From Sampling to Analysis: How to Achieve the Best Sample Throughput via Sampling Optimization and Relevant Compound Analysis Using Sum of Ranking Differences Method?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Sampling Design
2.3. Analytical Measurements
2.4. Statistical Analysis
- A golden standard (reference, benchmark) should be defined (mean, median, minimum, maximum, or a known standard).
- The rank transformation of the reference column and the sampling techniques should be calculated.
- The absolute rank differences among each sampling technique and the reference column should be calculated.
- The rank differences of each sampling technique should be summed. This step results in the SRD value, which introduces the deviation or distance of a given sampling technique from the reference one.
- The SRD values should be normalized between 0 and 100 for easy comparability between various datasets.
3. Results
3.1. Sampling Optimization Using Sum of Ranking Differences
3.2. Volatile Compositions of Lactuca sativa
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diez-Simon, C.; Ammerlaan, B.; van den Berg, M.; van Duynhoven, J.; Jacobs, D.; Mumm, R.; Hall, R.D. Comparison of volatile trapping techniques for the comprehensive analysis of food flavourings by Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2020, 1624, 461191. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, J.M.F. Stir-bar sorptive extraction: 15 Years making sample preparation more environment-friendly. TrAC Trends Anal. Chem. 2015, 71, 214–223. [Google Scholar] [CrossRef]
- Ochiai, N.; Tsunokawa, J.; Sasamoto, K.; Hoffmann, A. Multi-volatile method for aroma analysis using sequential dynamic headspace sampling with an application to brewed coffee. J. Chromatogr. A 2014, 1371, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Sousa Mesquita, A.; Zamora-Obando, H.R.; Neves dos Santos, F.; Schmidt-Filho, J.; Cordeiro de Lima, V.; D’Almeida Costa, F.; Piana de Andrade, V.; Nogueira Eberlin, M.; Colnaghi Simionato, A.V. Volatile organic compounds analysis optimization and biomarker discovery in urine of Non-Hodgkin lymphoma patients before and during chemotherapy. Microchem. J. 2020, 159, 105479. [Google Scholar] [CrossRef]
- Živković Semren, T.; Brčić Karačonji, I.; Safner, T.; Brajenović, N.; Tariba Lovaković, B.; Pizent, A. Gas chromatographic-mass spectrometric analysis of urinary volatile organic metabolites: Optimization of the HS-SPME procedure and sample storage conditions. Talanta 2018, 176, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Yingngam, B.; Kacha, W.; Rungseevijitprapa, W.; Sudta, P.; Prasitpuriprecha, C.; Brantner, A. Response surface optimization of spray-dried citronella oil microcapsules with reduced volatility and irritation for cosmetic textile uses. Powder Technol. 2019, 355, 372–385. [Google Scholar] [CrossRef]
- Héberger, K. Sum of ranking differences compares methods or models fairly. TrAC Trends Anal. Chem. 2010, 29, 101–109. [Google Scholar] [CrossRef]
- Rácz, A.; Gere, A.; Bajusz, D.; Héberger, K. Is soft independent modeling of class analogies a reasonable choice for supervised pattern recognition? RSC Adv. 2018, 8, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Gere, A.; Radványi, D.; Héberger, K. Which insect species can best be proposed for human consumption? Innov. Food Sci. Emerg. Technol. 2019, 52, 358–367. [Google Scholar] [CrossRef] [Green Version]
- Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform. 2015, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gere, A.; Rácz, A.; Bajusz, D.; Háberger, K. Multicriteria decision making for evergreen problems in food science by sum of ranking differences. Food Chem. 2021, 344, 128617. [Google Scholar] [CrossRef] [PubMed]
