Discrimination of Four Cinnamomum Species with Physico-Functional Properties and Chemometric Techniques: Application of PCA and MDA Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Determination of Physico-Functional Properties
2.2.1. Bulk Density (BD) and Tapped Density (TD)
2.2.2. True Density
2.2.3. Porosity
2.2.4. pH
2.2.5. Moisture Content
2.2.6. Color
2.2.7. Aspect Ratio
2.2.8. Water Absorption Index (WAI) and Water Solubility Index (WSI)
2.2.9. Oil Absorption Index (OAI)
2.2.10. Swelling Power (SP)
2.2.11. Emulsifying Activity (EA)
2.3. Data Processing and Analysis
2.4. Chemometric Techniques
2.4.1. Multivariate Analysis of Variance (MANOVA)
2.4.2. Principal Component Analysis (PCA)
2.4.3. Multiclass Discriminant Analysis (MDA)
3. Results and Discussion
3.1. Descriptive Statistics of Physico-Functional Properties
3.2. Selection of Discriminative Variables
3.3. Multivariate General Linear Analysis
3.4. Data Dimensional Reduction through PCA
3.5. Establishment of the MDA Model for Cinnamomum Species
3.5.1. MDA Characteristics
3.5.2. Identification Model for Cinnamon Samples
3.5.3. Analytical Model Prediction for Cinnamon Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grand View Research. Cinnamon Market Size Worth $1.9 Billion by 2025 | CAGR: 13.8%. 2019. Available online: https://www.grandviewresearch.com/press-release/global-cinnamon-market (accessed on 4 January 2021).
- Tibola, C.S.; Silva, S.; Dossa, A.A.; Patrício, D.I. Economically Motivated Food Fraud and Adulteration in Brazil: Incidents and Alternatives to Minimize Occurrence. J. Food Sci. 2018, 83, 2028–2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food Fraud Advisors. Cinnamon Fraud Warning. 2017. Available online: https://www.foodfraudadvisors.com/cinnamon-fraud/ (accessed on 6 May 2021).
- Farag, M.A.; Labib, R.M.; Noleto, C.; Porzel, A.; Wessjohann, L.A. NMR approach for the authentication of 10 cinnamon spice accessions analyzed via chemometric tools. LWT 2018, 90, 491–498. [Google Scholar] [CrossRef]
- Avula, B.; Smillie, T.J.; Wang, Y.-H.; Zweigenbaum, J.; Khan, I.A. Authentication of true cinnamon (Cinnamon verum) utilising direct analysis in real time (DART)-QToF-MS. Food Addit. Contam. Part A 2015, 32, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, R.; Chandra, P.; Kumar, B.; Rameshkumar, K.B. Quantification of coumarin and related phenolics in cinnamon samples from south India using UHPLC-ESI-QqQLIT-MS/MS method. Int. J. Food Prop. 2018, 21, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Jeremić, K.; Kladar, N.; Vučinić, N.; Todorović, N.; Hitl, M.; Lalic-Popovic, M.; Gavarić, N. Morphological characterization of cinnamon bark and powder available in the Serbian market. Biol. Serb. 2019, 41, 89–93. [Google Scholar]
- Bua, D.G.; Annuario, G.; Albergamo, A.; Cicero, N.; Dugo, G. Heavy metals in aromatic spices by inductively coupled plasma-mass spectrometry. Food Addit. Contam. Part B 2016, 9, 210–216. [Google Scholar] [CrossRef]
- Granato, D.; Putnik, P.; Kovačević, D.B.; Santos, J.S.; Calado, V.; Rocha, R.S.; Da Cruz, A.G.; Jarvis, B.; Rodionova, O.Y.; Pomerantsev, A. Trends in Chemometrics: Food Authentication, Microbiology, and Effects of Processing. Compr. Rev. Food Sci. Food Saf. 2018, 17, 663–677. [Google Scholar] [CrossRef] [Green Version]
- Hassoun, A.; Måge, I.; Schmidt, W.F.; Temiz, H.T.; Li, L.; Kim, H.-Y.; Nilsen, H.; Biancolillo, A.; Aït-Kaddour, A.; Sikorski, M.; et al. Fraud in Animal Origin Food Products: Advances in Emerging Spectroscopic Detection Methods over the Past Five Years. Foods 2020, 9, 1069. [Google Scholar] [CrossRef]
