Valorization of Rose Hip (Rosa canina) Puree Co-Product in Enriched Corn Extrudates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Reagents
2.2. Raw Materials
2.3. Rose Hip (Rosa canina) Powder Processing
2.4. Formulations and Extrusion Processing
2.5. Analysis
2.5.1. Water Content (xw) and Water Activity (aw)
2.5.2. Surface Expansion Index (SEI)
2.5.3. Bulk Density (ρb) and Porosity (ε)
2.5.4. Water Absorption Index (WAI), Water Solubility Index (WSI), and Swelling Index (SWE)
2.5.5. Hygroscopicity (Hy)
2.5.6. Texture
2.5.7. Image Analysis
2.5.8. Optical Properties
2.5.9. Sample Extraction Assisted by Ultrasound
2.5.10. Analysis of Phenolic Compounds Using HPLC-DAD-ESI-MS
2.5.11. Carotenoid Analysis
2.5.12. Ascorbic (AA) and Dehydroascorbic (DHAA) Acids Analysis
2.5.13. Folate Determination Using HPLC-DAD-ESI-MS Assay
2.5.14. Antioxidant Capacity (AC)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Parameters of Extrusion Process
3.2. Physicochemical Characteristics of Extrudates
3.3. Nutritional and Functional Value of Mixtures and Extrudates
3.3.1. Phenolic Acid Content of Mixtures and Extrudates
3.3.2. Carotenoid Content of Mixtures and Extrudates
3.3.3. Ascorbic and Dehydroascorbic Acids, Vitamin C, Folate, and Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pinheiro, A.C.D.A.S.; Martí-Quijal, F.J.; Barba, F.J.; Tappi, S.; Rocculi, P. Innovative non-thermal technologies for recovery and valorization of value-added products from crustacean processing by-products—An opportunity for a circular economy approach. Foods 2021, 10, 2030. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Perez, P.; Xiao, J.; Munekata, P.E.S.; Lorenzo, J.M.; Barba, F.J.; Rajoka, M.S.R.; Barros, L.; Mascoloti Sprea, R.; Amaral, J.S.; Prieto, M.A.; et al. Revalorization of almond by-products for the design of novel functional foods: An updated review. Foods 2021, 10, 1823. [Google Scholar] [CrossRef] [PubMed]
- Ninčević Grassino, A.; Ostojić, J.; Miletić, V.; Djaković, S.; Bosiljkov, T.; Zorić, Z.; Ježek, D.; Rimac Brnčić, S.; Brnčić, M. Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. Innov. Food Sci. Emerg. Technol. 2020, 64, 102424. [Google Scholar] [CrossRef]
- El Bilali, H.; Callenius, C.; Strassner, C.; Probst, L. Food and nutrition security and sustainability transitions in food systems. Food Energy Secur. 2019, 8, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Socaci, S.A.; Farcas, A.C.; Vodnar, D.C.; Tofana, M. Food Wastes as Valuable Sources of Bioactive Molecules. In Superfood and Functional Food—The Development of Superfoods and Their Roles as Medicine; Shiomi, N., Waisundara, V., Eds.; IntechOpen: London, UK, 2017. [Google Scholar]
- Igual, M.; Chiş, M.S.; Socaci, S.A.; Vodnar, D.C.; Ranga, F.; Martínez-Monzó, J.; García-Segovia, P. Effect of Medicago sativa Addition on Physicochemical, Nutritional and Functional Characteristics of Corn Extrudates. Foods 2021, 10, 928. [Google Scholar] [CrossRef]
- Pasqualone, A.; Costantini, M.; Coldea, T.E.; Summo, C. Use of Legumes in Extrusion Cooking: A Review. Foods 2020, 9, 958. [Google Scholar] [CrossRef]
- Lazou, A.; Krokida, M. Thermal characterisation of corn-lentil extruded snacks. Food Chem. 2011, 127, 1625–1633. [Google Scholar] [CrossRef]
- Lazou, A.; Krokida, M.; Tzia, C. Sensory properties and acceptability of corn and lentil extruded puffs. J. Sens. Stud. 2010, 25, 838–860. [Google Scholar] [CrossRef]
