Bioactive Compounds and Biological Activities of Sorghum Grains
Abstract
:1. Introduction
2. Bioactive Compounds in Sorghum Grains
2.1. Phenolic Compounds
2.1.1. Phenolic Acids
2.1.2. Flavonoids
2.1.3. Stilbenoids
2.1.4. Tannins
2.2. Carotenoids
2.3. Vitamin E
2.4. Amines
2.5. Policosanols and Phytosterols
3. Biological Activities of Sorghum Grains
3.1. Antioxidative Property
3.2. Anticancer Property
3.3. Antidiabetic Property
3.4. Anti-Inflammatory Property
3.5. Antiobesity Property
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Ayseli, Y.I.; Aytekin, N.; Buyukkayhan, D.; Aslan, I.; Ayseli, M.T. Food policy, nutrition and nutraceuticals in the prevention and management of COVID-19: Advice for healthcare professionals. Trends Food Sci. Technol. 2020, 105, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Thirumdas, R.; Kothakota, A.; Pandiselvam, R.; Bahrami, A.; Barba, F.J. Role of food nutrients and supplementation in fighting against viral infections and boosting immunity: A review. Trends Food Sci. Technol. 2021, 110, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhang, L.; Lin, W.; Tang, W.; Chan, F.K.L.; Ng, S.C. Review article: Probiotics, prebiotics and dietary approaches during COVID-19 pandemic. Trends Food Sci. Technol. 2021, 108, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cheng, C.S.; Zhang, C.; Tang, G.Y.; Tan, H.Y.; Chen, H.Y.; Wang, N.; Lai, A.Y.; Feng, Y. Edible and Herbal Plants for the Prevention and Management of COVID-19. Front. Pharm. 2021, 12, 656103. [Google Scholar] [CrossRef] [PubMed]
- Omrani, M.; Keshavarz, M.; Nejad Ebrahimi, S.; Mehrabi, M.; McGaw, L.J.; Ali Abdalla, M.; Mehrbod, P. Potential Natural Products Against Respiratory Viruses: A Perspective to Develop Anti-COVID-19 Medicines. Front. Pharm. 2020, 11, 586993. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.K.; Srivastav, P.P. Bioactive compounds of rice (Oryza sativa L.): Review on paradigm and its potential benefit in human health. Trends Food Sci. Technol. 2020, 97, 355–365. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, J.; Herald, T.; Cox, S.; Noronha, L.; Perumal, R.; Lee, H.S.; Smolensky, D. Anticancer Activity of a Novel High Phenolic Sorghum Bran in Human Colon Cancer Cells. Oxid. Med. Cell Longev. 2020, 2020, 2890536. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Gao, H.; Wang, B.; Tongcheng, X.; Gao, B.; Yu, L.L. Triacylglycerol, fatty acid, and phytochemical profiles in a new red sorghum variety (Ji Liang No. 1) and its antioxidant and anti-inflammatory properties. Food Sci. Nutr. 2019, 7, 949–958. [Google Scholar] [CrossRef] [Green Version]
- Espitia-Hernandez, P.; Chavez Gonzalez, M.L.; Ascacio-Valdes, J.A.; Davila-Medina, D.; Flores-Naveda, A.; Silva, T.; Ruelas Chacon, X.; Sepulveda, L. Sorghum (Sorghum bicolor L.) as a potential source of bioactive substances and their biological properties. Crit. Rev. Food Sci. Nutr. 2020, 1–12. [Google Scholar] [CrossRef]
- Punia, H.; Tokas, J.; Malik, A.; Sangwan, S. Characterization of phenolic compounds and antioxidant activity in sorghum [Sorghum bicolor (L.) Moench] grains. Cereal Res. Commun. 2021, 1–11. [Google Scholar] [CrossRef]
- Miafo, A.P.T.; Koubala, B.B.; Kansci, G.; Muralikrishna, G. Antioxidant properties of free and bound phenolic acids from bran, spent grain, and sorghum seeds. Cereal Chem. 2020, 97, 1236–1243. [Google Scholar] [CrossRef]
- Ofosu, F.K.; Elahi, F.; Daliri, E.B.; Tyagi, A.; Chen, X.Q.; Chelliah, R.; Kim, J.H.; Han, S.I.; Oh, D.H. UHPLC-ESI-QTOF-MS/MS characterization, antioxidant and antidiabetic properties of sorghum grains. Food Chem. 2021, 337, 127788. [Google Scholar] [CrossRef]
- Wu, L.; Huang, Z.; Qin, P.; Yao, Y.; Meng, X.; Zou, J.; Zhu, K.; Ren, G. Chemical characterization of a procyanidin-rich extract from sorghum bran and its effect on oxidative stress and tumor inhibition in vivo. J. Agric. Food Chem. 2011, 59, 8609–8615. [Google Scholar] [CrossRef]
- Luo, M.; Hou, F.; Dong, L.; Huang, F.; Zhang, R.; Su, D. Comparison of microwave and high-pressure processing on bound phenolic composition and antioxidant activities of sorghum hull. Int. J. Food Sci. Technol. 2020, 55, 3190–3202. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Dung, V.V.; Zhao, B.T.; Kim, Y.H.; Min, B.S.; Woo, M.H. Antithrombotic and antidiabetic flavonoid glycosides from the grains of Sorghum bicolor (L.) Moench var. hwanggeumchal. Arch. Pharm. Res. 2014, 37, 1394–1402. [Google Scholar] [CrossRef] [PubMed]
- Dia, V.P.; Pangloli, P.; Jones, L.; McClure, A.; Patel, A. Phytochemical concentrations and biological activities of Sorghum bicolor alcoholic extracts. Food Funct. 2016, 7, 3410–3420. [Google Scholar] [CrossRef]
- Taylor, J.R.N.; Belton, P.S.; Beta, T.; Duodu, K.G. Increasing the utilisation of sorghum, millets and pseudocereals: Developments in the science of their phenolic phytochemicals, biofortification and protein functionality. J. Cereal Sci. 2014, 59, 257–275. [Google Scholar] [CrossRef] [Green Version]
- Awika, J.M.; Rooney, L.W. Sorghum phytochemicals and their potential impact on human health. Phytochemistry 2004, 65, 1199–1221. [Google Scholar] [CrossRef]
- Girard, A.L.; Awika, J.M. Sorghum polyphenols and other bioactive components as functional and health promoting food ingredients. J. Cereal Sci. 2018, 84, 112–124. [Google Scholar] [CrossRef]
- Duodu, K.G.; Awika, J.M. Phytochemical-Related Health-Promoting Attributes of Sorghum and Millets. In Sorghum and Millets; AACC International Press: Washington, DC, USA, 2019; pp. 225–258. [Google Scholar]
- Gaytán-Martínez, M.; Cabrera-Ramírez, Á.H.; Morales-Sánchez, E.; Ramírez-Jiménez, A.K.; Cruz-Ramírez, J.; Campos-Vega, R.; Velazquez, G.; Loarca-Piña, G.; Mendoza, S. Effect of nixtamalization process on the content and composition of phenolic compounds and antioxidant activity of two sorghums varieties. J. Cereal Sci. 2017, 77, 1–8. [Google Scholar] [CrossRef]
- Kamath, V.G.; Chandrashekar, A.; Rajini, P.S. Antiradical properties of sorghum (Sorghum bicolor L. Moench) flour extracts. J. Cereal Sci. 2004, 40, 283–288. [Google Scholar] [CrossRef]
