The Effect of Feeding Chicken and Geese Broilers with Different Cereals on the Fatty Acids Profile in Meat
Abstract
:1. Introduction
2. Material and Methods
2.1. Diets and Animals
2.1.1. Geese
2.1.2. Chicken Broilers
2.2. Sampling
2.3. Lipids Analysis
2.4. Analytical Determinations
2.5. Statistical Analysis
2.6. Ethics Statement
3. Results
3.1. The Effect of Feeding Geese Broilers
3.2. The Effect of Feeding Chicken Broilers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Żak, G.; Pieszka, M. Improving pork quality. Through genetics and nutrition. Ann. Anim. Sci. 2009, 9, 327–338. [Google Scholar]
- Woods, V.B.; Fearon, A.M. Dietary sources of unsaturated fatty acids for animals and their transfer into meat, milk and eggs. A review. Livest. Sci. 2009, 126, 1–20. [Google Scholar] [CrossRef]
- Chesworth, J.M.; Stuckbury, T.; Scaife, J.R. An Introduction to Agricultural Biochemistry; Chapman and Hall: London, UK, 1998. [Google Scholar]
- Ferguson, L.R. Meat and cancer. Meat Sci. 2010, 84, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Schulz, M.; Hoffmann, K.; Weikert, C.; Nothlings, U.; Schulze, M.B.; Boeing, H. Identification of dietary pattern characterized by high—Fat food choices associated with increased risk of breast cancer: The European prospective investigation into cancer and nutrition. (EPIC)—Potsdam study (see comment). Br. J. Nutr. 2008, 100, 942–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowe, F.L.; Key, T.J.; Appleby, P.N.; Travis, R.C.; Overvad, K.; Jakobsen, M.U. Dietary fat intake and risk of prostate cancer in the European prospective investigation into cancer and nutrition. Am. J. Clin. Nutr. 2008, 87, 1405–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zeland; Department of Health and Ageing: Brisbane, Australia, 2006.
- Micek, P. Nutritional Usefulness to Ruminants of Grain of Polish Cereal Species and Cultivars. Ph.D. Thesis, University of Agriculture Publishers, Kraków, Poland, 2008. [Google Scholar]
- Schwarz, T.; Kuleta, W.; Turek, A.; Tuz, R.; Nowicki, J.; Rudzki, B.; Bartlewski, M. Assessing the efficiency of using a modern hybrid rye cultivar for pig fattening with emphasis on production costs and carcass quality. Anim. Prod. Sci. 2015, 55, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Makaraska, E.; Gruszecka, D.; Gardzielewska, A. The content of alkylresorcinols and tripsin inhibitors activity in translational rye strains and parental components Secale cereale (L.) and Dasypyrum villosum (L.). P. Candargy. Ann. Univ. Mariae Curie-Skłodowska Lublin 2007, LXII, 117–121. [Google Scholar]
- Hubner, M.; Wilde, P.; Schmiedchen, B.; Dopierała, P.; Gowda, M.; Reif, J.C.; Miedaner, T. Hybrid rye performance under natural drought stress in Europe. Theor. Appl. Genet. 2013, 126, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Stein, H.H.; Lagos, L.V.; Casas, G.A. Nutritional value of feed ingredients of plant origin fed to pigs. Anim. Feed Sci. Technol. 2016, 218, 33–69. [Google Scholar] [CrossRef]
- Smulikowska, S.; Rutkowski, A. Recommended Allowances and Nutitive Value of Feedstuffs. In Poultry Feeding Standards, 4th ed.; The Kielanowski Institute of Physiology and Nutrition, PAS: Jablonna, Poland, 2005. (In Polish) [Google Scholar]
- Arczewska-Włosek, A.; Świątkiewicz, S.; Bederska- Łajewska, D.; Orczewska-Dudek, S.; Szczurek, W.; Boros, D.; Fras, A.; Tomaszewska, E.; Dobrowolski, P.; Muszyński, S.; et al. The efficiency of xylanase in broiler chickens fed with increasing dietary levels of rye. Animals 2019, 9, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- British Standards Institute Staff, British Standards Institution. Animal and Vegetable Fats and Oils. Preparation of Methyl Eters of Fatty Acids; PN-EN ISO 12966-2:2017-05; British Standards Institution: London, UK, 2001. [Google Scholar]
- Grau, R.; Hamm, R. Eine einfache Methode zur Bestimmung der Wasserbindung in Fleisch. Fleischwirtschaft 1952, 4, 295–297. [Google Scholar]
- Statsoft, Inc. Statistica, Version 6.0. 2001. Available online: www.statsoft.com (accessed on 6 April 2011).