- Herrera-Cazares, L.A.; Luzardo-Ocampo, I.; Ramírez-Jiménez, A.K.; Gutiérrez-Uribe, J.A.; Campos-Vega, R.; Gaytán-Martínez, M. Influence of extrusion process on the release of phenolic compounds from mango (Mangifera indica L.) bagasse-added confections and evaluation of their bioaccessibility, intestinal permeability, and antioxidant capacity. Food Res. Int. 2021, 148, 110591. [Google Scholar] [CrossRef]
- Uribe-Wandurraga, Z.N.; Igual, M.; García-Segovia, P.; Martínez-Monzó, J. Influence of microalgae addition in formulation on colour, texture, and extrusion parameters of corn snacks. Food Sci. Technol. Int. 2020, 26, 685–695. [Google Scholar] [CrossRef]
- Karkle, E.L.; Alavi, S.; Dogan, H. Cellular architecture and its relationship with mechanical properties in expanded extrudates containing apple pomace. Food Res. Int. 2012, 46, 10–21. [Google Scholar] [CrossRef]
- Ahmad, N.; Anwar, F.; Gilani, A.u.H. Rose Hip (Rosa canina L.) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier Inc.: Amsterdam, The Netherlands, 2016; ISBN 9780124166448. [Google Scholar]
- Winther, K.; Campbell-Tofte, J.; Vinther Hansen, A.S. Bioactive ingredients of rose hips (Rosa canina L.) with special reference to antioxidative and anti-inflammatory properties: In vitro studies. Bot. Targets Ther. 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Ercisli, S. Rose (Rosa spp.) germplasm resources of Turkey. Genet. Resour. Crop Evol. 2005, 52, 787–795. [Google Scholar] [CrossRef]
- Patel, S. Rose hip as an underutilized functional food: Evidence-based review. Trends Food Sci. Technol. 2017, 63, 29–38. [Google Scholar] [CrossRef]
- Dashbaldan, S.; Rogowska, A.; Pączkowski, C.; Szakiel, A. Distribution of triterpenoids and steroids in developing rugosa rose (Rosa rugosa thunb.) accessory fruit. Molecules 2021, 26, 5158. [Google Scholar] [CrossRef] [PubMed]
- Ogah, O.; Watkins, C.S.; Ubi, B.E.; Oraguzie, N.C. Phenolic compounds in Rosaceae fruit and nut crops. J. Agric. Food Chem. 2014, 62, 9369–9386. [Google Scholar] [CrossRef] [PubMed]
- Al-Yafeai, A.; Malarski, A.; Böhm, V. Characterization of carotenoids and vitamin E in R. rugosa and R. canina: Comparative analysis. Food Chem. 2018, 242, 435–442. [Google Scholar] [CrossRef]
- Ercisli, S. Chemical composition of fruits in some rose (Rosa spp.) species. Food Chem. 2007, 104, 1379–1384. [Google Scholar] [CrossRef]
- Mármol, I.; Sánchez-De-Diego, C.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C.; Rodríguez-Yoldi, M. Therapeutic applications of rose hips from different Rosa species. Int. J. Mol. Sci. 2017, 18, 1137. [Google Scholar] [CrossRef]
- Kubczak, M.; Khassenova, A.B.; Skalski, B.; Michlewska, S.; Wielanek, M.; Aralbayeva, A.N.; Murzakhmetova, M.K.; Zamaraeva, M.; Skłodowska, M.; Bryszewska, M.; et al. Bioactive compounds and antiradical activity of the Rosa canina L. Leaf and twig extracts. Agronomy 2020, 10, 1897. [Google Scholar] [CrossRef]
- Medveckienė, B.; Kulaitienė, J.; Levickienė, D.; Hallmann, E. The effect of ripening stages on the accumulation of carotenoids, polyphenols and vitamin C in rosehip species/cultivars. Appl. Sci. 2021, 11, 6761. [Google Scholar] [CrossRef]
- Olsson, M.E.; Andersson, S.; Werlemark, G.; Uggla, M.; Gustavsson, K.E. Carotenoids and phenolics in rose hips. Acta Hortic. 2005, 690, 249–252. [Google Scholar] [CrossRef]
