-L-ethylamide) in plants: A comprehensive review. Nat. Prod. Commun. 2015, 10, 803–810. [Google Scholar]
- Yu, Z.M.; Yang, Z.Y. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Crit. Rev. Food. Sci. 2019, 60, 844–858. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.H.; Fu, X.M.; Wang, X.Q.; Liao, Y.Y.; Zeng, L.T.; Dong, F.; Yang, Z.Y. Studies on the biochemical formation pathway of the amino acid L-theanine in tea (Camellia sinensis) and other plants. J. Agric. Food Chem. 2017, 65, 7210–7216. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.W.; Ogita, S.; Ashihara, H. Biosynthesis of theanine (g-ethylamino-l-glutamic acid) in seedlings of Camellia sinensis. Phytochem. Lett. 2008, 1, 115–119. [Google Scholar] [CrossRef]
- Zeng, L.T.; Zhou, X.C.; Liao, Y.Y.; Yang, Z.Y. Roles of specialized metabolites in biological function and environmental adaptability of tea plant (Camellia sinensis) as a metabolite studying model. J. Adv. Res. 2020, 1–13. [Google Scholar] [CrossRef]
- Wang, L.F.; Lee, J.Y.; Chung, J.O.; Baik, J.H.; So, S.; Park, S.K. Discrimination of teas with different degrees of fermentation by SPME-GC analysis of the characteristic volatile flavour compounds. Food Chem. 2008, 109, 196–206. [Google Scholar] [CrossRef]
- Zheng, C.H.; Kim, T.H.; Kim, K.H.; Yong, H.L.; Lee, H.J. Characterization of potent aroma compounds in Chrysanthemum coronarium L. (Garland) using aroma extract dilution analysis. Flavour Frag. J. 2010, 19, 401–405. [Google Scholar] [CrossRef]
- Pang, X.L.; Qin, Z.H.; Zhao, L.; Cheng, H.; Hu, X.S.; Song, H.L.; Wu, J.H. Development of regression model to differentiate quality of black tea (Dianhong): Correlate aroma properties with instrumental data using multiple linear regression analysis. Int. J. Food Sci. Technol. 2012, 47, 2372–2379. [Google Scholar] [CrossRef]
- Lv, H.P.; Zhong, Q.S.; Lin, Z.; Wang, L.; Tan, J.F.; Guo, L. Aroma characterisation of Pu-erh tea using headspace-solid phase microextraction combined with GC/MS and GC–olfactometry. Food Chem. 2012, 130, 1074–1081. [Google Scholar] [CrossRef]
- Qin, Z.H.; Pang, X.L.; Chen, D.; Cheng, H.; Hu, X.S.; Wu, J.H. Evaluation of Chinese tea by the electronic nose and gas chromatography-mass spectrometry: Correlation with sensory properties and classification according to grade level. Food Res. Int. 2013, 53, 864–874. [Google Scholar] [CrossRef]
- Tietel, Z.; Plotto, A.; Fallik, E.; Lewinsohn, E.; Porat, R. Taste and aroma of fresh and stored mandarins. J. Sci. Food Agric. 2010, 91, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Magagna, F.; Cordero, C.; Cagliero, C.; Liberto, E.; Rubiolo, P.; Sgorbini, B.; Bicchi, C. Black tea volatiles fingerprinting by comprehensive two-dimensional gas chromatography—Mass spectrometry combined with high concentration capacity sample preparation techniques: Toward a fully automated sensomic assessment. Food Chem. 2017, 225, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Q.; Han, Q.H.; Ding, C.B.; Huang, Y.; Liao, J.Q.; Chen, T.; Feng, S.L.; Zhou, L.J.; Zhang, Z.W.; Chen, Y.E.; et al. Effect of low temperature on chlorophyll biosynthesis and chloroplast biogenesis of rice seedlings during greening. Int. J. Mol. Sci. 2020, 21, 1390. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, A.; Tanaka, R. Chlorophyll metabolism. Curr. Opin. Plant Biol. 2006, 9, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Sugihara, K.; Hanagata, N.; Dubinsky, Z.; Baba, S.; Karube, I. Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell Physiol. 2000, 41, 1279–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Zhang, D.Y.; Guo, J.K.; Wu, H.; Jin, M.F.; Lu, Q.T.; Lu, C.M.; Zhang, L.X. A Psb27 homologue in Arabidopsis thaliana is required for efficient repair of photodamaged photosystem II. Plant Mol. Biol. 2006, 61, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Ifuku, K. The PsbP and PsbQ family proteins in the photosynthetic machinery of chloroplasts. Plant Physiol. Biochem. 2014, 81, 108–114. [Google Scholar] [CrossRef] [Green Version]
Acc. No. a | Protein Name | Gene Name b | %cov c | MW/Pi d | Nup e | Ratio f (Means ± SD) | pg |
---|---|---|---|---|---|---|---|
Catechin metabolism | |||||||
A0A286QXV0 | Phenylalanine ammonia-lyase | PALc | 34.88 | 77.32/6.65 | 7 | −1.28 ± 0.07 | 0.02 |
A0A286QXV1 | Phenylalanine ammonia-lyase | PALb | 28.17 | 76.59/6.14 | 3 | −1.28 ± 0.05 | 0.00 |
P45726 | Phenylalanine ammonia-lyase | PAL | 30.81 | 77.70/6.58 | 9 | −1.22 ± 0.06 | 0.02 |
A0A286QXW9 | Cinnamate-4-hydroxylase | C4Ha | 31.88 | 58.12/9.26 | 5 | −1.20 ± 0.07 | 0.02 |
M4VNY3 | Chalcone synthase | CHS3 | 29.82 | 42.76/6.55 | 5 | −1.20 ± 0.06 | 0.01 |
A0A286QXX8 | Flavanone 3-hydroxylase | F3Hb | 21.35 | 39.95/5.78 | 3 | −1.39 ± 0.10 | 0.02 |
A0A0S2E967 | Anthocyanidin synthase (Fragment) | ANS | 15.91 | 34.80/5.73 | 1 | −1.20 ± 0.05 | 0.02 |
A0A5B9G8C2 | Caffeoyl shikimate esterase | CSE | 6.46 | 36.55/5.54 | 2 | −1.22 ± 0.06 | 0.01 |
Chlorophyll metabolism | |||||||
A0A4S4ED58 | NADPH-protochlorophyllide oxidoreductase | por | 30.33 | 43.53/8.88 | 7 | 1.23 ± 0.03 | 0.00 |
A0A1L5JJ09 | NADPH-protochlorophyllide oxidoreductase | por | 47.29 | 44.18/8.59 | 1 | 1.26 ± 0.14 | 0.02 |
A0A4S4DWI4 | NADPH-protochlorophyllide oxidoreductase | por | 33.63 | 49.46/8.51 | 11 | 1.36 ± 0.06 | 0.01 |
A0A4S4DM53 | cytochrome c oxidase assembly protein subunit 15 | COX15 | 2.96 | 52.29/10.07 | 1 | 1.37 ± 0.04 | 0.05 |
A0A4S4EC13 | heme oxygenase (biliverdin-producing, ferredoxin) [EC:1.14.15.20] | HO | 18.79 | 32.42/8.56 | 5 | 1.49 ± 0.31 | 0.00 |
Photosynthesis | |||||||
G3F4I6 | Oxygen-evolving enhancer protein | psbO | 51.95 | 35.26/7.99 | 8 | 1.21 ± 0.03 | 0.01 |
A0A4S4ES74 | photosystem II oxygen-evolving enhancer protein 1 | psbO | 37.39 | 46.37/4.91 | 9 | 1.30 ± 0.01 | 0.00 |
A0A4V3WK35 | photosystem II oxygen-evolving enhancer protein 3 | psbQ | 42.49 | 24.71/9.72 | 11 | 1.30 ± 0.03 | 0.03 |
A0A4S4DBK0 | photosystem II oxygen-evolving enhancer protein 3 | psbQ | 7.24 | 24.81/9.44 | 2 | 1.23 ± 0.10 | 0.00 |
A0A4V3WQ43 | PsbP domain-containing protein | psbP | 48.69 | 28.53/8.10 | 11 | 1.27 ± 0.03 | 0.00 |
A0A4S4DRK6 | photosystem II Psb27 protein | psb27 | 26.86 | 19.05/9.83 | 5 | 1.41 ± 0.07 | 0.00 |
A0A4S4EUK1 | Plastocyanin | petE | 38.24 | 17.15/5.20 | 3 | 1.23 ± 0.07 | 0.00 |
A0A4S4EQ68 | 2Fe-2S ferredoxin-type domain-containing protein | petF | 31.62 | 14.87/7.20 | 3 | 1.24 ± 0.08 | 0.01 |
A0A4S4DQD2 | F-type H+-transporting ATPase subunit b | ATPF0B | 40.37 | 24.00/6.89 | 10 | 1.44 ± 0.26 | 0.00 |
L0E5W5 | ATP synthase subunit b, chloroplastic | ATPF0B | 42.39 | 20.99/9.04 | 10 | 1.25 ± 0.13 | 0.00 |
A0A4S4F0J0 | F-type H+-transporting ATPase subunit delta | ATPF1D | 35.2 | 26.88/9.19 | 9 | 1.22 ± 0.13 | 0.00 |