- Deza-Durand, K.M.; Petersen, M.A. The effect of cutting direction on aroma compounds and respiration rate of fresh-cut iceberg lettuce (Lactuca sativa L.). Postharvest Biol. Technol. 2011, 61, 83–90. [Google Scholar] [CrossRef]
- Lonchamp, J.; Barry-Ryan, C.; Devereux, M. Identification of volatile quality markers of ready-to-use lettuce and cabbage. Food Res. Int. 2009, 42, 1077–1086. [Google Scholar] [CrossRef] [Green Version]
- Al Nomaani, R.S.S.; Hossain, M.A.; Weli, A.M.; Al-Riyami, Q.; Al-Sabahi, J.N. Chemical composition of essential oils and in vitro antioxidant activity of fresh and dry leaves crude extracts of medicinal plant of Lactuca Sativa L. native to Sultanate of Oman. Asian Pac. J. Trop. Biomed. 2013, 3, 353–357. [Google Scholar] [CrossRef] [Green Version]
- Molnár, B.P.; Tóth, Z.; Fejes-Tóth, A.; Dekker, T.; Kárpáti, Z. Electrophysiologically-Active Maize Volatiles Attract Gravid Female European Corn Borer, Ostrinia nubilalis. J. Chem. Ecol. 2015, 41, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Héberger, K.; Kollár-Hunek, K. Sum of ranking differences for method discrimination and its validation: Comparison of ranks with random numbers. J. Chemom. 2011, 25, 151–158. [Google Scholar] [CrossRef]
- Kollár-Hunek, K.; Héberger, K. Method and model comparison by sum of ranking differences in cases of repeated observations (ties). Chemom. Intell. Lab. Syst. 2013, 127, 139–146. [Google Scholar] [CrossRef]
- Héberger, K.; Kollár-Hunek, K. Comparison of validation variants by sum of ranking differences and ANOVA. J. Chemom. 2019, 33, e3104. [Google Scholar] [CrossRef] [Green Version]
RT (Min) | RI (Calculated) | RI (Literature) | Compound Name | Formula | CAS Number | Area (%) | Match Factor (%) |
---|---|---|---|---|---|---|---|
3.77 | 775 | 775 | 3-Hexanone | C6H12O | 589-38-8 | 0.04 | >90% |
3.83 | 791 | 791 | 2-Hexanone | C6H12O | 591-78-6 | 0.06 | >85% |
3.91 | 797 | 797 | 3-Hexanol | C6H14O | 623-37-0 | 0.04 | >85% |
3.99 | 803 | 800 | Octane | C8H18 | 111-65-9 | 0.15 | ~90% |
4.12 | 810 | 805 | 1,3-Dimethylcyclohexane | C8H16 | 2207-03-6 | 0.03 | >85% |
4.68 | 838 | 840 | Cyclogeraniolane | C9H18 | 3073-66-3 | 0.03 | >85% |
4.73 | 841 | 842 | 2,4-Dimethyl-1-heptene | C9H18 | 19549-87-2 | 0.07 | ~90% |
5.16 | 863 | 860 | Ethylbenzene | C8H10 | 100-41-4 | 0.28 | >90% |
5.32 | 871 | 879 | o-Xylene | C8H10 | 95-47-6 | 0.56 | >95% |
5.78 | 894 | 898 | Styrene | C8H8 | 100-42-5 | 0.17 | >90% |
5.84 | 897 | 885 | m-Xylene | C8H10 | 108-38-3 | 0.21 | >95% |
5.95 | 902 | 900 | Nonane | C9H20 | 111-84-2 | 0.25 | >95% |
6.45 | 922 | 949 | 1,3-Dimethyl-2-(1-methylethylidene)cyclopentane | C10H18 | 61142-31-2 | 0.12 | >80% |
6.76 | 934 | 936 | 2,6-Dimethyloctane | C10H22 | 3051-30-1 | 0.26 | ~95% |
6.81 | 936 | 937 | α-Pinene | C10H16 | 80-56-8 | 0.64 | >95% |
6.95 | 942 | 941 | 2-Methylheptane-3-ethyl | C10H22 | 14676-29-0 | 0.54 | >80% |
7.18 | 951 | 961 | β-Pinene | C10H16 | 127-91-3 | 0.03 | ~75% |
7.30 | 956 | 950 | Isocumene | C9H12 | 103-65-1 | 0.30 | ~80% |
7.50 | 963 | 963 | p-Ethyltoluene | C9H12 | 622-96-8 | 0.25 | >95% |
7.53 | 965 | 970 | 2-Methylnonane | C10H22 | 871-83-0 | 0.69 | >90% |
7.68 | 970 | 975 | Mesitylene | C9H12 | 108-67-8 | 0.38 | ~95% |
7.71 | 972 | 972 | 3-Methylnonane | C10H22 | 5911-04-6 | 0.42 | >95% |
7.79 | 975 | 979 | trans-p-Menthane | C10H20 | 1678-82-6 | 0.29 | >90% |
7.98 | 982 | 979 | o-Ethyltoluene | C9H12 | 611-14-3 | 0.10 | >90% |
8.13 | 988 | 989 | cis-p-Menthane | C10H20 | 6069-98-3 | 0.37 | >85% |
8.21 | 992 | 997 | Octahydro-1H-indene | C9H16 | 4551-51-3 | 0.97 | >95% |
8.34 | 997 | nd | Benzene, 1,2,3-trimethyl- | C9H12 | 526-73-8 | 1.39 | >95% |
8.48 | 1002 | 1000 | Decane | C10H22 | 124-18-5 | 3.47 | >95% |
8.94 | 1019 | nd | (±) Menthol | C10H20O | 15356-70-4 | 0.39 | >85% |