- Fan, C.; Pacier, C.; Martirosyan, D.M. Rose hip (Rosa canina L): A functional food perspective. Funct. Foods Health Dis. 2014, 4, 493–509. [Google Scholar] [CrossRef]
- Hornero-Méndez, D.; Mínguez-Mosquera, M.I. Carotenoid pigments in Rosa mosqueta hips, an alternative carotenoid source for foods. J. Agric. Food Chem. 2000, 48, 825–828. [Google Scholar] [CrossRef] [PubMed]
- Chawla, R.; Arora, R.; Singh, S.; Sagar, R.K.; Sharma, R.K.; Kumar, R.; Sharma, A.; Gupta, M.L.; Singh, S.; Prasad, J.; et al. Radioprotective and antioxidant activity of fractionated extracts of berries of Hippophae rhamnoides. J. Med. Food 2007, 10, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Roman, I.; Stǎnilǎ, A.; Stǎnilǎ, S. Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transylvania. Chem. Cent. J. 2013, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, E.; Kharazmi, A.; Christensen, L.P.; Christensen, S.B. An antiinflammatory galactolipid from rose hip (Rosa canina) that inhibits chemotaxis of human peripheral blood neutrophils in vitro. J. Nat. Prod. 2003, 66, 994–995. [Google Scholar] [CrossRef] [PubMed]
- Igual, M.; Chiș, M.S.; Păucean, A.; Vodnar, D.C.; Mihăiescu, T.; Török, A.I.; Anca, F.; Monzó, J.M. Effect on Nutritional and Functional Characteristics by Encapsulating Rose canina Powder in Enriched Corn Extrudates. Foods 2021, 10, 2401. [Google Scholar] [CrossRef] [PubMed]
- Saygı, K.Ö. Quantitative Analysis of Phenolic Compounds and Mineral Contents of Rosa canina L. Waste Seeds. Turk. J. Agric. Food Sci. Technol. 2021, 9, 1120–1123. [Google Scholar] [CrossRef]
- Tańska, M.; Roszkowska, B.; Czaplicki, S.; Borowska, E.J.; Bojarska, J.; Dąbrowska, A. Effect of Fruit Pomace Addition on Shortbread Cookies to Improve Their Physical and Nutritional Values. Plant Foods Hum. Nutr. 2016, 71, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Bakaloudi, D.R.; Jeyakumar, D.T.; Jayawardena, R.; Chourdakis, M. The impact of COVID-19 lockdown on snacking habits, fast-food and alcohol consumption: A systematic review of the evidence. Clin. Nutr. 2021, 1–8. [Google Scholar] [CrossRef]
- Si Hassen, W.; Castetbon, K.; Péneau, S.; Tichit, C.; Nechba, A.; Lampuré, A.; Bellisle, F.; Hercberg, S.; Méjean, C. Socio-economic and demographic factors associated with snacking behavior in a large sample of French adults. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brncic, M.; Tripalo, B.; Rimac Brncic, S.; Karlovic, S.; Zupan, A.; Herceg, Z. Evaluation of textural properties for whey enriched direct extruded and puffed corn based products. Bulg. J. Agric. Sci. 2009, 15, 204–213. [Google Scholar]
- AOAC International. Official Methods of Analysis of Association of Official Analytical Chemists International. In Official Methods of Analysis of AOAC International; Horwitz, W., Latimer, G., Eds.; AOAC: Gaithersburg, MD, USA, 2006; ISBN 0935584773. [Google Scholar]
- Patil, R.T.; Singh, D.S.; Tribelhorn, R.E. Effect of processing conditions on extrusion cooking of soy-rice blend with a dry extrusion cooker. J. Food Sci. Technol. 1990, 27, 376–378. [Google Scholar]
- García-Segovia, P.; Igual, M.; Noguerol, A.T.; Martínez-Monzó, J. Use of insects and pea powder as alternative protein and mineral sources in extruded snacks. Eur. Food Res. Technol. 2020, 246, 703–712. [Google Scholar] [CrossRef]