- Hong, S.; Pangloli, P.; Perumal, R.; Cox, S.; Noronha, L.E.; Dia, V.P.; Smolensky, D. A Comparative Study on Phenolic Content, Antioxidant Activity and Anti-Inflammatory Capacity of Aqueous and Ethanolic Extracts of Sorghum in Lipopolysaccharide-Induced RAW 264.7 Macrophages. Antioxidants (Basel) 2020, 9, 1297. [Google Scholar] [CrossRef]
- Moraes, É.A.; Natal, D.I.G.; Queiroz, V.A.V.; Schaffert, R.E.; Cecon, P.R.; de Paula, S.O.; Benjamim, L.D.A.; Ribeiro, S.M.R.; Martino, H.S.D. Sorghum genotype may reduce low-grade inflammatory response and oxidative stress and maintains jejunum morphology of rats fed a hyperlipidic diet. Food Res. Int. 2012, 49, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Awika, J.M.; McDonough, C.M.; Rooney, L.W. Decorticating Sorghum To Concentrate Healthy Phytochemicals. J. Agric. Food Chem. 2005, 53, 6230–6234. [Google Scholar] [CrossRef] [PubMed]
- Hou, F.; Su, D.; Xu, J.; Gong, Y.; Zhang, R.; Wei, Z.; Chi, J.; Zhang, M. Enhanced Extraction of Phenolics and Antioxidant Capacity from Sorghum (Sorghum bicolor L. Moench) Shell Using Ultrasonic-Assisted Ethanol-Water Binary Solvent. J. Food Process. Preserv. 2016, 40, 1171–1179. [Google Scholar] [CrossRef]
- Smolensky, D.; Rhodes, D.; McVey, D.S.; Fawver, Z.; Perumal, R.; Herald, T.; Noronha, L. High-Polyphenol Sorghum Bran Extract Inhibits Cancer Cell Growth Through ROS Induction, Cell Cycle Arrest, and Apoptosis. J. Med. Food 2018, 21, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Cui, J.; Zhang, H.; Duan, Y. Subcritical water extraction of polyphenolic compounds from sorghum (Sorghum bicolor L.) bran and their biological activities. Food Chem. 2018, 262, 14–20. [Google Scholar] [CrossRef]
- Devi, P.S.; Kumar, M.S.; Das, S.M. DNA Damage Protecting Activity and Free Radical Scavenging Activity of Anthocyanins from Red Sorghum (Sorghum bicolor) Bran. Biotechnol. Res. Int. 2012, 2012, 258787. [Google Scholar] [CrossRef] [Green Version]
- Burdette, A.; Garner, P.L.; Mayer, E.P.; Hargrove, J.L.; Hartle, D.K.; Greenspan, P. Anti-Inflammatory Activity of Select Sorghum (Sorghum bicolor) Brans. J. Med. Food 2010, 13, 879–887. [Google Scholar] [CrossRef] [Green Version]
- Afify, A.E.-M.M.R.; El-Beltagi, H.S.; El-Salam, S.M.A.; Omran, A.A. Biochemical changes in phenols, flavonoids, tannins, vitamin E, β–carotene and antioxidant activity during soaking of three white sorghum varieties. Asian Pac. J. Trop. Biomed. 2012, 2, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Hithamani, G.; Srinivasan, K. Bioaccessibility of Polyphenols from Wheat (Triticum aestivum), Sorghum (Sorghum bicolor), Green Gram (Vigna radiata), and Chickpea (Cicer arietinum) as Influenced by Domestic Food Processing. J. Agric. Food Chem. 2014, 62, 11170–11179. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xu, T.; Zheng, W.; Gao, B.; Zhu, H.; Xu, R.; Deng, H.; Wang, B.; Wu, Y.; Sun, X.; et al. Triacylglycerols compositions, soluble and bound phenolics of red sorghums, and their radical scavenging and anti-inflammatory activities. Food Chem. 2021, 340, 128123. [Google Scholar] [CrossRef] [PubMed]
- Lohani, U.C.; Muthukumarappan, K. Influence of fermentation followed by ultrasonication on functional properties of sorghum extrudates. J. Food Process Eng. 2020, 43. [Google Scholar] [CrossRef]
- N’Dri, D.; Mazzeo, T.; Zaupa, M.; Ferracane, R.; Fogliano, V.; Pellegrini, N. Effect of cooking on the total antioxidant capacity and phenolic profile of some whole-meal African cereals. J. Sci. Food Agric. 2013, 93, 29–36. [Google Scholar] [CrossRef]
- Przybylska-Balcerek, A.; Frankowski, J.; Stuper-Szablewska, K. Bioactive compounds in sorghum. Eur. Food Res. Technol. 2018, 245, 1075–1080. [Google Scholar] [CrossRef]
- Hassan, S.; Ahmad, N.; Ahmad, T.; Imran, M.; Xu, C.; Khan, M.K. Microwave processing impact on the phytochemicals of sorghum seeds as food ingredient. J. Food Process. Preserv. 2019, 43. [Google Scholar] [CrossRef]
- Brohan, M.; Jerkovic, V.; Collin, S. Potentiality of red sorghum for producing stilbenoid-enriched beers with high antioxidant activity. J. Agric. Food Chem. 2011, 59, 4088–4094. [Google Scholar] [CrossRef]
- Kean, E.G.; Ejeta, G.; Hamaker, B.R.; Ferruzzi, M.G. Characterization of Carotenoid Pigments in Mature and Developing Kernels of Selected Yellow-Endosperm Sorghum Varieties. J. Agric. Food Chem. 2007, 55, 2619–2626. [Google Scholar] [CrossRef]
- Cardoso Lde, M.; Pinheiro, S.S.; da Silva, L.L.; de Menezes, C.B.; de Carvalho, C.W.; Tardin, F.D.; Queiroz, V.A.; Martino, H.S.; Pinheiro-Sant’Ana, H.M. Tocochromanols and carotenoids in sorghum (Sorghum bicolor L.): Diversity and stability to the heat treatment. Food Chem. 2015, 172, 900–908. [Google Scholar] [CrossRef]
- Pinheiro-Sant’Ana, H.M.; Guinazi, M.; Oliveira, D.D.S.; Della Lucia, C.M.; Reis, B.D.L.; Brandão, S.C.C. Method for simultaneous analysis of eight vitamin E isomers in various foods by high performance liquid chromatography and fluorescence detection. J. Chromatogr. A 2011, 1218, 8496–8502. [Google Scholar] [CrossRef]
- Chung, I.-M.; Yong, S.-J.; Lee, J.; Kim, S.-H. Effect of genotype and cultivation location on β-sitosterol and α-, β-, γ-, and δ-tocopherols in sorghum. Food Res. Int. 2013, 51, 971–976. [Google Scholar] [CrossRef]
- Paiva, C.L.; Evangelista, W.P.; Queiroz, V.A.; Gloria, M.B. Bioactive amines in sorghum: Method optimisation and influence of line, tannin and hydric stress. Food Chem. 2015, 173, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Zbasnik, R.; Carr, T.; Weller, C.; Hwang, K.T.; Wang, L.; Cuppett, S.; Schlegel, V. Antiproliferation properties of grain sorghum dry distiller’s grain lipids in Caco-2 cells. J. Agric. Food Chem. 2009, 57, 10435–10441. [Google Scholar] [CrossRef] [Green Version]
- Leguizamón, C.; Weller, C.L.; Schlegel, V.L.; Carr, T.P. Plant Sterol and Policosanol Characterization of Hexane Extracts from Grain Sorghum, Corn and their DDGS. J. Am. Oil Chem. Soc. 2009, 86, 707–716. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Li, Z.; Zhang, X.; Liu, Y.; Hu, J.; Yang, C.; Zhao, X. The effects of ultrasound on the growth, nutritional quality and microbiological quality of sprouts. Trends Food Sci. Technol. 2021, 111, 292–300. [Google Scholar] [CrossRef]
