An Assessment of Selected Nutritional, Bioactive, Thermal and Technological Properties of Brown and Red Irish Seaweed Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Seaweed Species
2.3. Nutritional Composition
2.3.1. Proximate Composition
2.3.2. pH and Salt
2.3.3. Dietary Fibre
2.3.4. Amino Acid and Mineral Contents
2.4. Total Phenolic Content and In Vitro Antioxidant Activity
2.4.1. Preparation of Polyphenol-Rich Extracts from Ground Seaweeds
2.4.2. Total Phenol Content (TPC)
2.4.3. DPPH Free Radical Scavenging Activity (RSA)
2.4.4. Ferric Reducing Antioxidant Power (FRAP)
2.5. Thermal Activity
2.6. Technological Properties
2.6.1. Water Holding Capacity (WHC)
2.6.2. Oil Holding Capacity (OHC)
2.6.3. Swelling Capacity (SC)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition, Salt Content and pH
3.2. Dietary Fibre Content
3.3. Amino Acid Content
3.4. Mineral Content
3.5. Total Phenolic Content and In Vitro Antioxidant Activity
3.6. Thermal Activity
3.7. Technological Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MacArtain, P.; Gill, C.I.; Brooks, M.; Campbell, R.; Rowland, I.R. Nutritional Value of Edible Seaweeds. Nutr. Rev. 2007, 65, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, I.A.; Fairclough, A.C.; Hall, A.C.; Paxman, J.R. The potential health benefits of seaweed and seaweed extracts. In Seaweed: Ecology, Nutrient Composition and Medicinal Uses; Nova Science Publishers: Hauppauge, NY, USA, 2011; pp. 119–135. [Google Scholar]
- De Quirós, A.R.-B.; Lage-Yusty, M.; López-Hernández, J. Determination of phenolic compounds in macroalgae for human consumption. Food Chem. 2010, 121, 634–638. [Google Scholar] [CrossRef]
- Farvin, K.S.; Jacobsen, C. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem. 2013, 138, 1670–1681. [Google Scholar] [CrossRef]
- Agregán, R.; Munekata, P.E.; Domínguez, R.; Carballo, J.; Franco, D.; Lorenzo, J.M. Proximate composition, phenolic content and in vitro antioxidant activity of aqueous extracts of the seaweeds Ascophyllum nodosum, Bifurcaria bifurcata and Fucus vesiculosus. Effect of addition of the extracts on the oxidative stability of canola oil under accelerated storage conditions. Food Res. Int. 2017, 99, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Marinho-Soriano, E.; Fonseca, P.; Carneiro, M.; Moreira, W. Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour. Technol. 2006, 97, 2402–2406. [Google Scholar] [CrossRef] [PubMed]
- Rajauria, G.; Abu-Ghannam, N. Isolation and Partial Characterization of Bioactive Fucoxanthin from Himanthalia elongataBrown Seaweed: A TLC-Based Approach. Int. J. Anal. Chem. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Schiener, P.; Black, K.D.; Stanley, M.S.; Green, D. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. Environ. Boil. Fishes 2015, 27, 363–373. [Google Scholar] [CrossRef]
- Lahaye, M.; Kaeffer, B. Seaweed dietary fibres: Structure, physico-chemical and biological properties relevant to intestinal physiology. Sci. Des Aliment. 1997, 17, 619–639. [Google Scholar]
- Rupérez, P.; Saura-Calixto, F. Dietary fibre and physicochemical properties of edible Spanish seaweeds. Eur. Food Res. Technol. 2001, 212, 349–354. [Google Scholar] [CrossRef]
- Gupta, S.; Abu-Ghannam, N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol. 2011, 22, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Barsanti, L.; Gualtieri, P. Algae: Anatomy, Biochemistry, and Biotechnology; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar] [CrossRef]