- Singh, N.; Smith, A.C. A comparison of wheat starch, whole wheat meal and oat flour in the extrusion cooking process. J. Food Eng. 1997, 34, 15–32. [Google Scholar] [CrossRef]
- Robertson, J.A.; De Monredon, F.D.; Dysseler, P.; Guillon, F.; Amadò, R.; Thibault, J.F. Hydration properties of dietary fibre and resistant starch: A European collaborative study. LWT Food Sci. Technol. 2000, 33, 72–79. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Corke, H. Production and Properties of Spray-dried Amaranthus Betacyanin Pigments. JFS 2000, 65, 1248–1252. [Google Scholar] [CrossRef]
- Bouvier, J.M. Melt expansion in extrusion-cooking. Feed Technol. 1997, 1, 13–15. [Google Scholar]
- Igual, M.; García-Segovia, P.; Martínez-Monzó, J. Effect of Acheta domesticus (house cricket) addition on protein content, colour, texture, and extrusion parameters of extruded products. J. Food Eng. 2020, 282, 1–7. [Google Scholar] [CrossRef]
- Uribe-Wandurraga, Z.N.; Igual, M.; Reino-Moyón, J.; García-Segovia, P.; Martínez-Monzó, J. Effect of Microalgae (Arthrospira platensis and Chlorella vulgaris) Addition on 3D Printed Cookies. Food Biophys. 2021, 16, 27–39. [Google Scholar] [CrossRef]
- Hutchings, J.B. Food Color Mechanisms; Aspen Publishers Inc.: Gaithersburg, MD, USA, 1997; Chapter 11; pp. 453–592. [Google Scholar]
- Szabo, K.; Dulf, F.V.; Teleky, B.-E.; Eleni, P.; Boukouvalas, C.; Krokida, M.; Kapsalis, N.; Rusu, A.V.; Socol, C.T.; Vodnar, D.C. Evaluation of the Bioactive Compounds Found in Tomato Seed Oil and Tomato Peels Influenced by Industrial Heat Treatments. Foods 2021, 10, 110. [Google Scholar] [CrossRef] [PubMed]
- Dulf, F.V.; Vodnar, D.C.; Dulf, E.H.; Toşa, M.I. Total Phenolic Contents, Antioxidant Activities, and Lipid Fractions from Berry Pomaces Obtained by Solid-State Fermentation of Two Sambucus Species with Aspergillus niger. J. Agric. Food Chem. 2015, 63, 3489–3500. [Google Scholar] [CrossRef] [PubMed]
- Igual, M.; García-Martínez, E.; Camacho, M.M.; Martínez-Navarrete, N. Stability of micronutrients and phytochemicals of grapefruit jam as affected by the obtention process. Food Sci. Technol. Int. 2016, 22, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Logié, N.; Della Valle, G.; Rolland-Sabaté, A.; Descamps, N.; Soulestin, J. How does temperature govern mechanisms of starch changes during extrusion? Carbohydr. Polym. 2018, 184, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Onwulata, C.I.; Smith, P.W.; Konstance, R.P.; Holsinger, V.H. Incorporation of whey products in extruded corn, potato or rice snacks. Food Res. Int. 2001, 34, 679–687. [Google Scholar] [CrossRef]
- Patil, R.T.; De Berrios, J.J.; Tang, J.; Pan, J.; Swanson, B. Physical Characteristics of Food Extrudates—A review. In Proceedings of the 2005 ASAE (American Society of Agricultural Engineers) Annual International Meeting, Tampa, FL, USA, 17–20 July 2005. [Google Scholar]
- Karkle, E.L.; Keller, L.; Dogan, H.; Alavi, S. Matrix transformation in fiber-added extruded products: Impact of different hydration regimens on texture, microstructure, and digestibility. J. Food Eng. 2012, 108, 171–182. [Google Scholar] [CrossRef]
- Alam, M.S.; Kaur, J.; Khaira, H.; Gupta, K. Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 445–473. [Google Scholar] [CrossRef]