9.12 | 1025 | 1051 | 4-Methyldecane | C11H24 | 2847-72-5 | 2.04 | >85% |
9.19 | 1027 | 1030 | 2-Cyclohexylbutane | C10H20 | 7058-01-7 | 0.36 | >85% |
9.31 | 1032 | 1028 | D-Limonene | C10H16 | 5989-27-5 | 0.75 | >95% |
9.77 | 1048 | nd | 1,2-Dimethylcyclooctene | C10H18 | 54299-96-6 | 0.86 | >85% |
9.85 | 1051 | 1051 | cis-β-Ocimene | C10H16 | 3338-55-4 | 0.12 | >95% |
10.04 | 1058 | 1055 | Naphthan | C10H18 | 91-17-8 | 0.63 | >90% |
10.09 | 1060 | 1059 | 2,5-Dimethylnonane | C11H24 | 17302-27-1 | 0.83 | >80% |
10.23 | 1064 | 1078 | 4,7-Methanoindan, hexahydro- | C10H16 | 6004-38-2 | 3.48 | >95% |
10.75 | 1083 | 1081 | 1,1′-Bicyclopentyl | C10H18 | 1636-39-1 | 1.76 | >95% |
11.07 | 1095 | 1083 | 3-tert-Butyltoluene | C11H16 | 1075-38-3 | 0.53 | >80% |
11.14 | 1097 | nd | Unknown1 (135 m/z) | 1.12 | |||
11.30 | 1103 | 1100 | Undecane | C11H24 | 1120-21-4 | 3.22 | >90% |
12.29 | 1138 | 1146 | 2-Methyldecalin | C11H20 | 2958-76-1 | 0.72 | >90% |
12.75 | 1154 | nd | Tricyclo[5.2.1.0(2,6)]decane, 4-methyl- | C11H18 | 2000073-34-9 | 0.70 | >90% |
13.39 | 1176 | nd | Toluene, p-(1-ethylpropyl)- | C12H18 | 22975-58-2 | 0.32 | >85% |
13.65 | 1186 | 1178 | Benzene, 1-methyl-2-(1-ethylpropyl)- | C12H18 | 54410-74.1 | 1.03 | >85% |
14.15 | 1203 | nd | Benzene, 1,4-dimethyl-2-(2-methylpropyl)- | C12H18 | 55669-88-0 | 1.84 | >85% |
17.51 | 1326 | 1304 | 2,7-Dimethyltetralin | C12H16 | 13065-07-1 | 1.73 | >85% |
17.66 | 1332 | 1348 | 6-Ethyltetralin | C12H16 | 22531-20-0 | 2.10 | >85% |
17.87 | 1339 | 1354 | 5-Ethyltetralin | C12H16 | 42775-75-7 | 1.64 | >85% |
20.09 | 1426 | 1423 | β-Caryophyllene | C15H24 | 87-44-5 | 0.25 | ~90% |
20.32 | 1435 | nd | (-)-Isolongifolol, methyl ether | C16H28O | 999281-62-4 | 0.24 | >85% |
20.52 | 1443 | nd | Corymbolone | C15H24O2 | 97094-19-4 | 0.16 | >85% |
21.14 | 1467 | 1460 | α-Humulene | C15H24 | 6753-98-6 | 0.26 | ~80% |
21.71 | 1488 | 1465 | γ-Elemene | C15H24 | 3242-08-8 | 0.44 | >75% |
22.50 | 1525 | 1456 | β-Humulene | C15H24 | 116-04-1 | 1.26 | >80% |
23.55 | 1568 | nd | Unknown2 (135 m/z) | - | - | 4.43 | - |
23.68 | 1573 | nd | Longifolene-I2 | C15H24 | 1000162-76-7 | 4.88 | ~90% |
24.38 | 1606 | nd | 7-Octylidenebicyclo[4.1.0]heptane | C15H26 | 82253-11-0 | 1.42 | >85% |
25.08 | 1636 | nd | 1,4-Methanobenzocyclodecene, 1,2,3,4,4a,5,8,9,12,12a-decahydro- | C15H22 | 74708-73-9 | 8.23 | ~90% |
25.30 | 1645 | nd | Cyclobuta[1,2:3,4]dicyclooctene, 1,2,5,6,6a,6b,7,8,11,12,12a,12b-dodecahydro-, (6a.α.,6b.α.,12a.β.,12b.β.)- | C16H24 | 61233-68-9 | 1.48 | >85% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radványi, D.; Szelényi, M.; Gere, A.; Molnár, B.P. From Sampling to Analysis: How to Achieve the Best Sample Throughput via Sampling Optimization and Relevant Compound Analysis Using Sum of Ranking Differences Method? Foods 2021, 10, 2681. https://doi.org/10.3390/foods10112681
Radványi D, Szelényi M, Gere A, Molnár BP. From Sampling to Analysis: How to Achieve the Best Sample Throughput via Sampling Optimization and Relevant Compound Analysis Using Sum of Ranking Differences Method? Foods. 2021; 10(11):2681. https://doi.org/10.3390/foods10112681
Chicago/Turabian StyleRadványi, Dalma, Magdolna Szelényi, Attila Gere, and Béla Péter Molnár. 2021. "From Sampling to Analysis: How to Achieve the Best Sample Throughput via Sampling Optimization and Relevant Compound Analysis Using Sum of Ranking Differences Method?" Foods 10, no. 11: 2681. https://doi.org/10.3390/foods10112681
APA StyleRadványi, D., Szelényi, M., Gere, A., & Molnár, B. P. (2021). From Sampling to Analysis: How to Achieve the Best Sample Throughput via Sampling Optimization and Relevant Compound Analysis Using Sum of Ranking Differences Method? Foods, 10(11), 2681. https://doi.org/10.3390/foods10112681