- Liu, H.K.; Kang, Y.F.; Zhao, X.Y.; Lii, Y.P.; Zhang, X.W.; Zhang, S.J. Effects of elicitation on bioactive compounds and biological activities of sprouts. J. Funct. Foods 2019, 53, 136–145. [Google Scholar] [CrossRef]
- Velderrain-Rodriguez, G.R.; Palafox-Carlos, H.; Wall-Medrano, A.; Ayala-Zavala, J.F.; Chen, C.Y.; Robles-Sanchez, M.; Astiazaran-Garcia, H.; Alvarez-Parrilla, E.; Gonzalez-Aguilar, G.A. Phenolic compounds: Their journey after intake. Food Funct. 2014, 5, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef]
- Shelembe, J.S.; Cromarty, D.; Bester, M.; Minnaar, A.; Duodu, K.G. Effect of Acidic Condition on Phenolic Composition and Antioxidant Potential of Aqueous Extracts from Sorghum (Sorghum Bicolor) Bran. J. Food Biochem. 2014, 38, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Dykes, L.; Peterson, G.C.; Rooney, W.L.; Rooney, L.W. Flavonoid composition of lemon-yellow sorghum genotypes. Food Chem. 2011, 128, 173–179. [Google Scholar] [CrossRef]
- Ribas-Agustí, A.; Martín-Belloso, O.; Soliva-Fortuny, R.; Elez-Martínez, P. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2531–2548. [Google Scholar] [CrossRef] [Green Version]
- Arbex, P.M.; Moreira, M.E.D.C.; Toledo, R.C.L.; de Morais Cardoso, L.; Pinheiro-Sant’ana, H.M.; Benjamin, L.D.A.; Licursi, L.; Carvalho, C.W.P.; Queiroz, V.A.V.; Martino, H.S.D. Extruded sorghum flour (Sorghum bicolor L.) modulate adiposity and inflammation in high fat diet-induced obese rats. J. Funct. Foods 2018, 42, 346–355. [Google Scholar] [CrossRef]
- Awika, J.M.; Rooney, L.W.; Waniska, R.D. Anthocyanins from black sorghum and their antioxidant properties. Food Chem. 2005, 90, 293–301. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.; Barros, L.; Ferreira, I. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef]
- Yu, C.K.; Springob, K.; Schmidt, J.; Nicholson, R.L.; Chu, I.K.; Yip, W.K.; Lo, C. A stilbene synthase gene (SbSTS1) is involved in host and nonhost defense responses in sorghum. Plant Physiol. 2005, 138, 393–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trono, D. Carotenoids in Cereal Food Crops: Composition and Retention throughout Grain Storage and Food Processing. Plants (Basel) 2019, 8, 551. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, L.D.; Pinheiro, S.S.; de Carvalho, C.W.P.; Queiroz, V.A.V.; de Menezes, C.B.; Moreira, A.V.B.; de Barros, F.A.R.; Awika, J.M.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Phenolic compounds profile in sorghum processed by extrusion cooking and dry heat in a conventional oven. J. Cereal Sci. 2015, 65, 220–226. [Google Scholar] [CrossRef]
- Wongwaiwech, D.; Weerawatanakorn, M.; Boonnoun, P. Subcritical dimethyl ether extraction as a simple method to extract nutraceuticals from byproducts from rice bran oil manufacture. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Lopes, R.; de Lima, S.L.S.; da Silva, B.P.; Toledo, R.C.L.; Moreira, M.E.D.; Anunciacao, P.C.; Walter, E.H.M.; Carvalho, C.W.P.; Queiroz, V.A.V.; Ribeiro, A.Q.; et al. Evaluation of the health benefits of consumption of extruded tannin sorghum with unfermented probiotic milk in individuals with chronic kidney disease. Food Res. Int. 2018, 107, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Darvin, P.; Joung, Y.H.; Nipin, S.P.; Kang, D.Y.; Byun, H.J.; Hwang, D.Y.; Cho, K.H.; Do Park, K.; Lee, H.K.; Yang, Y.M. Sorghum polyphenol suppresses the growth as well as metastasis of colon cancer xenografts through co-targeting jak2/STAT3 and PI3K/Akt/mTOR pathways. J. Funct. Foods 2015, 15, 193–206. [Google Scholar] [CrossRef]
- Shih, C.-H.; Siu, S.-O.; Ng, R.; Wong, E.; Chiu, L.C.M.; Chu, I.K.; Lo, C. Quantitative analysis of anticancer 3-deoxyanthocyanidins in infected sorghum seedlings. J. Agric. Food Chem. 2007, 55, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Suganyadevi, P.; Saravanakumar, K.M.; Mohandas, S. The antiproliferative activity of 3-deoxyanthocyanins extracted from red sorghum (Sorghum bicolor) bran through P53-dependent and Bcl-2 gene expression in breast cancer cell line. Life Sci. 2013, 92, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Browning, J.D.; Awika, J.M. Sorghum 3-Deoxyanthocyanins Possess Strong Phase II Enzyme Inducer Activity and Cancer Cell Growth Inhibition Properties. J. Agric. Food Chem. 2009, 57, 1797–1804. [Google Scholar] [CrossRef]
- Yang, L.; Allred, K.F.; Dykes, L.; Allred, C.D.; Awika, J.M. Enhanced action of apigenin and naringenin combination on estrogen receptor activation in non-malignant colonocytes: Implications on sorghum-derived phytoestrogens. Food Funct. 2015, 6, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.M.; Jang, G.Y.; Park, D.; Woo, K.S.; Kim, T.M.; Jeong, H.S.; Kim, D.J. Effect of sorghum ethyl-acetate extract on benign prostatic hyperplasia induced by testosterone in Sprague-Dawley rats. Biosci. Biotechnol. Biochem. 2018, 82, 2101–2108. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, Y. Anti-diabetic effect of sorghum extract on hepatic gluconeogenesis of streptozotocin-induced diabetic rats. Nutr. Metab. 2012, 9. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-S.; Hyun, T.K.; Kim, M.-J. The inhibitory effects of ethanol extracts from sorghum, foxtail millet and proso millet on α-glucosidase and α-amylase activities. Food Chem. 2011, 124, 1647–1651. [Google Scholar] [CrossRef]
- Hoi, J.T.; Weller, C.L.; Schlegel, V.L.; Cuppett, S.L.; Lee, J.-Y.; Carr, T.P. Sorghum distillers dried grain lipid extract increases cholesterol excretion and decreases plasma and liver cholesterol concentration in hamsters. J. Funct. Foods 2009, 1, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Olawole, T.D.; Okundigie, M.I.; Rotimi, S.O.; Okwumabua, O.; Afolabi, I.S. Preadministration of Fermented Sorghum Diet Provides Protection against Hyperglycemia-Induced Oxidative Stress and Suppressed Glucose Utilization in Alloxan-Induced Diabetic Rats. Front. Nutr. 2018, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Links, M.R.; Taylor, J.; Kruger, M.C.; Naidoo, V.; Taylor, J.R.N. Kafirin microparticle encapsulated sorghum condensed tannins exhibit potential as an anti-hyperglycaemic agent in a small animal model. J. Funct. Foods 2016, 20, 394–399. [Google Scholar] [CrossRef] [Green Version]