- Alam, M.R.; Scampicchio, M.; Angeli, S.; Ferrentino, G. Effect of hot melt extrusion on physical and functional properties of insect based extruded products. J. Food Eng. 2019, 259, 44–51. [Google Scholar] [CrossRef]
- Gümüsay, Ö.A.; ¸Seker, M.; Sadıkoglu, H. Response surface methodology for evaluation of the effects of screw speed, feed moisture, and xanthan gum level on functional and physical properties of corn half products. LWT 2019, 111, 622–631. [Google Scholar] [CrossRef]
- Kumar, R.; Xavier, K.A.M.; Lekshmi, M.; Dhanabalan, V.; Thachil, M.T.; Balange, A.K.; Gudipati, V. Development of functional extruded snacks by utilizing paste shrimp (Acetes spp.): Process optimization and quality evaluation. J. Sci. Food Agric. 2018, 98, 2393–2401. [Google Scholar] [CrossRef]
- Carmo, C.S.D.; Varela, P.; Poudroux, C.; Dessev, T.; Myhrer, K.; Rieder, A.; Zobel, H.; Sahlstrøm, S.; Knutsen, S.H. The impact of extrusion parameters on physicochemical, nutritional and sensorial properties of expanded snacks from pea and oat fractions. LWT Food Sci. Technol. 2019, 112, 108252. [Google Scholar] [CrossRef]
- Agathian, G.; Semwal, A.D.; Sharma, G.K. Optimization of barrel temperature and kidney bean flour percentage based on various physical properties of extruded snacks. J. Food Sci. Technol. 2015, 52, 4113–4123. [Google Scholar] [CrossRef] [Green Version]
- Bodart, M.; de Peñaranda, R.; Deneyer, A.; Flamant, G. Photometry and colorimetry characterisation of materials in daylighting evaluation tools. Build. Environ. 2008, 43, 2046–2058. [Google Scholar]
- Dogan, H.; Karwe, M.V. Physicochemical Properties of Quinoa Extrudates. Food Sci. Tech. Int. 2003, 9, 101–114. [Google Scholar] [CrossRef]
- Tabaszewska, M.; Najgebauer-Lejko, D. The content of selected phytochemicals and in vitro antioxidant properties of rose hip (Rosa canina L.) tinctures. NFS J. 2020, 21, 50–56. [Google Scholar] [CrossRef]
- Kadakal, Ç.; Duman, T. Thermal degradation kinetics of rutin and total phenolic compounds in rosehip (Rosa canina L.) nectar. Pamukkale Univ. J. Eng. Sci. 2018, 24, 1370–1375. [Google Scholar] [CrossRef] [Green Version]
- Agourram, A.; Ghirardello, D.; Rantsiou, K.; Zeppa, G.; Belviso, S.; Romane, A.; Oufdou, K.; Giordano, M. Phenolic content, antioxidant potential, and antimicrobial activities of fruit and vegetable by-product extracts. Int. J. Food Prop. 2013, 16, 1092–1104. [Google Scholar] [CrossRef]
- Volker, B.; Fronhlich, K.; Bitsch, R. Rosehip—A ‘‘new’’ source of lycopene? Mol. Asp. Med. 2003, 24, 385–389. [Google Scholar]
- Phetcharat, L.; Wongsuphasawat, K.; Winther, K. The effectiveness of a standardized rose hip powder, containing seeds and shells of Rosa canina, on cell longevity, skin wrinkles, moisture, and elasticity. Clin. Interv. Aging 2015, 10, 1849–1856. [Google Scholar] [CrossRef] [Green Version]
- Oprica, L.; Roșu, C.M. Total polyphenols, flavonoids contents and antioxidant activity of Rosa sp. genotipes from different altitude of Romanian regions. J. Exp. Mol. Biol. 2021. [Google Scholar] [CrossRef]
- Kolašinac, S.M.; Stevanović, Z.P.D.; Kilibarda, S.N.; Kostić, A. Carotenoids: New applications of “old” pigments. Phyton 2021, 90, 1041–1062. [Google Scholar] [CrossRef]
- Paznocht, L.; Burešová, B.; Kotíková, Z.; Martinek, P. Carotenoid content of extruded and puffed products made of colored-grain wheats. Food Chem. 2021, 340. [Google Scholar] [CrossRef] [PubMed]
