Establishment and Validation of a GC–MS/MS Method for the Quantification of Penicillin G Residues in Poultry Eggs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents and Apparatus
2.2. GC–MS/MS Conditions
2.3. Preparation of Standard Stock and Working Solutions
2.4. Sample Pretreatment
2.5. Validation of the Analytical Method
2.5.1. Linearity
2.5.2. Accuracy and Precision
2.5.3. LOD and LOQ
3. Results and Discussion
3.1. Selection of Solvents
3.2. Optimization of Sample Pretreatment
3.3. Method Validation
3.3.1. Linearity
3.3.2. Accuracy and Precision
3.3.3. LODs, LOQs and Sensitivity
3.4. Application of the Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hisasaga, C.; Shinn, S.E.; Tarrant, K.J. Survey of egg quality in commercially available table eggs. Poult. Sci. 2020, 99, 7202–7206. [Google Scholar] [CrossRef]
- Donoghue, D.J. Antibiotic residues in poultry tissues and eggs: Human health concerns? Poult. Sci. 2003, 82, 618–621. [Google Scholar] [CrossRef]
- Silva, A.B.D.; Back, M.; Daguer, H.; Palmeira, M.; Ploêncio, L.A.D.S.; Molognoni, L.; Peripolli, V.; Bianchi, I. Carry-over and contamination of veterinary drugs in feed production lines for poultry and pigs. Food Addit. Contam. 2019, 36, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Moats, W.A. Detection and semiquantitative estimation of penicillin G and cloxacillin in milk by thin-layer chromatography. J. Agric. Food Chem. 1983, 31, 1348–1350. [Google Scholar] [CrossRef]
- Pietschmann, J.; Dittmann, D.; Spiegel, H.; Krause, H.J.; Schröper, F. A novel method for antibiotic detection in milk based on competitive magnetic immunodetection. Foods 2020, 9, 1773. [Google Scholar] [CrossRef]
- Preu, M.; Petz, M. Isotope dilution GC-MS of benzylpenicillin residues in bovine muscle. Analyst 1998, 123, 2785–2788. [Google Scholar] [CrossRef] [PubMed]
- Gbylik-Sikorska, M.; Gajda, A.; Nowacka-Kozak, E.; Łebkowska-Wieruszewska, B.; Posyniak, A. Multi-Class procedure for analysis of 50 antibacterial compounds in eggshells using ultra-high-performance liquid chromatography-tandem mass spectrometry. Molecules 2021, 26, 1373. [Google Scholar] [CrossRef]
- Silva, W.P.; Oliveira, L.H.; Santos, A.L.; Ferreira, V.S.; Trindade, M.A.G. Sample preparation combined with electroanalysis to improve simultaneous determination of antibiotics in animal derived food samples. Food Chem. 2018, 250, 7–13. [Google Scholar] [CrossRef]
- Wang, B.; Xie, K.; Lee, K. Veterinary drug residues in animal-derived foods: Sample preparation and analytical methods. Foods 2021, 10, 555. [Google Scholar] [CrossRef] [PubMed]
- Rascón, A.J.; Azzouz, A.; Ballesteros, E. Multiresidue determination of polycyclic aromatic hydrocarbons in edible oils by liquid-liquid extraction–solid-phase extraction–gas chromatography-mass spectrometry. Food Control 2018, 94, 268–275. [Google Scholar] [CrossRef]
- Ahmad, R.; Ahmad, N.; Aljamea, A.; Abuthayn, S.; Aqeel, M. Evaluation of solvent and temperature effect on green accelerated solvent extraction (ASE) and UHPLC quantification of phenolics in fresh olive fruit (Olea europaea). Food Chem. 2020, 342, 128248–128260. [Google Scholar] [CrossRef]
- Rocco, M.D.; Moloney, M.; O’Beirne, T.; Earley, S.; Berendsen, B.; Furey, A.; Danaher, M. Development and validation of a quantitative confirmatory method for 30 β-lactam antibiotics in bovine muscle using liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 2017, 1500, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Savoca, D.; Melfi, R.; Piccionello, A.P.; Barreca, S.; Buscemi, S.; Arizza, V.; Arculeo, M.; Pace, A. Presence and biodistribution of perfluorooctanoic acid (PFOA) in Paracentrotus lividus highlight its potential application for environmental biomonitoring. Sci. Rep. 2021, 11, 1–8. [Google Scholar] [CrossRef]
- Ostrovsky, I.; Cabala, R.; Kubinec, R.; Górová, R.; Blaško, J.; Kubincová, J.; Rimnácová, L.; Lorenz, W. Determination of phthalate sum in fatty food by gas chromatography. Food Chem. 2011, 124, 392–395. [Google Scholar] [CrossRef]
- Ichihara, K.; Kohsaka, C.; Tomari, N.; Yamamoto, Y.; Masumura, T. Determination of free fatty acids in plasma by gas chromatography. Anal. Biochem. 2020, 603, 113810–113828. [Google Scholar] [CrossRef]
- The European Medicines Agency. Commission Regulation (EU) No. 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin; The European Medicines Agency: Amsterdam, The Netherlands, 2010.