- Links, M.R.; Taylor, J.; Kruger, M.C.; Taylor, J.R.N. Sorghum condensed tannins encapsulated in kafirin microparticles as a nutraceutical for inhibition of amylases during digestion to attenuate hyperglycaemia. J. Funct. Foods 2015, 12, 55–63. [Google Scholar] [CrossRef]
- Anunciacao, P.C.; Cardoso, L.D.; Queiroz, V.A.V.; de Menezes, C.B.; de Carvalho, C.W.P.; Pinheiro-Sant’Ana, H.M.; Alfenas, R.D.G. Consumption of a drink containing extruded sorghum reduces glycaemic response of the subsequent meal. Eur. J. Nutr. 2018, 57, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Choo, Y.-Y.; Lee, S.; Nguyen, P.-H.; Lee, W.; Woo, M.-H.; Min, B.-S.; Lee, J.-H. Caffeoylglycolic acid methyl ester, a major constituent of sorghum, exhibits anti-inflammatory activity via the Nrf2/heme oxygenase-1 pathway. RSC Adv. 2015, 5, 17786–17796. [Google Scholar] [CrossRef]
- Dia, V.P.; Bradwell, J.; Pangloli, P. Sorghum Phenolics Inhibits Inflammasomes in Lipopolysaccharide (LPS)-Primed and Adenosine Triphosphate (ATP)-Activated Macrophages. Plant Foods Hum. Nutr. 2019, 74, 307–315. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Zhao, B.T.; Lee, J.H.; Kim, Y.H.; Min, B.S.; Woo, M.H. Isolation of benzoic and cinnamic acid derivatives from the grains of Sorghum bicolor and their inhibition of lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells. Food Chem. 2015, 168, 512–519. [Google Scholar] [CrossRef]
- Agah, S.; Kim, H.; Mertens-Talcott, S.U.; Awika, J.M. Complementary cereals and legumes for health: Synergistic interaction of sorghum flavones and cowpea flavonols against LPS-induced inflammation in colonic myofibroblasts. Mol. Nutr. Food Res. 2017, 61, 1600625. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, A.R.; Moreira, M.E.D.; Toledo, R.C.L.; Benjamin, L.D.; Queiroz, V.A.V.; Veloso, M.P.; Reis, K.D.; Martino, H.S.D. Extruded sorghum (Sorghum bicolor L.) reduces metabolic risk of hepatic steatosis in obese rats consuming a high fat diet. Food Res. Int. 2018, 112, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Stefoska-Needham, A.; Beck, E.J.; Johnson, S.K.; Batterham, M.J.; Grant, R.; Ashton, J.; Tapsell, L.C. A Diet Enriched with Red Sorghum Flaked Biscuits, Compared to a Diet Containing White Wheat Flaked Biscuits, Does Not Enhance the Effectiveness of an Energy-Restricted Meal Plan in Overweight and Mildly Obese Adults. J. Am. Coll. Nutr. 2017, 36, 184–192. [Google Scholar] [CrossRef]
Food Matrix | Seed Coat Color | Extraction Method | TPC (mg GAE/g) | Reference |
---|---|---|---|---|
SSG 59-3 whole grain | Red | 1% HCl/methanol (v/v) for 2 h with shaking | 10.41 | [10] |
G-46 whole grain | Brown | 1% HCl/methanol (v/v) for 2 h with shaking | 9.56 | [10] |
PC-5 whole grain | Pearl white | 1% HCl/methanol (v/v) for 2 h with shaking | 1.91 | [10] |
S-713 whole grain | White | 1% HCl/methanol (v/v) for 2 h with shaking | 1.74 | [10] |
Cofs29 whole grain | Black | 1% HCl/methanol (v/v) for 2 h with shaking | 8.44 | [10] |
Terral Rev 9924 whole grain | Ethanol/water/formic acid (50:48:2) | 1.21 | [16] | |
Terral Rev 9924 whole grain | Methanol/water/formic acid (50:48:2 v/v/v) | 0.82 | [16] | |
Pioneer 84P8D whole grain | Ethanol/water/formic acid (50:48:2) | 0.89 | [16] | |
Pioneer 84P8D whole grain | Methanol/water/formic acid (50:48:2 v/v/v) | 0.82 | [16] | |
Dekalb Dk-54-00 whole grain | Ethanol/water/formic acid (50:48:2) | 0.86 | [16] | |
Dekalb Dk-54-00 whole grain | Methanol/water/formic acid (50:48:2 v/v/v) | 0.76 | [16] | |
Ffr353 whole grain | Ethanol/water/formic acid (50:48:2) | 0.92 | [16] | |
Ffr353 whole grain | Methanol/water/formic acid (50:48:2 v/v/v) | 0.84 | [16] | |
Dynagro Dg765B whole grain | Ethanol/water/formic acid (50:48:2) | 1.12 | [16] | |
Dynagro Dg765B whole grain | Methanol/water/formic acid (50:48:2 v/v/v) | 1.07 | [16] | |
Pioneer 83P99 whole grain | Ethanol/water/formic acid (50:48:2) | 0.95 | [16] | |
Pioneer 83P99 whole grain | Methanol/water/formic acid (50:48:2 v/v/v) | 0.86 | [16] | |
Dekalb Dk-51-01whole grain | Ethanol/water/formic acid (50:48:2) | 1.07 | [16] | |
Dekalb Dk-51-01whole grain | Methanol/water/formic acid (50:48:2 v/v/v) | 0.9 | [16] | |
Terral Rev 9782 whole grain | Ethanol/water/formic acid (50:48:2) | 1.34 | [16] | |
Terral Rev 9782 whole grain | Methanol/water/formic acid (50:48:2 v/v/v) | 1.25 | [16] | |
Terral Rev 9562 whole grain | Ethanol/water/formic acid (50:48:2) | 1.08 | [16] | |
Terral Rev 9562 whole grain | Methanol/water/formic acid (50:48:2 v/v/v) | 0.91 | [16] | |
Terral Rev 9562 whole grain | Ethanol/water/formic acid (50:48:2) | 0.95 | [16] | |
Terral Rev 9562 whole grain | Methanol/water/formic acid (50:48:2 v/v/v) | 0.84 | [16] | |
Sorghum whole grain | Red | 40% methanol | ~1.8 | [8] |
Sorghum whole grain | Red | 60% methanol | ~2.1 | [8] |
Sorghum whole grain | Red | 80% methanol | ~1.8 | [8] |
Sorghum whole grain | Red | 40% ethanol | ~2.3 | [8] |
Sorghum whole grain | Red | 60% ethanol | ~2.3 | [8] |
Sorghum whole grain | Red | 80% ethanol | ~1.8 | [8] |
Sorghum whole grain | Red | 40% acetone | ~2.7 | [8] |
Sorghum whole grain | Red | 60% acetone | ~2.6 | [8] |
Sorghum whole grain | Red | 80% acetone | ~2.5 | [8] |
Sorghum whole grain | Red | Acetone/water mixture (60:40, v/v), 10:1 | ~2.3 | [8] |
Sorghum whole grain | Red | Acetone/water mixture (60:40, v/v), 20:1 | ~2.5 | [8] |
Sorghum whole grain | Red | Acetone/water mixture (60:40, v/v), 30:1 | ~2.6 | [8] |
Sorghum whole grain | Red | Acetone/water mixture (60:40, v/v), 40:1 | ~2.55 | [8] |
Sorghum whole grain | Red | Methanol | 47.86 | [21] |
Sorghum whole grain | White | Methanol | 34.78 | [21] |
Sorghum whole grain | White | Water extraction | 0.763 | [22] |