- European Union. Directive EU 2010/63/EU on the Protection of Animals Used for Scientific Purposes; European Union: Brussels, Belgium, 2010. [Google Scholar]
- Flaczyk, E.; Górecka, D.; Korczak, J. (Eds.) Towaroznawstwo Produktów Spożywczych; Wydawnictwo Akademii Rolniczej w Poznaniu: Poznań, Poland, 2006. [Google Scholar]
- Mc Cafferty, K.W.; Bedford, M.R.; Kerr, B.J.; Dozier, W.A. Effects of cereal grain source and supplemental xylanase concentrations on broile growth performance and cereal volatile acid concentrations from 1 to 40 d of age. Poult. Sci. 2019, 98, 2866–2879. [Google Scholar] [CrossRef] [PubMed]
- Uhlirova, L.; Tumova, E.; Chodowa, D.; Volek, Z.; Machander, V. Fatty acid composition of goose meat depending on genotype and sex. Asian-Australas. J. Anim. Sci. 2019, 32, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Biesiada-Drzazga, B.; Janocha, A.; Koncerewicz, A. Effect of genotype and rearing system on fatness and fat quality in geese of White Koluda breed. Post. Nauki i Techn. Przem. Rolno-Spoż. 2011, 66, 19–31. [Google Scholar]
- Karwowska, M.; Grabowicz, M.; Stadnik, J.; Szterk, P.; Bernacki, Z.; Dolatowski, Z. The effect of corn or beet pulp silage supplemented diet on production parameters, oxidative stability of muscles and fatty acid composition of abdominal fat in geese. Ann. Anim. Sci. 2017, 17, 887–902. [Google Scholar] [CrossRef] [Green Version]
- Yanovych, D.; Czech, A.; Zasadna, Z. The effect of dietary fish oil on the lipid and fatty acid composition and oxidative stability of goose leg muscles. Ann. Anim. Sci. 2013, 13, 155–165. [Google Scholar] [CrossRef]
- Disetihe, A.R.P.; Marume, K.; Mlambo, V.; Hugo, A. Effect of dietary humic acid and enzymes on meat quality and fat profiles of broiler chickens fed canola—Based diets. Asian-Australas. J. Anim. Sci. 2019, 32, 711–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honikel, K.O.; Ameth, W. Cholesteringehalt in Fleisch und Eiern. Fleischwirtschaft 1996, 76, 1244–1253. [Google Scholar]
- Codex Alimentarius Commision. FAO/WHO Food Standards; Codex Alimentarius Commision: Rome, Italy, 1984. [Google Scholar]
- Lisiak, D.; Janiszewski, P.; Grześkowiak, E.; Borzuta, K.; Lisiak, B.; Samardakiewicz, Ł.; Schwarz, T.; Powałowski, K.; Andres, K. Research on the Effects of Gender and Feeding Geese Oats and Hybrid Rye on Their Slaughter Traits and Meat Quality. Animals 2021, 11, 672. [Google Scholar] [CrossRef] [PubMed]
Weeks of Being Reared | Sample Size, n | Feeding Method |
---|---|---|
1 to 3 | 300 nestlings | Feed and water ad libitum. Composition of the concentrate and its nutritive value is shown in Table 2. |