- Drozdz, W.; Tomaszewska-Ciosk, E.; Zdybel, E.; Boruczkowska, H.; Boruczkowski, T.; Regiec, P. Effect of apple and rosehip pomaces on colour, total phenolics and antioxidant activity of corn extruded snacks. Pol. J. Chem. Technol. 2014, 16, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Fascella, G.; D’Angiolillo, F.; Mammano, M.M.; Amenta, M.; Romeo, F.V.; Rapisarda, P.; Ballistreri, G. Bioactive compounds and antioxidant activity of four rose hip species from spontaneous Sicilian flora. Food Chem. 2019, 289, 56–64. [Google Scholar] [CrossRef]
- Gulati, P.; Brahma, S.; Rose, D.J. Impacts of extrusion processing on nutritional components in cereals and legumes: Carbohydrates, proteins, lipids, vitamins, and minerals. Extrus. Cook. 2020, 1, 415–443. [Google Scholar]
- Eur-Lex. Council Directive of 24 September 1990 on nutrition labeling for foodstuffs, (90/496/EEC). Off. J. Eur. Commun. 2007, 276, 40–44. [Google Scholar]
- Eur-Lex. Regulation (EC) No 1924/2006 of The European Parliament and of The Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union 2006, 404, 9–25. [Google Scholar]
- Agudelo, C.; Igual, M.; Camacho, M.M.; Martínez-Navarrete, N. Effect of process technology on the nutritional, functional, and physical quality of grapefruit powder. Food Sci. Technol. Int. 2017, 23, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Liu, D.; Chen, J.; Ye, X.; Ma, Y.; Shi, J. Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chem. 2008, 106, 545–551. [Google Scholar] [CrossRef]
Sample | CE | 5RHCoE | 10RHCoE |
---|---|---|---|
P (Pa) | 107 ± 4 c | 123 ± 7 b | 155 ± 5 a |
T1 (°C) | 184.3 ± 0.9 b | 186.1 ± 0.4 a | 185.8 ± 0.7 a |
T2 (°C) | 76.25 ± 1.04 c | 80.4 ± 0.5 b | 83.0 ± 1.4 a |
SME (J/g) | 925 ± 6 a | 756 ± 5 b | 761 ± 4 b |
WL (gw/gdb) | 0.1432 ± 0.0007 c | 0.243 ± 0.003 a | 0.1915 ± 0.0006 b |
Sample | CE | 5RHCoE | 10RHCoE |
---|---|---|---|
xw (gw/100 g) | 4.8 ± 0.3 a | 3.67 ± 0.07 b | 4.0 ± 0.3 ab |
aw | 0.366 ± 0.003 a | 0.362 ± 0.003 a | 0.367 ± 0.003 a |
WAI | 3.921 ± 0.015 c | 4.95 ± 0.03 b | 5.298 ± 0.003 a |
WSI (%) | 18.8 ± 0.2 a | 11.8 ± 0.2 b | 9.86 ± 0.03 c |
SWE (mLswollen/gdry solid) | 2.323 ± 0.003 c | 3.06 ± 0.02 b | 3.78 ± 0.09 a |
Hy (gw/100 gdry solid) | 19.52 ± 0.16 c | 21.66 ± 0.12 b | 24.3920 ± 0.0005 a |
SEI | 14.6 ± 0.3 a | 13.8 ± 0.3 b | 10.2 ± 0.3 c |
ρb(g/cm3) | 0.092 ± 0.008 b | 0.076 ± 0.002 b | 0.128 ± 0.007 a |
ε (%) | 93.0 ± 0.6 a | 92.3 ± 0.2 b | 88.6 ± 0.6 c |
Sample | CE | 5RHCoE | 10RHCoE |
---|---|---|---|
Wc (N·mm) | 0.26 ± 0.3 a | 0.14 ± 0.02 b | 0.17 ± 0.03 b |
Nsr (mm−1) | 9.69 ± 1.05 b | 11.7 ± 0.7 a | 12.3 ± 0.7 a |
Fs (N) | 2.5 ± 0.3 a | 1.7 ± 0. 2 b | 2.1 ± 0.4 b |
Fp (N) | 2.0 ± 0.3 a | 1.4 ± 0.2 b | 2.1 ± 0.2 a |
N0 | 108 ± 8 b | 128 ± 8 a | 111 ± 11 b |
A (cm2) | 1.38 ± 0.12 a | 1.26 ± 0.08 b | 1.10 ± 0.05 c |
P (cm) | 4.4 ± 0.2 a | 4.18 ± 0.17 a | 3.98 ± 0.13 b |
aw | WAI | WSI | SWE | Hy | SEI | ρb | ε | Wc | Nsr | Fs | Fp | N0 | A | P | %RHCo | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
xw | 0.1927 | −0.8015 | 0.8105 | −0.6237 | −0.8090 | 0.3603 | 0.0817 | 0.7390 | 0.8812 * | −0.7273 | 0.7064 | 0.4294 | −0.4465 | 0.5368 | 0.4983 | −0.6369 |
aw | −0.067 | 0.1092 | 0.1169 | −0.0581 | −0.3807 | 0.5965 | 0.0365 | 0.4438 | −0.7483 | 0.2457 | −0.1351 | −0.7971 | −0.2867 | 0.3144 | 0.1387 | |