- Charles, A.L.; Alamsjah, M.A. Application of chemometric techniques: An innovative approach to discriminate two seaweed cultivars by physico-functional properties. Food Chem. 2019, 289, 269–277. [Google Scholar] [CrossRef]
- Zhao, G.; Luo, X.; Yuan, X.; Jiang, S.; Zhang, H.; Zhang, W.; Bai, P. Study on principal component analysis and multi-class discrimination against the combination to identify easy-confused fur. J. Ind. Text. 2021, 50, 794–811. [Google Scholar] [CrossRef]
- Zi-li, Z.; Chun-Feng, J.; Di, W.; Yong, H.; Xiao-li, L.; Yong-ni, S. Discrimination of varieties of rice using near infrared spectral by PCA and MDA model. In Proceedings of the 6th International Conference on Computer Science & Education (ICCSE 2011), Singapore, 3–5 August 2011; pp. 38–40. [Google Scholar]
- Zhao, Y.; Zhang, S.; Zhao, H.; Zhang, H.; Liu, Z. Fast discrimination of mature vinegar varieties with Visible_NIR spectroscopy. In IFIP Advances in Information and Communication Technology, Proceedings of the Computer and Computing Technologies in Agriculture IV-4th IFIP TC 12 Conference, Nanchang, China, 22–25 October 2010; Springer: Berlin/Heidelberg, Germany; pp. 721–728.
- Ghodki, B.M.; Goswami, T.K. Effect of moisture on physical and mechanical properties of cassia. Cogent Food Agric. 2016, 2, 1192975. [Google Scholar] [CrossRef]
- Muhammad, D.R.A.; Dewettinck, K. Cinnamon and its derivatives as potential ingredient in functional food—A review. Int. J. Food Prop. 2017, 20, 2237–2263. [Google Scholar] [CrossRef] [Green Version]
- Mottese, A.F.; Fede, M.R.; Caridi, F.; Sabatino, G.; Marcianò, G.; Calabrese, G.; Albergamo, A.; Dugo, G. Chemometrics and innovative multidimensional data analysis (MDA) based on multi-element screening to protect the Italian porcino (Boletus sect. Boletus) from fraud. Food Control 2020, 110, 107004. [Google Scholar] [CrossRef]
- Albergamo, A.; Mottese, A.F.; Bua, G.D.; Caridi, F.; Sabatino, G.; Barrega, L.; Costa, R.; Dugo, G. Discrimination of the Sicilian Prickly Pear (Opuntia Ficus-Indica L., CV. Muscaredda) According to the Provenance by Testing Unsupervised and Supervised Chemometrics. J. Food Sci. 2018, 83, 2933–2942. [Google Scholar] [CrossRef]
- RV, B.R.; Rajesh, K.S.; Mahadevan, S.; Rosamma, M.P.; Meena, C.V. Detection of adulteration in commercial samples of Cinnamomum verum J. S. Presl from Kerala. Eur. J. Biomed. 2018, 5, 297–304. [Google Scholar]
- Amalesh, N.; Nirankush, P.; Kumar, G.A.; Partha, G.; Dipankar, B.; Rahul, S.; Chandrakant, K. Identification of adulterants by pharmacognostical evaluation: Tvak (Cinnamomum zeylanicum blume.) & Naluka/Cassia [Cinnamomum cassia (Nees & T. Nees.) J. Presl]. Int. J. Res. Pharma. Biosci. 2015, 2, 1–4. [Google Scholar]
- Hermanto, R.F.; Khasanah, L.U.; Atmaka, W.; Manuhara, G.J.; Utami, R. Physical characteristics of cinnamon oil microcapsule. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016; Volume 107, p. 012064. [Google Scholar]
- World Health Organization. S.3.6. Bulk Density and Tapped Density of Powders. 2012. Available online: https://www.who.int/medicines/publications/pharmacopoeia/Bulk-tapped-densityQAS11_450FINAL_MODIFIEDMarch2012.pdf (accessed on 20 March 2021).
- Jeong, M.-S.; Akram, K.; Ahn, J.-J.; Kwon, J.-H. Applicability of Irradiation Detection Techniques and Quality Characterization of Cinnamon Powders Available in the Korean Market. Int. J. Food Prop. 2014, 17, 2192–2206. [Google Scholar] [CrossRef]
- Media Cybernetics. Image Pro-Plus 7. 2020. Available online: https://www.mediacy.com/imageproplus (accessed on 16 July 2020).