- Arufe, S.; Della Valle, G.; Chiron, H.; Chenlo, F.; Sineiro, J.; Moreira, R. Effect of brown seaweed powder on physical and textural properties of wheat bread. Eur. Food Res. Technol. 2017, 244, 1–10. [Google Scholar] [CrossRef]
- Firdaus, M.; Yahya; Nugraha, G.R.H.; Utari, D.D. Fortification of seaweed (Eucheuma cottonii) flour on nutrition, iodine, and glycemic index of pasta. IOP Conf. Ser. Earth Environ. Sci. 2017, 89, 12011. [Google Scholar] [CrossRef]
- Mamat, H.; Akanda, J.; Zainol, K.; Ling, Y.A. The Influence of Seaweed Composite Flour on the Physicochemical Properties of Muffin. J. Aquat. Food Prod. Technol. 2018, 27, 635–642. [Google Scholar] [CrossRef]
- Vilar, E.G.; Ouyang, H.; O’Sullivan, M.G.; Kerry, J.P.; Hamill, R.; O’Grady, M.N.; Mohammed, H.O.; Kilcawley, K.N. Effect of salt reduction and inclusion of 1% edible seaweeds on the chemical, sensory and volatile component profile of reformulated frankfurters. Meat Sci. 2020, 161, 108001. [Google Scholar] [CrossRef]
- Tyuftin, A.A.; Mohammed, H.; Kerry, J.P.; O’Sullivan, M.G.; Hamill, R.; Kilcawley, K. Microscopy-Assisted Digital Photography as an Economical Analytical Tool for Assessment of Food Particles and Their Distribution Through The use of the ImageJ Program. Adv. Nutr. Food Sci. 2021, 2021. [Google Scholar] [CrossRef]
- Angell, A.R.; Mata, L.; de Nys, R.; Paul, N. The protein content of seaweeds: A universal nitrogen-to-protein conversion factor of five. Environ. Boil. Fishes 2016, 28, 511–524. [Google Scholar] [CrossRef]
- Association of Official Agricultural Chemists (AOAC). Official Methods of Analysis of AOAC International, 16th ed.; AOAC: Rockville, MD, USA, 1999; Volume 1. [Google Scholar]
- Kirk, R.S.; Sawyer, R. Pearson’s Composition and Analysis of Foods, 9th ed.; Longman Scientific & Technical: Harlow, UK, 1991. [Google Scholar]
- Jiménez-Escrig, A.; Jiménez-Jiménez, I.; Pulido, R.; Calixto, F.D.S. Antioxidant activity of fresh and processed edible seaweeds. J. Sci. Food Agric. 2001, 81, 530–534. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Yen, G. Antioxidant and radical scavenging properties of extracts from Ganoderma tsugae. Food Chem. 1999, 65, 375–379. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef]
- Gómez-Ordóñez, E.; Jimenez-Escrig, A.; Rupérez, P. Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Res. Int. 2010, 43, 2289–2294. [Google Scholar] [CrossRef]
- Stévant, P.; Marfaing, H.; Rustad, T.; Sandbakken, I.; Fleurence, J.; Chapman, A. Nutritional value of the kelps Alaria esculenta and Saccharina latissima and effects of short-term storage on biomass quality. Environ. Boil. Fishes 2017, 29, 2417–2426. [Google Scholar] [CrossRef]
- Cofrades, S.; López, I.L.; Bravo, L.; Ruiz-Capillas, C.; Bastida, S.; Larrea, M.T.; Jimenez-Colmenero, F. Nutritional and Antioxidant Properties of Different Brown and Red Spanish Edible Seaweeds. Food Sci. Technol. Int. 2010, 16, 361–370. [Google Scholar] [CrossRef]
- Fernández-Segovia, I.; Lerma-García, M.J.; Fuentes, A.; Barat, J.M. Characterization of Spanish powdered seaweeds: Composition, antioxidant capacity and technological properties. Food Res. Int. 2018, 111, 212–219. [Google Scholar] [CrossRef]
- Taboada, M.C.; Millán, R.; Miguez, M.I. Nutritional value of the marine algae wakame (Undaria pinnatifida) and nori (Porphyra purpurea) as food supplements. Environ. Boil. Fishes 2013, 25, 1271–1276. [Google Scholar] [CrossRef]
- Niu, J.-F.; Wang, G.-C.; Zhou, B.-C.; Lin, X.-Z.; Chen, C.-S. Purification of R-phycoerythrin fromPorphyra haitanensis(Bangiales, Rhodophyta) using expanded-bed absorption1. J. Phycol. 2007, 43, 1339–1347. [Google Scholar] [CrossRef]