WAI | 0.8368 * | 0.9606 * | 0.9989 * | −0.8085 | 0.4330 | −0.9902 * | −0.4646 | 0.4571 | −0.2208 | 0.0782 | 0.0124 | −0.8834 * | −0.8395 * | 0.9618 * | ||
WSI | 0.9500 * | −0.9963 * | 0.0515 | −0.4034 | 0.9896 * | 0.4868 | −0.4939 | 0.2357 | −0.0731 | −0.0552 | 0.8669 * | 0.8245 * | −0.9506 * | |||
SWE | 0.9583 * | 0.0632 | 0.6439 | −0.9740 * | −0.2092 | 0.2074 | −0.0040 | 0.2234 | −0.2544 | −0.9619 * | −0.9169 * | 0.9981 * | ||||
Hy | −0.8038 | 0.4251 | −0.9838 * | −0.4689 | 0.4510 | −0.2348 | 0.0681 | 0.0061 | −0.8815 * | −0.8392 * | 0.9596 * | |||||
SEI | −0.8695 * | 0.8496 * | 0.3482 | 0.1018 | −0.2802 | −0.3690 | 0.5446 | 0.9352 * | 0.8685 * | −0.9385 * | ||||||
ρb | −0.5022 | 0.5098 | −0.4047 | 0.6614 | 0.5702 | −0.7820 | −0.6640 | −0.5652 | 0.6567 | |||||||
ε | 0.3916 | −0.4463 | 0.1394 | −0.1278 | 0.0409 | 0.9091 * | 0.8665 * | −0.9736 * | ||||||||
Wc | −0.8703 * | 0.8634 * | 0.6123 | −0.7892 | 0.1088 | 0.0965 | −0.2213 | |||||||||
Nsr | −0.5540 | −0.1901 | 0.8834 * | −0.0109 | 0.0154 | 0.2167 | ||||||||||
Fs | 0.8719 * | −0.6164 | 0.0280 | 0.0869 | −0.0006 | |||||||||||
Fp | −0.3712 | −0.1059 | −0.0662 | 0.2184 | ||||||||||||
N0 | 0.4037 | 0.3896 | −0.2502 | |||||||||||||
A | 0.9802 * | −0.9531 * | ||||||||||||||
P | −0.8968 * |
Mixtures | Extrudates | |||||
---|---|---|---|---|---|---|
CM | 5RHCoM | 10RHCoM | CE | 5RHCoE | 10RHCoE | |
L* | 80.5 ± 0.5 aA | 72.06 ± 1.12 bA | 72.0 ± 1.7 bA | 60.3 ± 0.9 aB | 54.2 ± 0.3 bB | 53 ± 2 bB |
a* | 6.3 ± 0.7 bA | 13.3 ± 0.6 aA | 14.7 ± 1.3 aA | 0.3 ± 0.4 cB | 5.52 ± 0.15 bB | 10.938 ± 1.095 aB |
b* | 41.5 ± 1.7 aA | 42.2 ± 0.2 aA | 38.5 ± 0.3 bA | 17.1 ± 0.7 cB | 21.8 ± 0.2 bB | 26 ± 2 aB |
C | 41.9 ± 1.8 bA | 44.3 ± 0.4 bA | 41.2 ± 0.4 aA | 17.1 ± 0.7 cB | 22.5 ± 0.2 bB | 28 ± 2 aB |
h | 81.4 ± 0.6 aB | 72.5 ± 0.7 bB | 69.1 ± 1.7 cA | 89.0 ± 1.2 aA | 75.8 ± 0.3 bA | 67.0 ± 1.2 cB |
ΔE1 | - | 11.0 ± 1.3 bA | 28.3 ± 0.2 aA | - | 9.3 ± 0.3 bB | 16 ± 2 aB |
ΔE2 | - | - | - | 32.21 ± 0.12 a | 28.24 ± 0.16 b | 24 ± 3 c |
Phenolic | Mixtures | Extrudates | ||||
---|---|---|---|---|---|---|
Acid | CM | 5RHCoM | 10RHCoM | CE | 5RHCoE | 10RHCoE |
Caffeic acid | 20.72 ± 0.06 aA | 18.53 ± 0.12 bA | 17.1 ± 0.4 cB | 18.3 ± 0.2 aB | 18.54 ± 0.19 aA | 17.70 ± 0.012 bA |
Siringic acid | 14.18 ± 0.07 aA | 13.7 ± 0.7 abA | 12.3 ± 0.4 bA | 12.32 ± 0.04 aB | 12.1 ± 0.4 abB | 11.41 ± 0.08 bB |
p-Coumaric acid | 64.4 ± 0.2 aA | 63.0 ± 0.9 aA | 59.4 ± 0.8 bB | 59.81 ± 0.05 aB | 57.8 ± 0.7 bB | 55.8 ± 0.7 cA |
Ferulic acid | 42.62 ± 0.12 aA | 31.38 ± 0.16 bB | 29.1 ± 0.6 cB | 30.84 ± 0.04 cB | 37.7 ± 0.2 aA | 36.58 ± 0.03 bA |
Di-caffeic | 58.28 ± 0.06 aA | 45.88 ± 0.19 bB | 41.45 ± 0.18 cB | 44.4 ± 0.4 bB | 53.5 ± 0.7 aA | 51.7 ± 0.7 aA |
Total | 200.18 ± 0.13 aA | 172.5 ± 2.1 bB | 159.4 ± 0.5 cB | 165.63 ± 0.112 cB | 180 ± 2 aA | 173.2 ± 1.3 bA |
Mixtures | Extrudates | |||||
---|---|---|---|---|---|---|
CM | 5RHCoM | 10RHCoM | CE | 5RHCoE | 10RHCoE | |
Di-Gall | n.d. c | 69.7 ± 0.6 bA | 193.2 ± 0.8 aA | n.d. c | 38.1 ± 0.7 bA | 166.3 ± 0.6 aB |
Procyan d1 | n.d. c | 92.8± 0.4 bA | 143.1 ± 0.8 aA | n.d. c | 34.7 ± 0.5 bB | 62.0 ± 0.7 aB |
Procyan d2 | n.d. c | 32.7 ± 0.4 bA | 169.4 ± 0.5 aA | n.d. c | 11.8 ± 0.4 bB | 71.8 ± 0.5 aB |
Cat | n.d. c | 197.8 ± 0.3 bA | 361.2 ± 1.2 aA | n.d. c | 79.0 ± 1.2 bB | 283.7 ± 0.6 aB |
Q-acet-rham | n.d. c | 32.7 ± 1.3 bA | 60.0 ± 0.9 aA | n.d. c | 19.3 ± 0.3 bB | 23.9 ± 0.2 aB |