4 to 14 | 300 birds | Feed and water ad libitum. Access in pasture for at least 8 h per day. Composition of the concentrate and its nutritive value is shown in Table 2. At the end of 14th week, the birds were divided into 3 feed groups of males and 3 groups of females. |
15 to 17 | Group A n = 100 | Fed only with hybrid rye Brasetto cultivare. Birds fed ad libitum with access to straw aviary. |
Group B n = 100 | Fed with oats. Birds fed ad libitum with access to straw aviary. | |
Group C n = 100 | Concentrate of oats and hybrid rye Brasetto cultivare (1:1, by weight). Birds fed ad libitum with access to straw aviary. |
Composition, % | 0–3 Weeks (Feed No. 1) | 4–14 Weeks (Feed No. 2) |
---|---|---|
Feed phosphate | 1.0 | 1.0 |
Limestone | 1.8 | 1.2 |
Maize | 40.0 | 35.0 |
Premix | 1.2 | 1.1 |
Wheat | 27.5 | 24.2 |
Wheat brains | 0.00 | 10.0 |
Soya bean meal | 28.5 | 23.5 |
Sunflower extracted meal | 0.00 | 4.0 |
Crude protein | 19.5 | 19.2 |
Crude fiber | 2.8 | 3.8 |
Vegetable oils and crude fat | 2.5 | 2.6 |
Crude ash | 5.4 | 5.1 |
Lisine | 0.97 | 0.91 |
Methionine | 0.48 | 0.40 |
Calcium | 0.94 | 0.73 |
Sodium | 0.17 | 0.17 |
Available phosphorus | 0.36 | 0.44 |
Metabolic energy. MJ/kg feed | 11.50 | 10.20 |
Composition, % | Hybrid Rye | Oats |
---|---|---|
Dry matter | 87.87 | 89.41 |
Ash | 1.58 | 3.23 |
Total protein | 9.75 | 10.55 |
Crude fat | 1.50 | 4.90 |
Crude fiber | 1.94 | 13.21 |
Gross energy, kcal·kg−1 d.m. | 4375 | 4534 |
Specification | Starter (1–21 days) | Grower-Finisher (22–42 days) | ||||
---|---|---|---|---|---|---|
0% | 10% | 20% | 0% | 10% | 20% | |
Rye | 0 | 100 | 300 | 0 | 100 | 300 |
Corn | 457.1 | 354.1 | 302.1 | 404.4 | 298.4 | 238.4 |
Wheat | 100 | 100 | 40 | 200 | 200 | 150 |
Soybean meal | 370 | 365 | 370 | 306 | 304 | 307 |
Rapeseed oil | 33 | 41 | 48 | 52 | 60 | 67 |
Monocalcium phosp. | 15 | 15 | 15 | 13 | 13 | 13 |
Methionine | 2.6 | 2.6 | 2.6 | 2.3 | 2.3 | 2.3 |
Metabolic energy, MJ/kg feed | 12.6 | 13.1 | ||||
Crude protein | 225 | 205 | ||||
Lysine | 12.3 | 11.5 | ||||
Methionine | 5.8 | 5.25 | ||||
Threonine | 8.5 | 8.1 | ||||
Calcium | 9.7 | 9.3 | ||||
Total phosphorus | 7.1 | 6.6 |
Specification | Type of Cereal Diet | SEM | p Value | ||
---|---|---|---|---|---|
Rye, Group A | Oat, Group B | Rye/Oat, Group C | |||
Final body weight, g | 4767 B | 5148 A | 4944 | 560 | 0.000 |
C 12:0 | 0.089 C | 0.086 C | 0.041 AB | 0.004 | 0.000 |
C 14:0 | 0.353 | 0.373 | 0.393 | 0.008 | 0.131 |
C 14:1 | 0.003 B | 0.033 AC | 0.002 B | 0.003 | 0.000 |
C 15:0 | 0.053 c | 0.072 | 0.073 a | 0.003 | 0.028 |
C 16:0 | 21.415 | 21.385 | 21.956 | 0.129 | 0.124 |
C 16:1 | 3.018 | 2.817 | 2.985 | 0.036 | 0.053 |
C 17:0 | 0.128 | 0.125 | 0.135 | 0.003 | 0.301 |
C 17:1 | 0.091 Bc | 0.063 A | 0.071 a | 0.003 | 0.001 |