- Swarnalatha, G. Comparison of nutritive value of seaweed with other terrestrial foods—A review. Int. J. Food Nutr. Sci. 2018, 7, 62. [Google Scholar]
- Gressler, V.; Fujii, M.T.; Martins, A.P.; Colepicolo, P.; Mancini-Filho, J.; Pinto, E. Biochemical composition of two red seaweed species grown on the Brazilian coast. J. Sci. Food Agric. 2011, 91, 1687–1692. [Google Scholar] [CrossRef]
- Nurjanah; Abdullah, A.; Fachrozan, R.; Hidayat, T. Characteristics of seaweed porridge Sargassum sp. and Eucheuma cottonii as raw materials for lip balm. IOP Conf. Ser. Earth Environ. Sci. 2018, 196, 012018. [Google Scholar] [CrossRef]
- Ortiz, J.; Romero, N.; Robert, P.; Araya, J.; Lopez-Hernandez, J.; Bozzo, C.; Navarrete, E.; Osorio, A.; Rios, A. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chem. 2006, 99, 98–104. [Google Scholar] [CrossRef]
- Brownlee, I.A.; Allen, A.; Pearson, J.P.; Dettmar, P.W.; Havler, M.E.; Atherton, M.R.; Onsøyen, E. Alginate as a Source of Dietary Fiber. Crit. Rev. Food Sci. Nutr. 2005, 45, 497–510. [Google Scholar] [CrossRef]
- Flynn, A.; Walton, J.; Gibney, M.; Nugent, A.; McNulty, B. National Adult Nutrition Survey; Irish Universities Nutrition Alliance (IUNA): Cork, Ireland, 2011; p. 3. [Google Scholar]
- Stephen, A.M.; Champ, M.M.-J.; Cloran, S.J.; Fleith, M.; van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef]
- Mabeau, S.; Cavaloc, E.; Fleurence, J.; Lahaye, M. New seaweed-based ingredients for the food industry. Int. Food Ingred. 1992, 3, 38–45. [Google Scholar]
- Mišurcová, L.; Buňka, F.; Ambrožová, J.V.; Machů, L.; Samek, D.; Kráčmar, S. Amino acid composition of algal products and its contribution to RDI. Food Chem. 2014, 151, 120–125. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guideline: Sodium and Potassium Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Morrissey, E.; Giltinan, M.; Kehoe, L.; Nugent, A.P.; McNulty, B.A.; Flynn, A.; Walton, J. Sodium and Potassium Intakes and Their Ratio in Adults (18–90 y): Findings from the Irish National Adult Nutrition Survey. Nutrients 2020, 12, 938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preuss, H.G.; Bowman, B.A.; Russel, R.M. Sodio, cloruro y potasio. Conocimientos Actuales sobre Nutricion. ILSI Publ. Cientıfico Tec. 2003, 592, 330–339. [Google Scholar]
- Wijendran, V.; Bell, S.J. Relationship of Dietary Sodium, Potassium and the Sodium-to-Potassium Ratio to Blood Pressure. J. Med. Clin. Res. Rev. 2019, 3, 1–5. [Google Scholar] [CrossRef]
- Ruperez, P. Mineral content of edible marine seaweeds. Food Chem. 2002, 79, 23–26. [Google Scholar] [CrossRef]
- Rude, R.K. Magnesium Deficiency: A Cause of Heterogenous Disease in Humans. J. Bone Miner. Res. 1998, 13, 749–758. [Google Scholar] [CrossRef]
- Neumann, C.; Harris, D.M.; Rogers, L.M. Contribution of animal source foods in improving diet quality and function in children in the developing world. Nutr. Res. 2002, 22, 193–220. [Google Scholar] [CrossRef]
- Committee on Medical Aspects of Food and Nutrition Policy. Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. Rep. Health Soc. Subj. 1991, 41, 1–210. [Google Scholar]
- Hughes, M.F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133, 1–16. [Google Scholar] [CrossRef] [Green Version]
- FSAI. Toxicology Factsheet Series: Mercury, Lead, Cadmium, Tin and Arsenic in Food. 2009. Available online: https://www.fsai.ie/assets/0/86/204/20bf8465-efe0-4b80-b566-da0ed347240f.pdf (accessed on 7 November 2021).