- Orecchio, S.; Fiore, M.; Barreca, S.; Vara, G. Volatile profiles of emissions from different activities analyzed using canister samplers and gas chromatography-mass spectrometry (GC/MS) analysis: A case study. Int. J. Environ. Res. Public Health 2017, 14, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreca, S.; Orecchio, S.; Pace, A. Photochemical sample treatment for extracts clean up in PCB analysis from sediments. Talanta 2013, 103, 349–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commission Decision. Commission Decision 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (2002/657/EC). Off. J. Eur. Union 2002, L221, 8–36. [Google Scholar]
- Barreca, S.; Busetto, M.; Colzani, L.; Clerici, L.; Marchesi, V.; Tremolada, L.; Daverio, D.; Dellavedova, P. Hyphenated high performance liquid chromatography-tandem mass spectrometry techniques for the determination of perfluorinated alkylated substances in lombardia region in Italy, profile levels and assessment: One year of monitoring activities during 2018. Separations 2020, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Barreca, S.; Orecchio, S.; Pace, A. Photochemical sample treatment: A greener approach to chlorobenzene determination in sediments. Talanta 2014, 129, 263–269. [Google Scholar] [CrossRef]
- Giovannoli, C.; Anfossi, L.; Biagioli, F.; Passini, C.; Baggiani, C. Solid phase extraction of penicillins from milk by using sacrificial silica beads as a support for a molecular imprint. Microchim. Acta 2013, 180, 1371–1377. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Yu, F.; Wang, Y.; Ye, D.; Hu, X.; Zhou, L.; Du, J.; Xia, X. Multi-class analysis of veterinary drugs in eggs using dispersive-solid phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. 2021, 334, 127598–127612. [Google Scholar] [CrossRef] [PubMed]
- Presser, A.; Hufner, A. Trimethylsilyldiazomethan—A mild and efficient reagent for the methylation of carboxylic acids and alcohols in natural products. Monatsh. Chem. 2004, 135, 1015–1022. [Google Scholar] [CrossRef]
- Soliman, M.; Khorshid, M.A.; Abo-Aly, M.M. Combination of analyte protectants and sandwich injection to compensate for matrix effect of pesticides residue in GC-MS/MS. Microchem. J. 2020, 156, 104852–104887. [Google Scholar] [CrossRef]
- Hayama, T. Matrix effects in mass spectrometry analysis. Anal. Sci. 2020, 36, 1151. [Google Scholar] [CrossRef] [PubMed]
- Krupcík, J.; Májek, P.; Gorovenko, R.; Blasko, J.; Kubinec, R.; Sandra, P. Considerations on the determination of the limit of detection and the limit of quantification in one-dimensional and comprehensive two-dimensional gas chromatography. J. Chromatogr. A 2015, 1396, 117–130. [Google Scholar] [CrossRef]
Target Compound | Molecular Weight | Retention Time | Mass Transitions | Collision Energy |
---|---|---|---|---|
Penicillin G trimethylsilyl methyl ester | 421.48 | 10.85 | 174.1 > 91.1 | 6 |
174.1 > 114.1 * | 16 | |||
174.1 > 142.1 | 6 |
Matrix | Extraction Method | Extraction Reagent | |||||
---|---|---|---|---|---|---|---|
LLE | ASE | 60% Acetonitrile | 70% Acetonitrile | 80% Acetonitrile | 90% Acetonitrile | 100% Acetonitrile | |
Chicken whole egg | 71.06 ± 2.53 | 87.96 ± 1.54 | 59.16 ± 2.81 | 62.21 ± 3.54 | 84.27 ± 1.13 | 68.15 ± 2.76 | 79.66 ± 1.78 |
Chicken albumen | 62.58 ± 1.62 | 85.32 ± 1.38 | 57.82 ± 3.01 | 65.86 ± 1.75 | 85.12 ± 1.59 | 64.32 ± 1.88 | 75.63 ± 2.19 |