Sorghum whole grain | White | Methanol extraction | 0.461 | [22] |
Sorghum whole grain | White | Ethanol extraction | 0.486 | [22] |
Sorghum whole grain | White | t-Butanol extraction | 0.524 | [22] |
Sc84Mx whole grain | Black | Water extraction | 8.5 | [23] |
Sc84Mx whole grain | Black | Ethanol extraction | 9.58 | [23] |
Sc84Mx whole grain | Black | 0.1% v/v HCl extraction | 9 | [23] |
Sc84Mx whole grain | Black | Ethanol with 0.1% v/v HCl extraction | 18.26 | [23] |
Sc84Ks whole grain | Black | Water extraction | 8.23 | [23] |
Sc84Ks whole grain | Black | Ethanol extraction | 10.24 | [23] |
Sc84Ks whole grain | Black | 0.1% v/v HCl extraction | 8.5 | [23] |
Sc84Ks whole grain | Black | Ethanol with 0.1% v/v HCl extraction | 19.6 | [23] |
Pi570481 whole grain | Black | Water extraction | 1.42 | [23] |
Pi570481 whole grain | Black | Ethanol extraction | 6.02 | [23] |
Pi570481 whole grain | Black | 0.1% v/v HCl extraction | 3.24 | [23] |
Pi570481 whole grain | Black | Ethanol with 0.1% v/v HCl extraction | 12.61 | [23] |
BRS 309 whole grain | White | 6.82 | [24] | |
BRS 305 whole grain | Light brown | 0.84 | [24] | |
BRS 310 whole grain | Red | 0.95 | [24] | |
Sumac whole grain | Brown | Aqueous acetone (70%) | 22.5 | [25] |
Sc103 whole grain | Brown | Aqueous acetone (70%) | 13.5 | [25] |
Tx430-Cs whole grain | Black | Aqueous acetone (70%) | 7.6 | [25] |
Tx430-V whole grain | Black | Aqueous acetone (70%) | 9.8 | [25] |
ATx631 ×RTx436 whole grain | White | Aqueous acetone (70%) | 0.8 | [25] |
Sorghum Shell | Red | 80% ethanol solvent ratio of 1:15 at 50 °C in a 0.32 W cm−2 ultrasonic intensity | 52.23 | [26] |
Macia bran | White | 50% v/v ethanol, shaken for 2 h | ~2.5 | [27] |
Sumac bran | Brown | 50% v/v ethanol, shaken for 2 h | ~28 | [27] |
Pi152653 bran | Black | 50% v/v ethanol, shaken for 2 h | ~58 | [27] |
Pi152687 bran | Black | 50% v/v ethanol, shaken for 2 h | ~45 | [27] |
Pi193073 bran | Black | 50% v/v ethanol, shaken for 2 h | ~50 | [27] |
Pi329694 bran | Black | 50% v/v ethanol, shaken for 2 h | ~68 | [27] |
Pi559733 bran | Black | 50% v/v ethanol, shaken for 2 h | ~52 | [27] |
Pi559855 bran | Black | 50% v/v ethanol, shaken for 2 h | ~24 | [27] |
Pi568282 bran | Black | 50% v/v ethanol, shaken for 2 h | ~70 | [27] |
Pi570366 bran | Black | 50% v/v ethanol, shaken for 2 h | ~59 | [27] |
Pi570481 bran | Black | 50% v/v ethanol, shaken for 2 h | ~74 | [27] |
Pi570484 bran | Black | 50% v/v ethanol, shaken for 2 h | ~54 | [27] |
Pi570819 bran | Black | 50% v/v ethanol, shaken for 2 h | ~53 | [27] |
Pi570889 bran | Black | 50% v/v ethanol, shaken for 2 h | ~57 | [27] |
Pi570993 bran | Black | 50% v/v ethanol, shaken for 2 h | ~53 | [27] |
Sorghum bran | Subcritical water extraction | 42.453 | [28] | |
Sorghum bran | Hot water extraction | 31.813 | [28] | |
Sorghum bran | Red | Acetone | 0.14 | [29] |
Sorghum bran | Red | Methanol | 0.58 | [29] |
Sorghum bran | Red | Acidified methanol | 0.93 | [29] |
Sumac sorghum bran | Red | 50% ethanol | 62.5 | [30] |
Black sorghum bran | Black | 50% ethanol | 23.4 | [30] |
Mycogen sorghum bran | Bronze | 50% ethanol | 7 | [30] |
White sorghum bran | White | 50% ethanol | 3.1 | [30] |
Phenolic Compounds | Content (ug/g) | Source | Ref. | |
---|---|---|---|---|
Phenolic acids | ||||
Hydrocinnamic acids | Caffeic acid | 13.55–20.80 | 3 white sorghum varieties | [31] |
1.91 | Sorghum grains | [32] | ||
Soluble 0–523.02; Bound 1.32–161.11 | 6 red sorghum varieties | [33] | ||
10.2 | White sorghum flour | [34] | ||
Soluble 5.44; Bound 52.58 | Sorghum grain flour | [35] | ||
No data | 8 brown sorghum genotypes | [12] | ||
19, 11.5 | 1 red sorghum and 1 white sorghum | [36] | ||
1.43–3.87 | 5 sorghum varieties | [10] | ||
p-Coumaric acid | 41.88–71.88 | 3 white sorghum varieties | [31] | |
3.77 | Sorghum grains | [32] | ||
Soluble 90.71–172.44; Bound 193.25–489.18 | 6 red sorghum varieties | [33] | ||
4.87 | White sorghum flour | [34] | ||
Soluble 1.47; Bound 81.93 | Sorghum grain flour | [35] | ||
71, 149 | 1 red sorghum and 1 white sorghum | [36] | ||
0.68–2.96 | 5 sorghum varieties | [10] | ||
Ferulic acid | 120.47–163.91 | 3 white sorghum varieties | [31] | |
15.65 | Commercial sorghum grains | [37] | ||
6.25 | Sorghum grains | [32] | ||
Soluble 291.99–743.65; Bound 949.46–2210.92 | 6 red sorghum varieties | [33] | ||
13.4 | White sorghum flour | [34] | ||
Soluble 2.76; Bound 420.96 | Sorghum grain flour | [35] | ||
91.5, 293 | 1 red sorghum and 1 white sorghum | [36] | ||
0.81–2.86 | 5 sorghum varieties | [10] | ||
Sinapic acid | 8.22 | Sorghum grains | [32] | |
10.5, 17.5 | 1 red sorghum and 1 white sorghum | [36] | ||
Chlorogenic acid | 235.91–293.19 | 2 sorghum varieties | [21] | |
Soluble 2.95; Bound 9.78 | Sorghum grain flour | [35] | ||
11.5, 25 | 1 red sorghum and 1 white sorghum | [36] | ||
Cinnamic acid | 9.76–15.02 | 3 white sorghum varieties | [31] | |
0, 11.5 | 1 red sorghum and 1 white sorghum | [36] | ||
Hydrobenzoic acids | Protocatechuic acid | 150.28–178.22 | 3 white sorghum varieties | [31] |
3.59 | Sorghum grains | [32] | ||
6.18 | White sorghum flour | [34] | ||
Soluble 3.92; Bound 43.61 | Sorghum grain flour | [35] | ||
83.5, 142.5 | 1 red sorghum and 1 white sorghum | [36] | ||
1.31–5.88 | 5 sorghum varieties | [10] | ||
p-Hydroxybenzoic acid | 6.13–16.39 | 3 white sorghum varieties | [31] | |
13.3 | White sorghum flour | [34] | ||
19, 11.5 | 1 red sorghum and 1 white sorghum | [36] | ||
3,4-Dihydroxybenzoic acid | Soluble 0–369.52; Bound 33–454.54 | 6 red sorghum varieties | [33] | |
Vanillic acid | 15.45–23.43 | 3 white sorghum varieties | [31] | |
Soluble 5.81; Bound 14.18 | Sorghum grain flour | [35] | ||
23, 0 | 1 red sorghum and 1 white sorghum | [36] | ||
Salicylic acid | 63.4 | Sorghum grains | [32] | |
22.8 | White sorghum flour | [34] | ||
Gallic acid | 14.84–21.51 | 3 white sorghum varieties | [31] | |
45.8 | Sorghum grains | [32] | ||
533.10–1005.23 | 2 sorghum varieties | [21] | ||
15.65 | Commercial sorghum grains | [37] | ||
Soluble 5.04; Bound 27.98 | Sorghum grain flour | [35] | ||