C 18:0 | 8.540 b | 9.138 a | 8.676 | 0.090 | 0.015 |
C 18:1 trans | 0.324 BC | 0.269 A | 0.271 A | 0.007 | 0.001 |
C 18:1 cis 9 | 43.123 BC | 39.595 AC | 41.423 AB | 0.234 | 0.000 |
C 18:1 cis 11 | 2.880 b | 2.724 ac | 2.868 b | 0.028 | 0.038 |
C 18:2 n-6 | 12.859 BC | 15.500 AC | 13.975 AB | 0.175 | 0.000 |
C 18:3 g n-6 | 0.065 | 0.063 | 0.058 | 0.002 | 0.393 |
C 18:3 n-3 | 0.805 B | 0.684 Ac | 0.755 b | 0.013 | 0.000 |
C 20:0 | 0.107 | 0.100 | 0.092 | 0.003 | 0.073 |
C 20:1 | 0.527 | 0.503 | 0.492 | 0.007 | 0.135 |
C 20:2 n -6 | 0.146 BC | 0.185 A | 0.173 A | 0.004 | 0.000 |
C 20:3 n-6 | 0.145 B | 0.184 AC | 0.153 B | 0.004 | 0.000 |
C 20:4 n-6 | 3.944 B | 4.623 AC | 3.916 B | 0.087 | 0.001 |
C 20:5 n-3 | 0.085 | 0.068 | 0.073 | 0.006 | 0.568 |
C 22:4 n-6 | 0.596 B | 0.708 AC | 0.598 B | 0.014 | 0.001 |
C 22:5 n-3 | 0.227 | 0.231 | 0.231 | 0.006 | 0.955 |
C 22:6 n-3 | 0215 BC | 0.274 AC | 0.378 AB | 0.011 | 0.000 |
Cholesterol (mg/100 g) | 78.913 | 77.325 | 75.300 | 0.713 | 0.116 |
SFA | 30.686 | 31.310 | 31.368 | 0.159 | 0.153 |
MUFA | 50.168 BC | 46.137 AC | 48.278 AB | 0.269 | 0.000 |
PUFA | 19.087 Bc | 22.520 AC | 20.310 aB | 0.260 | 0.000 |
n-3 | 1.322 | 1.258 C | 1.437 B | 0.021 | 0.001 |
n-6 | 17.755 B | 21.263 AC | 18.873 B | 0.257 | 0.000 |
n-6/n-3 | 13.478 B | 17.064 AC | 13.233 B | 0.279 | 0.000 |
Fatty Acids | Dose of Hybrid Rye in Diet | SEM | p Value | ||
---|---|---|---|---|---|
0%, Group A | 10%, Group B | 20%, Group C | |||
Final body weight, g | 3015 | 2988 | 2984 | 160 | 0.893 |
Dressing yield, % | 79.30 | 80.09 | 79.78 | 1.94 | 0.678 |
C 12:0 | 0.103 bC | 0.053 a | 0.044 A | 0.007 | 0.001 |
C 14:0 | 0.532 bC | 0.469 aC | 0.366 AB | 0.013 | 0.000 |
C 14:1 | 0.076 C | 0.078 C | 0.059 AB | 0.002 | 0.000 |
C 15:0 | 0.075 c | 0.070 | 0.064 a | 0.002 | 0.026 |
C 16:0 | 18.176 C | 17.803 C | 16.051 AB | 0.151 | 0.000 |
C 16:1 | 3.565 C | 3.589 C | 3.021 AB | 0.046 | 0.000 |
C 17:0 | 0.143 C | 0.130 | 0.121 A | 0.003 | 0.005 |
C 17:1 | 0.103 c | 0.108 | 0.072 aB | 0.005 | 0.005 |
C 18:0 | 6.820 cb | 6.364 a | 6.371 a | 0.085 | 0.042 |
C 18:1 trans | 0.185 C | 0.190 C | 0.12 AB | 0.010 | 0.009 |
C 18:1 cis 9 | 41.148 BC | 43.248 A | 43.530 A | 0.175 | 0.000 |
C 18:1 cis 11 | 2.760 BC | 3.240 A | 3.309 A | 0.045 | 0.000 |
C 18:2 trans | 0.032 C | 0.035 c | 0.065 Ab | 0.005 | 0.005 |
C 18:2 n-6 | 18.457 B | 17.167 Ac | 18.048 b | 0.158 | 0.002 |
C 18:3 g n-6 | 0.164 | 0.150 | 0.149 | 0.003 | 0.165 |
C 18:3 trans | 0.076 | 0.125 | 0.083 | 0.009 | 0.051 |
C 18:3 n-3 | 2.788 C | 2.828 C | 3.408 AB | 0.047 | 0.000 |
C 20:0 | 0.115 | 0.109 | 0.105 | 0.002 | 0.168 |
C 20:1 | 0.703 b | 0.744 ac | 0.704 b | 0.008 | 0.039 |
C 20:2 n-6 | 0.280 B | 0.248 A | 0.258 | 0.004 | 0.005 |