- Kraithong, S.; Lee, S.; Rawdkuen, S. Physicochemical and functional properties of Thai organic rice flour. J. Cereal Sci. 2018, 79, 259–266. [Google Scholar] [CrossRef]
- Moutaleb, O.H.; Amadou, I.; Amza, T.; Zhang, M. Physico-functional and sensory properties of cowpea flour based recipes (akara) and enriched with sweet potato. J. Nutr. Health Food Eng. 2017, 7, 325–330. [Google Scholar]
- Chandra, S.; Singh, S.; Kumari, D. Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits. J. Food Sci. Technol. 2015, 52, 3681–3688. [Google Scholar] [CrossRef]
- IBM. IBM SPSS Statistics for Windows, Version 22.0. IBM Corp: Armonk, NY, USA, 2013. Available online: https://www.ibm.com/support/pages/how-cite-ibm-spss-statistics-or-earlier-versions-spss (accessed on 26 August 2020).
- Sridhar, K.; Dikkala, P.K.; Yadla, A.K.; Shaik, R.; Jeepalem, Y.; Dhoolipalla Venkata, B.P.; Sodadasi, V. Preparation of microwave-processed oil-free potato snacks with assorted natural flavours: Application of advanced chemometrics. Int. J. Food Sci. Technol. 2021, 56, 112697. [Google Scholar] [CrossRef]
- Ablebits. Ultimate Suite for Excel Comprehensive Set of Time-Saving Tools. 2021. Available online: https://www.ablebits.com/excel-suite/index-2021.php?visitfrom=blog-text (accessed on 17 January 2021).
- Gao, W.; Chen, F.; Wang, X.; Meng, Q. Recent advances in processing food powders by using superfine grinding techniques: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2222–2255. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Badeka, A.; Kontakos, S.; Karabournioti, S.; Kontominas, M. Characterization and classification of Thymus capitatus (L.) honey according to geographical origin based on volatile compounds, physicochemical parameters and chemometrics. Food Res. Int. 2014, 55, 363–372. [Google Scholar] [CrossRef]
- Shawky, E.; Selim, D.A. Rapid Authentication and Quality Evaluation of Cinnamomum verum Powder Using Near-Infrared Spectroscopy and Multivariate Analyses. Planta Med. 2018, 84, 1380–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Cinnamomum Species | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C. verum (n = 6) | C. burmannii (n = 6) | C. loureiroi (n = 4) | C. cassia (n = 4) | |||||||||||||
Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | |
Bulk density (g/cm3) | 0.35 b | 0.02 | 0.33 | 0.39 | 0.45 a | 0.05 | 0.39 | 0.53 | 0.34 b c | 0.01 | 0.32 | 0.36 | 0.33 c | 0.02 | 0.31 | 0.36 |
Tapped density (g/cm3) | 0.57 b | 0.04 | 0.50 | 0.65 | 0.71 a | 0.06 | 0.63 | 0.82 | 0.58 b | 0.02 | 0.54 | 0.63 | 0.58 b | 0.03 | 0.54 | 0.63 |
True density (g/cm3) | 1.51 a | 0.00 | 1.50 | 1.52 | 1.49 b | 0.01 | 1.48 | 1.50 | 1.48 c | 0.01 | 1.47 | 1.49 | 1.46 d | 0.02 | 1.42 | 1.48 |
Porosity (%) | 76.49 a | 1.01 | 74.01 | 78.36 | 69.76 b | 3.58 | 64.44 | 73.69 | 76.71 a | 0.73 | 75.55 | 78.39 | 77.40 a | 1.01 | 75.72 | 79.24 |