- Almela, C.; Clemente, M.J.; Vélez, D.; Montoro, R. Total arsenic, inorganic arsenic, lead and cadmium contents in edible seaweed sold in Spain. Food Chem. Toxicol. 2006, 44, 1901–1908. [Google Scholar] [CrossRef]
- Stévant, P.; Marfaing, H.; Duinker, A.; Fleurence, J.; Rustad, T.; Sandbakken, I.; Chapman, A. Biomass soaking treatments to reduce potentially undesirable compounds in the edible seaweeds sugar kelp (Saccharina latissima) and winged kelp (Alaria esculenta) and health risk estimation for human consumption. Environ. Boil. Fishes 2018, 30, 2047–2060. [Google Scholar] [CrossRef] [Green Version]
- Rajauria, G.; Jaiswal, A.K.; Abu-Gannam, N.; Gupta, S. Antimicrobial, Antioxidant and Free Radical-Scavenging Capacity of Brown Seaweed himanthalia Elongata from Western Coast of Ireland. J. Food Biochem. 2013, 37, 322–335. [Google Scholar] [CrossRef]
- Ummat, V.; Tiwari, B.K.; Jaiswal, A.K.; Condon, K.; Garcia-Vaquero, M.; O’Doherty, J.; O’Donnell, C.; Rajauria, G. Optimisation of Ultrasound Frequency, Extraction Time and Solvent for the Recovery of Polyphenols, Phlorotannins and Associated Antioxidant Activity from Brown Seaweeds. Mar. Drugs 2020, 18, 250. [Google Scholar] [CrossRef] [PubMed]
- Shannon, E.; Abu-Ghannam, N. Optimisation of fucoxanthin extraction from Irish seaweeds by response surface methodology. Environ. Boil. Fishes 2017, 29, 1027–1036. [Google Scholar] [CrossRef] [Green Version]
- Ferraces-Casais, P.; Lage-Yusty, M.A.; de Quirós, A.R.-B.; López-Hernández, J. Evaluation of Bioactive Compounds in Fresh Edible Seaweeds. Food Anal. Methods 2011, 5, 828–834. [Google Scholar] [CrossRef]
- Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Gonçalves, A.M.M.; Da Silva, G.J.; Pereira, L. Seaweed Phenolics: From Extraction to Applications. Mar. Drugs 2020, 18, 384. [Google Scholar] [CrossRef]
- Yanik, J.; Stahl, R.; Troeger, N.; Sinag, A. Pyrolysis of algal biomass. J. Anal. Appl. Pyrolysis 2013, 103, 134–141. [Google Scholar] [CrossRef]
- Ross, A.B.; Jones, J.M.; Kubacki, M.L.; Bridgeman, T. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol. 2008, 99, 6494–6504. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.; Cheung, P.C. Nutritional evaluation of some subtropical red and green seaweeds: Part I—Proximate composition, amino acid profiles and some physico-chemical properties. Food Chem. 2000, 71, 475–482. [Google Scholar] [CrossRef]
- Yaich, H.; Garna, H.; Besbes, S.; Paquot, M.; Blecker, C.; Attia, H. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem. 2011, 128, 895–901. [Google Scholar] [CrossRef]
- Fleury, N.; Lahaye, M. Chemical and physico-chemical characterisation of fibres fromLaminaria digitata (kombu breton): A physiological approach. J. Sci. Food Agric. 1991, 55, 389–400. [Google Scholar] [CrossRef]