59, 16.5 | 1 red sorghum and 1 white sorghum | [36] | ||
Syringic acid | 15.71–17.48 | 3 white sorghum varieties | [31] | |
15.6 | Sorghum grains | [32] | ||
5.5, 25 | 1 red sorghum and 1 white sorghum | [36] | ||
Flavonoids | ||||
3-Deoxyanthocyanidin | Luteolinidin | Soluble 20.39–57.14; Bound 0.06–0.15 | 6 red sorghum varieties | [33] |
0.16–0.33 | 3 sorghum genotypes flours | [24] | ||
3.16 | Sorghum grain flour | [35] | ||
No data | 8 brown sorghum genotypes | [12] | ||
0.57–1.28 | 5 sorghum varieties | [10] | ||
Apigeninidin | Soluble 4.76–13.04; Bound 0.01–0.04 | 6 red sorghum varieties | [33] | |
0.56–1.47 | 3 sorghum genotypes flours | [24] | ||
3.17 | Sorghum grain flour | [35] | ||
No data | 8 brown sorghum genotypes | [12] | ||
0.87–3.74 | 5 sorghum varieties | [10] | ||
5-Methoxyluteolinidin | Soluble 2.23–6.04; Bound 0.-0.04 | 6 red sorghum varieties | [33] | |
2.04 | Sorghum grain flour | [35] | ||
7-Methoxyapigeninidin | Soluble 5.25–16.82; Bound 0.01–0.05 | 6 red sorghum varieties | [33] | |
0.81 | Sorghum grain flour | [35] | ||
5-Methoxyluteolinidin 7-glucoside | 0.18 | Sorghum grain flour | [35] | |
Luteolinidin 5-glucoside | 0.11 | Sorghum grain flour | [35] | |
7-Methoxyapigeninidin 5-glucoside | 0.23 | Sorghum grain flour | [35] | |
Apigeninidin 5-glucoside | 0.07 | Sorghum grain flour | [35] | |
Luteolinidin anthocyanin | 0.09 | Sorghum grain flour | [35] | |
Flavones | Luteolin | 112.56–210.70 | 3 white sorghum varieties | [31] |
No data | 8 brown sorghum genotypes | [12] | ||
1.34, 3.95 | 1 red sorghum and 1 white sorghum | [36] | ||
0.68–1.85 | 5 sorghum varieties | [10] | ||
Apigenin | 25.74–65.58 | 3 white sorghum varieties | [31] | |
2220 | Sorghum bran subcritical water extraction | [28] | ||
No data | 8 brown sorghum genotypes | [12] | ||
0.54, 0 | 1 red sorghum and 1 white sorghum | [36] | ||
0.38–2.24 | 5 sorghum varieties | [10] | ||
Vitexin | 0.50, 0.90 | 1 red sorghum and 1 white sorghum | [36] | |
Hispidulin | No data | 8 brown sorghum genotypes | [12] | |
Flavanones | Naringenin | 22.85–28.62 | 3 white sorghum varieties | [31] |
No data | 8 brown sorghum genotypes | [12] | ||
0.58, 1.11 | 1 red sorghum and 1 white sorghum | [36] | ||
0.36–1.16 | 5 sorghum varieties | [10] | ||
Naringenin hexoside | 13,330 | Sorghum bran subcritical water extraction | [28] | |
Eriodictyol | No data | 8 brown sorghum genotypes | [12] | |
Flavonols | Kaempferol | 17.88–36.44 | 3 white sorghum varieties | [31] |
No data | 8 brown sorghum genotypes | [12] | ||
0.33, 0.43 | 1 red sorghum and 1 white sorghum | [36] | ||
Quercetin | 22.34–29.43 | 3 white sorghum varieties | [31] | |
560.28–613.82 | 2 sorghum varieties | [21] | ||
21.43 | Commercial sorghum grains | [37] | ||
0.17, 0.49 | 1 red sorghum and 1 white sorghum | [36] | ||
Quercetin diglucoside | 8420 | Sorghum bran subcritical water extraction | [28] | |
Rutin | 10,290 | Sorghum bran subcritical water extraction | [28] | |
0.42, 1.61 | 1 red sorghum and 1 white sorghum | [36] | ||
Flavanols | Catechin | 5.58–6.13 | 3 white sorghum varieties | [31] |
194.15–534.88 | 2 sorghum varieties | [21] | ||
5.58 | Commercial sorghum grains | [37] | ||
No data | 8 brown sorghum genotypes | [12] | ||
3.61, 4.57 | 1 red sorghum and 1 white sorghum | [36] | ||
Epicatechin | 112,860 | Sorghum bran subcritical water extraction | [28] | |
Dihydroflavonol | Taxifolin | 27,020 | Sorghum bran subcritical water extraction | [28] |
No data | 8 brown sorghum genotypes | [12] | ||
11.95–34.96 | 5 sorghum varieties | [10] | ||
Taxifolin hexoside I | 25,470 | Sorghum bran subcritical water extraction | [28] | |
Taxifolin hexoside II | 3680 | Sorghum bran subcritical water extraction | [28] | |
Anthocyanins | Cyanidin | No data | 8 brown sorghum genotypes | [12] |
Isoflavones | Glycitein | No data | 8 brown sorghum genotypes | [12] |
Formononetin | No data | 8 brown sorghum genotypes | [12] | |
Ononin | No data | 8 brown sorghum genotypes | [12] | |
Stilbenoids | ||||
trans-Resveratrol | No data | [38] | ||
trans-Piceid | No data | [38] | ||
Tannins | ||||
Dimer procyanidin | 178,860 | Sorghum bran subcritical water extraction | [28] | |
Trimer procyanidin | 51,380 | Sorghum bran subcritical water extraction | [28] | |
Tetramer procyanidin | 167,550 | Sorghum bran subcritical water extraction | [28] |
Bioactive Components | Source | Content | Unit | Reference |
---|---|---|---|---|
Carotenoids | ||||
Lutein | Eight sorghum cultivars | 0.003–0.174 | mg/kg | [39] |
Red and white sorghum cultivars | 24.6, 122.3 | mg/kg | [36] | |
One hundred sorghum genotypes | 0.44–63.37 | μg/100g | [40] | |
Zeaxanthin | Eight sorghum cultivars | 0.007–0.142 | mg/kg | [39] |
Red and white sorghum cultivars | 25.3, 73 | mg/kg | [36] | |
One hundred sorghum genotypes | 1.44–58.85 | μg/100g | [40] | |
β-Carotene | Eight sorghum cultivars | 0–0.010 | mg/kg | [39] |
Five sorghum cultivars | 0.54–1.34 | ug/g | [10] | |
Red and white sorghum cultivars | 27, 34.3 | mg/kg | [36] | |
Three white sorghum cultivars | 0.54–1.19 | mg/kg | [31] | |
Vitamin E | ||||
α-Tocopherol | One hundred sorghum genotypes | 0–1231.6 | μg/100g | [40] |
Five sorghum cultivars | 1.22–5.26 | µg/g | [10] | |
Sorghum flour and seed | 0.0846, 0.01247 | mg/100 g | [41] | |
5 sorghum varieties cultivated in Wonju | 41.61–44.99 | mg/kg | [42] | |
5 sorghum varieties cultivated in Miryang | 41.75–47.53 | mg/kg | [42] | |
β-Tocopherol | One hundred sorghum genotypes | 0–784.7 | μg/100g | [40] |
5 sorghum varieties cultivated in Wonju | 63.89–76.87 | mg/kg | [42] | |
5 sorghum varieties cultivated in Miryang | 82.56–112.52 | mg/kg | [42] | |
γ-Tocopherol | One hundred sorghum genotypes | 174.6–2109 | μg/100g | [40] |
Sorghum flour and seed | 0.2008, 0.2244 | mg/100 g | [41] | |
5 sorghum varieties cultivated in Wonju | 32.77–43.11 | mg/kg | [42] | |
5 sorghum varieties cultivated in Miryang | 35.06–51.28 | mg/kg | [42] | |
δ-Tocopherol | One hundred sorghum genotypes | 0–379.8 | μg/100g | [40] |
5 sorghum varieties cultivated in Wonju | 33.37–36.95 | mg/kg | [42] | |