pH | 4.73 c | 0.24 | 4.42 | 5.11 | 4.90 b | 0.10 | 4.78 | 5.08 | 4.93 b | 0.09 | 4.83 | 5.08 | 5.04 a | 0.17 | 4.75 | 5.21 |
Moisture content (%) | 9.89 d | 0.44 | 9.03 | 10.58 | 11.15 b | 0.40 | 10.20 | 11.85 | 10.80 c | 0.50 | 10.03 | 11.76 | 11.63 a | 0.67 | 10.57 | 12.92 |
Color | 3.85 c | 0.78 | 2.94 | 5.22 | 7.89 a | 1.14 | 5.90 | 9.36 | 5.76 b | 0.58 | 5.06 | 6.66 | 3.28 d | 0.36 | 2.81 | 3.79 |
Aspect ratio | 1.66 c | 0.27 | 1.11 | 2.17 | 3.63 a | 0.33 | 3.26 | 4.67 | 2.85 b | 0.14 | 2.44 | 3.09 | 2.78 b | 0.04 | 2.69 | 2.85 |
Water absorption index (g/g) | 3.78 b | 0.20 | 3.27 | 4.07 | 5.18 a | 0.82 | 4.17 | 6.40 | 3.09 c | 0.17 | 2.90 | 3.33 | 2.93 c | 0.19 | 2.58 | 3.15 |
Water solubility index (%) | 5.61 b | 1.90 | 2.81 | 8.62 | 7.89 a | 2.66 | 4.14 | 12.68 | 8.63 a | 0.44 | 7.95 | 9.42 | 7.83 a | 1.12 | 6.11 | 9.29 |
Oil absorption index (g/g) | 3.16 a | 0.25 | 2.64 | 3.48 | 2.53 b | 0.20 | 2.30 | 2.81 | 2.38 c | 0.09 | 2.24 | 2.51 | 2.32 c | 0.08 | 2.21 | 2.44 |
Swelling power (mL/g) | 4.56 b | 0.17 | 4.19 | 4.80 | 8.93 a | 2.02 | 5.20 | 11.40 | 3.53 c | 0.25 | 3.10 | 3.90 | 3.05 c | 0.19 | 2.70 | 3.40 |
Emulsifying activity (%) | 2.97 b | 0.48 | 2.27 | 4.84 | 27.53 a | 13.89 | 7.14 | 46.34 | 1.58 b | 0.39 | 0.82 | 2.61 | 1.72 b | 0.32 | 1.40 | 2.54 |
Actual Species | Species Discriminated by Model | Total | Correct Identification Rate (%) | ||||
CV | CB | CL | CC | ||||
Training set | CV | 30 | 0 | 0 | 0 | 30 | 100 |
CB | 0 | 28 | 2 | 0 | 30 | 93.30 | |
CL | 0 | 0 | 20 | 0 | 20 | 100 | |
CC | 0 | 0 | 1 | 19 | 20 | 95 | |
Total | 30 | 28 | 23 | 19 | 100 | 97 | |
Actual Species | Species Discriminated by Model | Total | Correct Prediction Rate (%) | ||||
CV | CB | CL | CC | ||||
Testing set | CV | 6 | 0 | 0 | 0 | 6 | 100 |
CB | 0 | 6 | 0 | 0 | 6 | 100 | |
CL | 0 | 0 | 4 | 0 | 4 | 100 | |
CC | 0 | 0 | 0 | 4 | 4 | 100 | |
Total | 6 | 6 | 4 | 4 | 20 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, P.; Liaw, S.-Y.; Lee, M.-S.; Sheu, S.-C. Discrimination of Four Cinnamomum Species with Physico-Functional Properties and Chemometric Techniques: Application of PCA and MDA Models. Foods 2021, 10, 2871. https://doi.org/10.3390/foods10112871
Rana P, Liaw S-Y, Lee M-S, Sheu S-C. Discrimination of Four Cinnamomum Species with Physico-Functional Properties and Chemometric Techniques: Application of PCA and MDA Models. Foods. 2021; 10(11):2871. https://doi.org/10.3390/foods10112871
Chicago/Turabian StyleRana, Priya, Shu-Yi Liaw, Meng-Shiou Lee, and Shyang-Chwen Sheu. 2021. "Discrimination of Four Cinnamomum Species with Physico-Functional Properties and Chemometric Techniques: Application of PCA and MDA Models" Foods 10, no. 11: 2871. https://doi.org/10.3390/foods10112871
APA StyleRana, P., Liaw, S. -Y., Lee, M. -S., & Sheu, S. -C. (2021). Discrimination of Four Cinnamomum Species with Physico-Functional Properties and Chemometric Techniques: Application of PCA and MDA Models. Foods, 10(11), 2871. https://doi.org/10.3390/foods10112871