Seaweed Type | Protein | Moisture | Ash | Fat | Salt | pH | |
---|---|---|---|---|---|---|---|
Brown | Sea spaghetti | 5.57 ± 0.22 a | 16.31 ± 0.34 a | 30.90 ± 0.44 a | 1.19 ± 0.12 ac | 12.68 ± 0.21 a | 5.55 ± 0.03 a |
Irish wakame | 10.21 ± 0.36 b | 11.79 ± 0.12 b | 30.06 ± 0.28 b | 2.03 ± 0.10 b | 15.30 ± 0.32 b | 6.29 ± 0.01 b | |
Red | Dulse | 19.04 ± 0.19 c | 10.04 ± 0.41 c | 25.63 ± 0.67 c | 1.52 ± 0.12 a | 14.70 ± 0.95 ab | 6.71 ± 0.01 c |
Nori | 32.03 ± 1.09 d | 8.99 ± 0.16 d | 17.24 ± 0.22 d | 1.02 ± 0.02 c | 5.35 ± 0.12 c | 6.12 ± 0.01 d |
Seaweed Type | TDF | IDF | SDF | |
---|---|---|---|---|
Brown | Sea spaghetti | 49.13 ± 0.92 a | 37.49 ± 0.89 a | 11.65 ± 0.38 a |
Irish wakame | 40.78 ± 1.57 b | 37.72 ± 1.13 a | 3.06 ± 1.03 b | |
Red | Dulse | 34.89 ± 2.93 c | 22.02 ± 3.33 b | 12.88 ± 1.33 a |
Nori | 31.49 ± 1.83 c | 23.61 ± 1.28 b | 7.88 ± 0.56 c |
Amino Acids | Brown Seaweed | Red Seaweed | |||
---|---|---|---|---|---|
Sea Spaghetti | Irish Wakame | Dulse | Nori | ||
Essential | Histidine | 0.09 ± 0.00 a | 0.13 ± 0.06 a | 0.20 ± 0.15 ab | 0.47 ± 0.01 b |
Threonine | 0.23 ± 0.00 a | 0.50 ± 0.01 b | 0.84 ± 0.02 c | 1.75 ± 0.09 d | |
Valine | 0.25 ± 0.01 a | 0.53 ± 0.01 b | 0.98 ± 0.02 c | 1.70 ± 0.08 d | |
Methionine | 0.14 ± 0.05 a | 0.13 ± 0.15 a | 0.20 ± 0.23 a | 0.29 ± 0.35 a | |
Lysine | 0.31 ± 0.03 a | 0.57 ± 0.02 a | 1.19 ± 0.07 b | 1.63 ± 0.16 c | |
Iso-leucine | 0.20 ±0.01 a | 0.39 ± 0.00 b | 0.62 ± 0.00 c | 1.06 ± 0.09 d | |
Leucine | 0.35 ± 0.01 a | 0.74 ± 0.01 b | 1.16 ± 0.03 c | 2.20 ± 0.00 d | |
Phenylalanine | 0.30 ± 0.07 a | 0.51 ± 0.00ab | 0.73 ± 0.07 b | 1.25 ± 0.06 c | |
Total EAA | 1.86 ± 0.19 a | 3.51 ± 0.22 b | 5.92 ± 0.31 c | 10.36 ± 0.55 d | |
Non-Essential | Aspartic | 0.48 ± 0.02 a | 1.11 ± 0.00 b | 1.90 ± 0.01 c | 3.41 ± 0.00 d |
Serine | 0.27 ± 0.00 a | 0.56 ± 0.02 b | 1.09 ± 0.00 c | 1.72 ± 0.01 d | |
Glutamic | 0.59 ± 0.01 a | 1.32 ± 0.15 b | 2.01 ± 0.17 c | 4.15 ± 0.06 d | |
Glycine | 0.27 ± 0.01 a | 0.59 ±0.01 b | 1.13 ± 0.02 c | 2.02 ± 0.01 d | |
Arginine | 0.25 ± 0.01 a | 0.49 ± 0.03 b | 1.07 ± 0.06 c | 3.73 ± 0.09 d | |
Alanine | 0.33 ± 0.01 a | 0.93 ± 0.10 b | 1.36 ± 0.02 c | 3.90 ± 0.01 d | |
Proline | 0.20 ± 0.01 a | 0.42 ± 0.02 b | 0.89 ± 0.10 c | 1.30 ± 0.01 d | |
Cystine | 0.07 ± 0.00 a | 0.26 ± 0.00 b | 0.34 ± 0.02 c | 0.24 ± 0.01 b | |
Tyrosine | 0.12 ± 0.00 a | 0.33 ± 0.00 ab | 0.34 ± 0.42 ab | 0.99 ± 0.01 b | |
Total Non-EAA | 2.58 ± 0.06 a | 6.01 ± 0.33 b | 10.13 ± 0.76 c | 21.44 ± 0.16 d | |
Total AA | 4.44 ± 0.25 a | 9.52 ± 0.55 b | 16.05 ± 1.07 c | 31.80 ± 0.71 d |
Minerals | Mineral Levels | Nutritional Intake (8 g Serving) | RNI # | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Brown Seaweeds | Red Seaweeds | Brown Seaweeds | Red Seaweeds | Infants and Children | Adults | ||||||