Compound Name | Rt (min) | Fresh Tea Leaves (nmol/g DW) | Tea Products (nmol/g DW) | Odour Description | Reference | ||
---|---|---|---|---|---|---|---|
Pruned | Unpruned | Pruned | Unpruned | ||||
trans-beta-Ocimene | 9.29 | 2.62 ± 0.96 | 2.61 ± 1.57 | 0.87 ± 0.32 | 9.76 ± 1.24 | Floral, roasted | [41] |
Methyl salicylate | 26.22 | 57.44 ± 6.18 | 98.75 ± 18.83 | 1.60 ± 0.25 | 7.56 ± 1.17 | Sweet | [42] |
Benzeneacetaldehyde | 22.14 | 12.07 ± 1.58 | 6.10 ± 1.89 | 1.98 ± 0.70 | 5.83 ± 4.28 | Honey-like | [42] |
trans-Linalool oxide (furanoid) | 15.8 | 38.31 ± 9.65 | 40.16 ± 8.42 | 5.13 ± 0.32 | 11.83 ± 5.18 | Sweet, floral, citrus | [43,44] |
Benzyl alcohol | 28.845 | 7.82 ± 0.84 | 7.76 ± 0.54 | 3.77 ± 1.74 | 7.13 ± 1.92 | Rose | [40] |
Jasmine lactone | 38.88 | 4.21 ± 0.24 | 4.27 ± 0.18 | 11.70 ± 1.01 | 19.35 ± 4.45 | Floral | [40] |
trans-Nerolidol | 33.455 | 10.33 ± 1.47 | 10.34 ± 1.33 | 11.25 ± 1.26 | 18.37 ± 1.87 | Floral (rose), apple, green | [40] |
3-Hexen-1-ol, (Z)- | 13.76 | 27.21 ± 8.99 | 146.87 ± 4.42 | 0.25 ± 0.03 | 0.27 ± 0.02 | Grassy | [42] |
alpha-Farnesene | 24.75 | 17.38 ± 3.85 | 34.83 ± 4.67 | 93.56 ± 6.01 | 98.49 ± 12.78 | Sweet, mild | [45] |
cis-Geraniol | 26.84 | 173.95 ± 14.98 | 343.48 ± 87.00 | 11.60 ± 0.64 | 14.03 ± 4.32 | Rose-like | [40] |
3-Hexen-1-ol, acetate, (Z)- | 11.77 | 143.82 ± 20.78 | 228.64 ± 7.36 | - | - | fresh-green odors | |
Acetic acid, 2-phenylethyl ester | 28.775 | 0.33 ± 0.02 | 0.33 ± 0.01 | 0.12 ± 0.01 | 0.14 ± 0.04 | ||
Benzyl nitrile | 30.365 | 3.50 ± 0.47 | 2.67 ± 0.60 | 1.61 ± 0.21 | 1.72 ± 0.70 | ||
3,5-Dimethoxytoluene | 29.745 | 0.35 ± 0.02 | 0.35 ± 0.01 | 0.13 ± 0.01 | 0.13 ± 0.01 | ||
Nerolidol | 32.4 | 1.79 ± 0.10 | 1.76 ± 0.06 | 0.70 ± 0.10 | 0.73 ± 0.14 | Floral (rose), apple, green | [40] |
Linalool | 19.195 | 202.15 ± 24.52 | 197.03 ± 24.56 | 2.85 ± 0.67 | 1.92 ± 0.62 | ||
2-Hexanol | 8.61 | 0.00 ± 0.03 | 0.00 ± 0.02 | 0.00 ± 0.04 | 0.00 ± 0.17 | Fresh-green odors | [46] |
1-Hexanol | 12.76 | 0.00 ± 0.10 | 1.23 ± 0.51 | 0.00 ± 0.06 | - | Fresh-green odors | [46] |
Benzaldehyde | 18.405 | 1.61 ± 1.01 | 0.26 ± 0.34 | - | - | Almond | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhou, B.; Li, J.; Tang, H.; Zeng, L.; Chen, Q.; Cui, Y.; Liu, J.; Tang, J. Effects of Long-Term Non-Pruning on Main Quality Constituents in ‘Dancong’ Tea (Camellia sinensis) Leaves Based on Proteomics and Metabolomics Analysis. Foods 2021, 10, 2649. https://doi.org/10.3390/foods10112649
Chen Y, Zhou B, Li J, Tang H, Zeng L, Chen Q, Cui Y, Liu J, Tang J. Effects of Long-Term Non-Pruning on Main Quality Constituents in ‘Dancong’ Tea (Camellia sinensis) Leaves Based on Proteomics and Metabolomics Analysis. Foods. 2021; 10(11):2649. https://doi.org/10.3390/foods10112649
Chicago/Turabian StyleChen, Yiyong, Bo Zhou, Jianlong Li, Hao Tang, Lanting Zeng, Qin Chen, Yingying Cui, Jiayu Liu, and Jinchi Tang. 2021. "Effects of Long-Term Non-Pruning on Main Quality Constituents in ‘Dancong’ Tea (Camellia sinensis) Leaves Based on Proteomics and Metabolomics Analysis" Foods 10, no. 11: 2649. https://doi.org/10.3390/foods10112649
APA StyleChen, Y., Zhou, B., Li, J., Tang, H., Zeng, L., Chen, Q., Cui, Y., Liu, J., & Tang, J. (2021). Effects of Long-Term Non-Pruning on Main Quality Constituents in ‘Dancong’ Tea (Camellia sinensis) Leaves Based on Proteomics and Metabolomics Analysis. Foods, 10(11), 2649. https://doi.org/10.3390/foods10112649