I-glucur | n.d. c | 32.9 ± 0.2 bA | 75.7 ± 0.98 aA | n.d. c | 17.3 ± 0.6 bB | 40.4 ± 0.3 aB |
Q-gluc | n.d. c | 20.77 ± 0.06 bA | 48.98 ± 0.98 aA | n.d. c | 15.52 ± 0.3 bB | 37.3 ± 0.2 aB |
Q-glu-gluc-rham | n.d. c | 20.6 ± 0.3 bA | 30.39 ± 0.14 aA | n.d. c | 16.4 ± 0.2 bB | 25.99 ± 0.12 aB |
I-gluc | n.d. c | 23.6 ± 0.4 bA | 34.0 ± 0.7 aA | n.d. c | 19.3 ± 0.4 bB | 29.11 ± 0.13 aB |
I-acet-gluc-gluc | n.d. c | 24.09 ± 0.16 bA | 33.63 ± 0.15 aA | n.d. c | 19.8 ± 0.2 bB | 31.0 ± 0.7 aB |
Q | n.d. c | 11.3 ± 0.4 bA | 29.0 ± 0.5 aA | n.d. c | 8.69 ± 0.04 bB | 23.7 ± 0.4 aB |
Total | n.d. c | 503 ± 4 bA | 975 ± 5 aA | n.d. c | 280 ± 4 bB | 694 ± 3 aB |
Mixtures | Extrudates | |||||
---|---|---|---|---|---|---|
Carotenoids | CM | 5RHCoM | 10RHCoM | CE | 5RHCoE | 10RHCoE |
Lutein | 1.50 ± 0.02 cA | 1.96 ± 0.04 bA | 2.16 ± 0.06 aA | 0.39 ± 0.03 bB | 0.73 ± 0.3 bB | 1.34 ± 0.24 aB |
Zeaxanthin | 3.49 ± 0.06 cA | 4.28 ± 0.10 bA | 5.07 ± 0.16 aA | 0.59 ± 0.3 bA | 0.83 ± 0.14 bB | 1.2 ± 0.11 aB |
Lycopene | 0.42 ± 0.02 cA | 5.91 ± 0.25 bA | 9.90 ± 0.19 aA | 0.14 ± 0.02 cB | 1.82 ± 0.33 bB | 3.47 ± 0.50 aB |
β Carotene | 0.46 ± 0.04 cA | 4.86 ± 0.18 bA | 8.78 ± 0.24 aA | 0.16 ± 0.04 cB | 1.48 ± 0.19 bB | 2.77 ± 0.33 aB |
Zea-ester | 0.28 ± 0.05 cA | 3.67 ± 0.22 bA | 6.43 ± 0.14 aA | 0.12 ± 0.02 cB | 0.90 ± 0.07 bB | 1.92 ± 0.08 aB |
Lut-ester | 0.25 ± 0.02 cA | 1.22 ± 0.17 bA | 1.95 ± 0.05 aA | 0.21 ± 0.02 cA | 0.47 ± 0.07 bB | 0.70 ± 0.09 aB |
Total | 6.44 ± 0.23 cB | 21.93 ± 1.00 bA | 34.3 ± 0.9 aA | 1.63 ± 0.12 cB | 6.25 ± 0.80 bB | 11.4 ± 1.4 aB |
Mixtures | Extrudates | |||||
---|---|---|---|---|---|---|
CM | 5RHCoM | 10RHCoM | CE | 5RHCoE | 10RHCoE | |
AA | 77.3 ± 0.44 cA | 217.1 ± 0.72 bA | 350.5± 0.8 aA | 33.3 ± 0.4 cA | 198.3 ± 0.7 bB | 318.6 ± 0.2 aB |
DHAA | 125.88 ± 0.36 cA | 175.94.1 ± 0.4 bA | 181.1 ± 0.5 aA | 22.88 ± 0.12 cA | 135.5 ± 0.6 bB | 138.1 ± 0.3 aB |
Vitamin C | 203.2 ± 0.8 cA | 393.05 ± 1.13 bA | 531.6 ± 1.3 aA | 56.2 ± 0.5 cA | 333.84 ± 1.3 bB | 456.7 ± 0.5 aB |
Folates | 0.79 ± 0.03 cA | 11.04 ± 0.3 bA | 17.2 ± 0.6 aA | 0.72 ± 0.03 cA | 10.11 ± 0.14 bA | 15.1 ± 0.7 aA |
AC (TEq) | 124 ± 18) cA | 799 ± 18 bA | 1284 ± 14 aA | 106 ± 2 cB | 352 ± 8 bB | 396 ± 9 aB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Igual, M.; Chiş, M.S.; Păucean, A.; Vodnar, D.C.; Muste, S.; Man, S.; Martínez-Monzó, J.; García-Segovia, P. Valorization of Rose Hip (Rosa canina) Puree Co-Product in Enriched Corn Extrudates. Foods 2021, 10, 2787. https://doi.org/10.3390/foods10112787
Igual M, Chiş MS, Păucean A, Vodnar DC, Muste S, Man S, Martínez-Monzó J, García-Segovia P. Valorization of Rose Hip (Rosa canina) Puree Co-Product in Enriched Corn Extrudates. Foods. 2021; 10(11):2787. https://doi.org/10.3390/foods10112787
Chicago/Turabian StyleIgual, Marta, Maria Simona Chiş, Adriana Păucean, Dan Cristian Vodnar, Sevastița Muste, Simona Man, Javier Martínez-Monzó, and Purificación García-Segovia. 2021. "Valorization of Rose Hip (Rosa canina) Puree Co-Product in Enriched Corn Extrudates" Foods 10, no. 11: 2787. https://doi.org/10.3390/foods10112787
APA StyleIgual, M., Chiş, M. S., Păucean, A., Vodnar, D. C., Muste, S., Man, S., Martínez-Monzó, J., & García-Segovia, P. (2021). Valorization of Rose Hip (Rosa canina) Puree Co-Product in Enriched Corn Extrudates. Foods, 10(11), 2787. https://doi.org/10.3390/foods10112787