Sea Spaghetti | Irish Wakame | Dulse | Nori | Sea Spaghetti | Irish Wakame | Dulse | Nori | ||||
Macro | Na | 5419 ± 3.61 a | 3920 ± 4.73 b | 2080 ± 0.29 c | 1710 ± 4.86 d | 433.60 | 313.60 | 166.40 | 136.80 | 210–1600 | 1600 |
K | 2791 ± 7.21 a | 5331 ± 2.65 b | 6440 ± 1.80 c | 3460 ± 4.75 d | 223.20 | 426.40 | 515.20 | 276.80 | 800–3100 | 3500 | |
P | 77.70 ± 0.65 a | 311 ± 2.31 b | 354 ± 0.76 c | 498 ± 1.04 d | 6.22 | 24.88 | 28.32 | 39.84 | 270–770 | 540 | |
Mg | 985 ± 2.50 a | 797 ± 1.76 b | 322 ± 1.5 c | 363 ± 3.51 d | 78.80 | 63.76 | 25.76 | 29.04 | 55–300 | 270–300 | |
Ca | 957 ± 3.04 a | 986 ± 1.53 b | 282 ± 3.61 c | 152 ± 2.65 d | 76.56 | 78.88 | 22.56 | 12.16 | 525–750 | 700 | |
Na:K | 1.94 | 0.74 | 0.32 | 0.49 | |||||||
Trace | Fe | 1.96 ± 0.03 a | 8.74 ± 0.03 b | 50.30 ± 0.72 c | 20.20 ± 1.04 d | 0.16 | 0.70 | 4.02 | 1.62 | 8.7–14.8 | 1.7–14.8 |
Mn | 2.49 ± 0.04 a | 0.986 ± 0.00 b | 49.13 ± 0.32 c | 4.43 ± 0.09 d | 0.20 | 0.08 | 3.93 | 0.35 | 0.016 * | 1.4 * | |
Zn | 0.94 ± 0.00 a | 2.21 ± 0.04 b | 3.93 ± 0.02 c | 6.12 ± 0.03 d | 0.08 | 0.18 | 0.31 | 0.49 | 4.0–9 | 7.0–9.5 | |
Cu | 0.065 ± 0.01 a | 0.109 ± 0.00 a | 0.40 ± 0.00 b | 0.547 ± 0.06 c | 0.005 | 0.009 | 0.03 | 0.04 | 0.3–1.0 | 1.2 |
Seaweed Type | WHC (g Water Held/g Dry Sample) | OHC (g Olive Oil Retained/g Sample) | SC (mL Occupied by Sample/g Dry Sample) | |
---|---|---|---|---|
Brown | Sea spaghetti | 6.91 ± 0.57 a | 1.37 ± 0.05 a | 7.50 ± 0.08 a |
Irish wakame | 6.69 ± 0.37 a | 1.73 ± 0.17 a | 7.95 ± 0.13 a | |
Red | Dulse | 3.76 ± 0.23 b | 2.90 ± 0.50 b | 6.30 ± 0.15 b |
Nori | 6.89 ± 0.42 a | 3.59 ± 0.13 b | 13.22 ± 0.45 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, H.O.; O’Grady, M.N.; O’Sullivan, M.G.; Hamill, R.M.; Kilcawley, K.N.; Kerry, J.P. An Assessment of Selected Nutritional, Bioactive, Thermal and Technological Properties of Brown and Red Irish Seaweed Species. Foods 2021, 10, 2784. https://doi.org/10.3390/foods10112784
Mohammed HO, O’Grady MN, O’Sullivan MG, Hamill RM, Kilcawley KN, Kerry JP. An Assessment of Selected Nutritional, Bioactive, Thermal and Technological Properties of Brown and Red Irish Seaweed Species. Foods. 2021; 10(11):2784. https://doi.org/10.3390/foods10112784
Chicago/Turabian StyleMohammed, Halimah O., Michael N. O’Grady, Maurice G. O’Sullivan, Ruth M. Hamill, Kieran N. Kilcawley, and Joseph P. Kerry. 2021. "An Assessment of Selected Nutritional, Bioactive, Thermal and Technological Properties of Brown and Red Irish Seaweed Species" Foods 10, no. 11: 2784. https://doi.org/10.3390/foods10112784
APA StyleMohammed, H. O., O’Grady, M. N., O’Sullivan, M. G., Hamill, R. M., Kilcawley, K. N., & Kerry, J. P. (2021). An Assessment of Selected Nutritional, Bioactive, Thermal and Technological Properties of Brown and Red Irish Seaweed Species. Foods, 10(11), 2784. https://doi.org/10.3390/foods10112784