C 20:3 n-6 | 0.291 | 0.275 | 0.293 | 0.007 | 0.547 |
C 20:4 n-6 | 1.653 c | 1.462 C | 1.932 aB | 0.047 | 0.000 |
C 20:5 n-3 | 0.152 C | 0.157 c | 0.184 Ab | 0.005 | 0.006 |
C 22:4 n-6 | 0.399 B | 0.321 AC | 0.392 B | 0.010 | 0.001 |
C 22:5 n-3 | 0.503 C | 0.490 C | 0.646 AB | 0.015 | 0.000 |
C 22:6 n-3 | 0.172 C | 0.233 | 0.285 A | 0.012 | 0.001 |
Cholesterol (mg/100 g) | 72.500 BC | 59.933 Ac | 64.533 Ab | 0.955 | 0.000 |
SFA | 25.963 C | 24.997 C | 23.121 AB | 0.228 | 0.000 |
MUFA | 48.721 BC | 51.326 A | 50.914 A | 0.196 | 0.000 |
PUFA | 25.028 b | 23.563 aC | 25.813 B | 0.235 | 0.000 |
n-3 | 3.615 C | 3.707 C | 4.523 A B | 0.055 | 0.000 |
n-6 | 20.592 B | 19.348 AC | 20.780 B | 0.160 | 0.000 |
n-6/n-3 | 5.807 BC | 5.238 AC | 4.598 AB | 0.030 | 0.000 |
Quality Traits | Dose Hybrid Rye in Diet | SEM | p Value | ||
---|---|---|---|---|---|
0%, Group A | 10%, Group B | 20%, Group C | |||
pH15′ | 6.58 | 6.61 | 6.61 | 0.141 | 0.783 |
pH24 h | 6.12 b | 6.00 a | 6.05 | 0.109 | 0.028 |
Color L* | 52.52 | 52.02 | 52.89 | 2.564 | 0.501 |
Redness a* | 2.91 | 1.99 | 2.07 | 1.512 | 0.066 |
Yellowness b* | 0.63 BC | −0.63 A | −1.32 A | 1.667 | 0.001 |
WHC, % | 28.09 BC | 21.84 A | 22.12 A | 4.639 | 0.001 |
Smell, points | 4.47 | 4.55 | 4.53 | 0.192 | 0.340 |
Flavor, points | 4.48 | 4.47 | 4.47 | 0.235 | 0.989 |
Juiciness, points | 4.53 | 4.40 | 4.44 | 0.273 | 0.243 |
Tenderness, points | 4.59 | 4.61 | 4.56 | 0.220 | 0.693 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janiszewski, P.; Lisiak, D.; Borzuta, K.; Grześkowiak, E.; Schwarz, T.; Siekierko, U.; Andres, K.; Świątkiewicz, S. The Effect of Feeding Chicken and Geese Broilers with Different Cereals on the Fatty Acids Profile in Meat. Foods 2021, 10, 2879. https://doi.org/10.3390/foods10112879
Janiszewski P, Lisiak D, Borzuta K, Grześkowiak E, Schwarz T, Siekierko U, Andres K, Świątkiewicz S. The Effect of Feeding Chicken and Geese Broilers with Different Cereals on the Fatty Acids Profile in Meat. Foods. 2021; 10(11):2879. https://doi.org/10.3390/foods10112879
Chicago/Turabian StyleJaniszewski, Piotr, Dariusz Lisiak, Karol Borzuta, Eugenia Grześkowiak, Tomasz Schwarz, Urszula Siekierko, Krzysztof Andres, and Sylwester Świątkiewicz. 2021. "The Effect of Feeding Chicken and Geese Broilers with Different Cereals on the Fatty Acids Profile in Meat" Foods 10, no. 11: 2879. https://doi.org/10.3390/foods10112879
APA StyleJaniszewski, P., Lisiak, D., Borzuta, K., Grześkowiak, E., Schwarz, T., Siekierko, U., Andres, K., & Świątkiewicz, S. (2021). The Effect of Feeding Chicken and Geese Broilers with Different Cereals on the Fatty Acids Profile in Meat. Foods, 10(11), 2879. https://doi.org/10.3390/foods10112879