Chicken yolk | 73.95 ± 1.58 | 86.19 ± 2.13 | 55.68 ± 2.35 | 61.94 ± 2.26 | 86.74 ± 2.11 | 62.87 ± 1.64 | 73.24 ± 2.61 |
Duck whole egg | 75.31 ± 2.39 | 84.56 ± 1.42 | 60.37 ± 3.12 | 63.56 ± 2.87 | 83.46 ± 2.05 | 65.92 ± 2.28 | 80.17 ± 2.38 |
Duck albumen | 70.59 ± 2.73 | 81.74 ± 1.86 | 54.39 ± 2.46 | 60.32 ± 1.94 | 85.52 ± 1.61 | 63.47 ± 2.53 | 77.54 ± 1.96 |
Duck yolk | 65.18 ± 2.21 | 89.28 ± 1.95 | 56.45 ± 1.82 | 61.78 ± 1.36 | 87.36 ± 1.84 | 62.51 ± 2.72 | 78.39 ± 3.07 |
Matrix | Linear Regression Equation | Determination Coefficient (R2) | Linearity Range (µg/kg) |
---|---|---|---|
Chicken Whole egg | y = 24,281x + 56,797 | 0.9994 | 7.90–200.0 |
Chicken albumen | y = 17,204x − 32,177 | 0.9995 | 6.80–200.0 |
Chicken yolk | y = 26,719x − 45,245 | 0.9994 | 8.50–200.0 |
Duck whole egg | y = 32,395x − 19,611 | 0.9998 | 7.40–200.0 |
Duck albumen | y = 16,737x − 14,161 | 0.9996 | 6.10–200.0 |
Duck yolk | y = 29,856x − 69,373 | 0.9995 | 6.40–200.0 |
Tissues | Added Level (μg/kg) | Recovery (%) | RSD (%) | Intra-Day RSD (%) | Inter-Day RSD (%) | LOD (µg/kg) | LOQ (µg/kg) |
---|---|---|---|---|---|---|---|
Chicken whole egg | 7.90 | 85.13 ± 2.08 | 2.44 | 4.12 | 5.09 | 2.50 | 7.90 |
25.00 | 86.46 ± 1.51 | 1.75 | 2.13 | 4.28 | |||
50.00 α | 88.72 ± 1.61 | 1.82 | 2.47 | 3.52 | |||
100.00 | 91.56 ± 1.87 | 2.04 | 3.45 | 4.58 | |||
Chicken albumen | 6.80 | 83.21 ± 2.17 | 2.61 | 4.82 | 5.25 | 2.10 | 6.80 |
25.00 | 84.71 ± 1.45 | 1.71 | 3.26 | 4.36 | |||
50.00 α | 93.11 ± 2.45 | 2.64 | 4.75 | 5.43 | |||
100.00 | 94.50 ± 1.18 | 1.24 | 3.21 | 3.85 | |||
Chicken yolk | 8.50 | 83.05 ± 1.43 | 1.73 | 4.63 | 4.97 | 3.20 | 8.50 |
25.00 | 85.14 ± 2.38 | 2.80 | 3.15 | 4.43 | |||
50.00 α | 86.23 ± 2.97 | 3.44 | 3.96 | 4.62 | |||
100.00 | 89.48 ± 3.01 | 3.36 | 4.27 | 5.18 | |||
Duck whole egg | 7.40 | 84.16 ± 1.39 | 1.65 | 4.08 | 4.56 | 2.40 | 7.40 |
25.00 | 87.81 ± 2.24 | 2.55 | 3.61 | 4.23 | |||
50.00 α | 90.16 ± 1.47 | 1.63 | 3.42 | 3.79 | |||
100.00 | 93.15 ± 2.12 | 2.28 | 3.35 | 4.38 | |||
Duck albumen | 6.10 | 80.31 ± 1.34 | 1.67 | 2.78 | 5.16 | 1.70 | 6.10 |
25.00 | 81.67 ± 1.12 | 1.38 | 3.19 | 4.35 | |||
50.00 α | 84.13 ± 2.14 | 2.54 | 2.31 | 3.18 | |||
100.00 | 92.16 ± 2.53 | 2.75 | 3.67 | 6.13 | |||
Duck yolk | 6.40 | 83.29 ± 1.56 | 1.87 | 3.31 | 2.74 | 1.80 | 6.40 |
25.00 | 86.64 ± 2.26 | 2.61 | 2.91 | 3.23 | |||
50.00 α | 87.56 ± 2.73 | 3.11 | 3.57 | 4.09 | |||
100.00 | 90.47 ± 1.85 | 2.05 | 4.25 | 4.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Guo, Y.; Wang, B.; Chen, L.; Xie, K.; Yang, C. Establishment and Validation of a GC–MS/MS Method for the Quantification of Penicillin G Residues in Poultry Eggs. Foods 2021, 10, 2735. https://doi.org/10.3390/foods10112735
Liu C, Guo Y, Wang B, Chen L, Xie K, Yang C. Establishment and Validation of a GC–MS/MS Method for the Quantification of Penicillin G Residues in Poultry Eggs. Foods. 2021; 10(11):2735. https://doi.org/10.3390/foods10112735
Chicago/Turabian StyleLiu, Chujun, Yawen Guo, Bo Wang, Lan Chen, Kaizhou Xie, and Chenggen Yang. 2021. "Establishment and Validation of a GC–MS/MS Method for the Quantification of Penicillin G Residues in Poultry Eggs" Foods 10, no. 11: 2735. https://doi.org/10.3390/foods10112735
APA StyleLiu, C., Guo, Y., Wang, B., Chen, L., Xie, K., & Yang, C. (2021). Establishment and Validation of a GC–MS/MS Method for the Quantification of Penicillin G Residues in Poultry Eggs. Foods, 10(11), 2735. https://doi.org/10.3390/foods10112735