5 sorghum varieties cultivated in Miryang | 31.34–37.98 | mg/kg | [42] | |
α-Tocotrienol | One hundred sorghum genotypes | 0–311.9 | μg/100g | [40] |
β-Tocotrienol | One hundred sorghum genotypes | 0–850.5 | μg/100g | [40] |
γ-Tocotrienol | One hundred sorghum genotypes | 0–270.5 | μg/100g | [40] |
δ-Tocotrienol | One hundred sorghum genotypes | 0–484.2 | μg/100g | [40] |
Amines | ||||
Spermidine | 22 lines of sorghum | 0.5–18.7 | mg/kg | [43] |
Spermine | 22 lines of sorghum | 2.7–27.2 | mg/kg | [43] |
Putrescine | 22 lines of sorghum | 0.7–7.2 | mg/kg | [43] |
Cadaverine | 22 lines of sorghum | 0–0.6 | mg/kg | [43] |
Policosanols and phytosterols | ||||
β-Sitosterol | 5 sorghum varieties cultivated in Wonju | 17.75–32.32 | mg/kg | [42] |
5 sorghum varieties cultivated in Miryang | 0.37–11.37 | mg/kg | [42] | |
Dry distiller’s grain lipids | 4.1 | mg/g | [44] | |
Soxtec extraction of whole grain sorghum | 1.92 | mg/g of lipids | [45] | |
Reflux extraction of whole grain sorghum | 0.93 | mg/g of lipids | [45] | |
Campesterol | Soxtec extraction of whole grain sorghum | 1.04 | mg/g of lipids | [45] |
Reflux extraction of whole grain sorghum | 0.97 | mg/g of lipids | [45] | |
Dry distiller’s grain lipids | 1.7 | mg/g | [44] | |
Stigmasterol | Soxtec extraction of whole grain sorghum | 1.02 | mg/g of lipids | [45] |
Reflux extraction of whole grain sorghum | 1.08 | mg/g of lipids | [45] | |
Dry distiller’s grain lipids | 4.2 | mg/g | [44] | |
C26 policosanol | Soxtec extraction of whole grain sorghum | 1.53 | mg/g of lipids | [45] |
Reflux extraction of whole grain sorghum | 4.62 | mg/g of lipids | [45] | |
C28 policosanol | Soxtec extraction of whole grain sorghum | 2.7 | mg/g of lipids | [45] |
Reflux extraction of whole grain sorghum | 9.69 | mg/g of lipids | [45] | |
C30 policosanol | Soxtec extraction of whole grain sorghum | 1.31 | mg/g of lipids | [45] |
Reflux extraction of whole grain sorghum | 3.99 | mg/g of lipids | [45] | |
C32 policosanol | Soxtec extraction of whole grain sorghum | 0.25 | mg/g of lipids | [45] |
Reflux extraction of whole grain sorghum | 0.52 | mg/g of lipids | [46] |
Potential Health Benefits | Sorghum Substrate | Study Type and Method | Main Results | Reference |
---|---|---|---|---|
Antioxidative property | Sorghum bran aqueous acetone (70%) extracts | In vitro chemistry-based; DPPH, ABTS, ORAC | DPPH: 6.2–202 μmol TE/g; ABTS: 9.8–240 μmol TE/g; ORAC: 6.2–202 μmol TE/g | [25] |
Sorghum shell 80% ethanol extract | In vitro chemistry-based; FRAP, ABTS | FRAP: 77.01 μmol Fe/g; ABTS: 53.22 μmol TE/g | [26] | |
Sorghum 200 proof methanol extract | In vitro chemistry-based; DPPH | DPPH: 133.5 μmol TE/100 g | [34] | |
Sorghum 70% methanol extract | In vitro chemistry-based; DPPH, FRAP, ORAC | DPPH: 83.76%; FRAP: 0.029 mmol FE/gDM; ORAC: 25.38 μmol TE/g | [37] | |
Red sorghum acetone extract | In vitro chemistry-based; DPPH, FRAP, ORAC | DPPH: 1.97 mg Trolox/g; FRAP: 13.71 mg Trolox/g; ORAC: 40.59 mg Trolox/g | [8] | |
Sorghum 70% ethanol extract | In vitro chemistry-based; DPPH, ABTS | DPPH IC50(ug/mL): ~90–~360; ABTS IC50(ug/mL): ~200–~360 | [12] | |
Sorghum water extract, methanol extract, ethanol extract, t-butanol extract | In vitro chemistry-based; DPPH | DPPH IC50(ug/mL): 17.11–18.02 | [22] | |
Sorghum flour | In vivo animal trial; at 53 days of age, 50 male Rattus norvegicus Wistar rats | Increased levels of enzymes SOD | [24] | |
Extruded sorghum cereal | In vivo preclinical trial; patients with chronic kidney disease | Decreased malondialdehyde levels, increased total antioxidant capacity and the enzymatic activity of dismutase | [60] | |
Anticancer property | Sorghum methanol extract | In vitro cell culture-based; HCT-116 and HCT-15 human colon cancer cells and COS-7, monkey kidney cells | Inhibited the proliferation of human colon cancer cells by inducing G1 phase arrest and apoptosis. Suppressed the Jak2/STAT3 and PI3K/AKT/mTOR pathways | [61] |
Sorghum ethanol extract | In vitro cell culture-based; A27801AP OVCA cells and its paclitaxel-resistant variant A27801AP-X10 (PTX10) | Reduced the proliferation 35 and colony formation of OVCA cells | [16] | |
Sorghum 70% ethanol (including 5% citric acid) extract | In vitro cell culture-based; human colon cancer cell lines (HCT15, SW480, HCT116, and HT-29) and noncolon cancer cell lines (3T3-L1, RAW264.7, and HUVEC) | Inhibited the cell proliferation, cell migration and invasion, and induced apoptosis | [7] | |
Sorghum methanol extract | In vitro cell culture-based; human leukemia HL-60 and hepatoma HepG2 cell lines | Reduced the viability of HL-60 and HepG2 cells by 90 and 50% | [62] | |
Sorghum methanol (including 1% hydrochloric) extract | In vitro cell culture-based; MCF-7 (human breast cancer cell line) | Showed 84.09% of inhibition in the proliferation of MCF 7 cells by stimulation of P53 gene and down-regulation of Bcl-2 gene | [63] | |
Sorghum 70% ethanol extract | In vivo animal trial; fifty malemice (C57BL/6J) aged 46 weeks, weighing 18 (2 g) | Inhibited tumor growth and metastasis formation by suppressing vascular endothelial growth factor (VEGF) production | [13] | |
Sorghum 70% aqueous acetone (acidified with 0.1% HCl) extract | In vitro cell culture-based; murine hepatoma Hepa 1c1c7 and human colon carcinoma HT-29 cell lines | Had strong antiproliferative activity against HT-29 cells | [64] | |
Sorghum 70% (v/v) aqueous acetone extracts | In vitro cell culture-based; young adult mouse colonocytes (YAMC) cells | Apigenin and naringenin reduced ER-mediated YAMC cell growth | [65] | |
Sorghum bran subcritical water extraction | In vitro cell culture-based; HepG2 cells | There was a remarkable increase in inhibition effect on HepG2 cells after exposed to the sorghum bran extracts | [28] | |
Donganme sorghumethyl-acetate extract (DSEE) | In vivo animal trial; male Sprague–Dawley (SD) rats aged 7 weeks | Inhibited weight gain of the prostate; decreased mRNA expressions of androgen receptor and 5α-reductase II; and improved histopathological symptoms, the protein-expressed ratio of Bax/Bcl-2, and the oxidative status of BPH induced by testosterone in SD rats | [66] | |
Sorghum 50% ethanol extract | In vitro cell culture-based; human hepatocellular carcinoma (HepG2) and colorectal adenocarcinoma (Caco2) cells | Reduced cell viability by inducing apoptosis and cell cycle arrest following production of reactive oxygen species and oxidative DNA damage | [27] | |
Antidiabetic property | Ethanolic extracts from sorghum | In vivo animal trial; six-week-old male Wistar rats | Reduced the concentration of triglycerides, total and LDL-cholesterol and glucose by inhibition of hepatic gluconeogenesis | [67] |
Sorghum 70% ethanol extract | In vitro chemistry-based; inhibitory activity of α-glucosidase and α-amylase | Strongly inhibited degradation of starch by α-glucosidase as well as porcine pancreatic and human salivary α-amylases | [68] | |
Sorghum 70% ethanol extract | In vitro chemistry-based; inhibitory activity of α-glucosidase and α-amylase | SOR 11, SOR 17, and SOR 33 exhibited significantly higher percentage inhibitory activity of α-glucosidase and α-amylase, showed significantly potent inhibition of AGEs formation with IC50 values | [12] | |
Sorghum lipid extract | In vivo animal trial; male F1B Syrian hamsters aged 7 wk and weighing 80 g | Increased cholesterol excretion and decreased plasma and liver cholesterol concentration in hamsters | [69] | |
Fermented sorghum | In vivo animal trial; healthy female Wistar albino rats weighing 150–200 g | Statistically significant decrease in liver dysfunction indices and markers of oxidative damage. Significantly decreased the relative expression of superoxide dismutase, glutathione peroxidase, glucokinase, hosphofructokinase, and hexokinase genes | [70] | |
Kafirin microparticle encapsulated sorghum, condensed tannins | In vivo animal trial; healthy, adult (15 week) male Sprague Dawley rats (260–350 g) | SCT-KEMS prevented a blood glucose spike and decreased the maximum blood glucose level by 11.8% | [71] | |
Alcoholic extraction of SCT from sorghum bran | In vitro chemistry-based; inhibitory activity of α-glucosidase and α-amylase | Retained their inhibitory activity against y α-glucosidase and α-amylase | [72] | |
Sorghum drinks | In vivo preclinical trial; volunteers | Reduced the glycaemic curve | [73] | |
Anti-inflammatory property | 50% ethanol extracts from sorghum bran | In vivo animal trial; male Swiss Webster mice weighing 20–24 g | Significantly inhibited the secretion of the pro-inflammatory cytokines interleukin-1b and tumor necrosis factor-a | [30] |
Sorghum 95% ethanol extract | In vitro chemistry-based; inhibitory activity of α-glucosidase | Had strong inhibitory effects on blood coagulation, aglucosidase enzyme | [15] | |
Caffeoylglycolic acid methyl ester (CGME) and 1-ocaffeoylglycerol | In vitro cell culture-based; RAW264.7 cells, C57BL/6 mice | Induced HO-1 protein and mRNA expression. Increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and knockdown of Nrf2 by siRNA blocked CGME-mediated HO-1 induction | [74] | |
Sorghum 50% methanol (including 2% formic acid) | In vitro cell culture-based; THP-1 human macrophages | Reduced the production of proinflammatory cytokines IL-1β and IL-18 in LPS-primed and ATP-activated THP-1 human macrophages by reducing caspase-1 activation and ROS production | [75] | |
Sorghum flour | In vivo animal trial; at 53 days of age, 50 male Rattus norvegicus Wistar rats | Reduced the production of IL-8, TNF-α, and IL-10 | [24] | |
Sorghum 95% EtOH extract | In vitro cell culture-based; RAW264.7 macrophages | Potential inhibitory effects against LPS-induced NO production in macrophage RAW264.7 cells | [76] | |
Sorghum water and ethanol extracts | In vitro cell culture-based; RAW 264.7 macrophages | Inhibited the production of NO, interleukin-6 (IL-6) | [23] | |
Red sorghum acetone extract | In vitro cell culture-based; RAW 264.7 mouse macrophage cells | Significantly suppressed the LPS-induced IL-1β, IL-6, and COX-2 mRNA expressions | [8] | |
White sorghum aqueous acetone (70%, v/v) extracts | In vitro cell culture-based; nonmalignant colon myofibroblast CCD18Co cell | Significantly reduced proinflammatory cytokines (TNF-α, IL-6, IL-8) mRNA and protein expression | [77] | |
Extruded sorghum flour | In vivo animal trial; male Wistar rats, aged 21 days and weighing 69 ± 5 g | Inhibited the secretion of IL-1β, TNF-α, and nitric oxide | [53] | |
Extruded sorghum cereal | In vivo preclinical trial; patients with chronic kidney disease | Alleviated the inflammation in patients with chronic kidney disease by decreasing the C-reactive protein and malondialdehyde serum levels | [60] | |
Antiobesity property | Extruded sorghum flour | In vivo animal trial; male Wistar rats, aged 21 days and weighing 69 ± 5 g | Reduced fatty acid synthase gene expression, TNF-α, blood levels of glucose, and the adipocyte hypertrophy | [53] |
Extruded sorghum flour | In vivo animal trial; Wistar rats (Rattus novergicus) adult males (60 days old) | Reduced the body mass index and liver weight, reduced hepatic lipogenesis by increasing adiponectin 2 receptor gene expression and gene and protein expressions of peroxisome proliferator-activated receptor α | [78] | |
Red sorghum Flaked biscuits | In vivo preclinical trial; 46 females and 14 males | Weight lost | [79] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhao, X.; Zhang, X.; Liu, H. Bioactive Compounds and Biological Activities of Sorghum Grains. Foods 2021, 10, 2868. https://doi.org/10.3390/foods10112868
Li Z, Zhao X, Zhang X, Liu H. Bioactive Compounds and Biological Activities of Sorghum Grains. Foods. 2021; 10(11):2868. https://doi.org/10.3390/foods10112868
Chicago/Turabian StyleLi, Zhenhua, Xiaoyan Zhao, Xiaowei Zhang, and Hongkai Liu. 2021. "Bioactive Compounds and Biological Activities of Sorghum Grains" Foods 10, no. 11: 2868. https://doi.org/10.3390/foods10112868
APA StyleLi, Z., Zhao, X., Zhang, X., & Liu, H. (2021). Bioactive Compounds and Biological Activities of Sorghum Grains. Foods, 10(11), 2868. https://doi.org/10.3390/foods10112868