The Use of Electronic Nose as Alternative Non-Destructive Technique to Discriminate Flavored and Unflavored Olive Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Quality Parameters of Unflavored and Flavored Olive Oils
2.3. Oxidative Stability of Unflavored and Flavored Olive Oils
2.4. Total Phenol Content (TPC) of Unflavored and Flavored Olive Oils
2.5. E-Nose Analysis
2.5.1. Lab-Made Device
2.5.2. Olive Oil Samples Conditioning and Analysis
2.5.3. Data Acquisition, Feature Extraction, and Signal Treatment
2.6. Statistical Analysis
3. Results and Discussion
3.1. Impact of Olive Oil Flavoring with Different Agents on the Physicochemical, Oxidative Stability and Sensory Profiles of cv. Arbequina Extra Virgin Olive Oils
3.2. Performance of the Lab-Made E-Nose for Recognition of Unflavored and Flavored cv. Arbequina Extra Virgin Olive Oils
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Uylaşer, V.; Yildiz, G. The historical development and nutritional importance of olive and olive oil constituted an important part of the mediterranean diet. Crit. Rev. Food Sci. Nutr. 2014, 54, 1092–1101. [Google Scholar] [CrossRef]
- Cherif, M.; Rodrigues, N.; Veloso, A.C.A.; Zaghdoudi, K.; Pereira, J.A.; Peres, A.M. Kinetic-thermodynamic study of the oxidative stability of Arbequina olive oils flavored with lemon verbena essential oil. LWT 2021, 140, 110711. [Google Scholar] [CrossRef]
- Moustakime, Y.; Hazzoumi, Z.; Joutei, K.A. Aromatization of virgin olive oil by seeds of Pimpinella anisum using three different methods: Physico-chemical change and thermal stability of flavored oils. Grain Oil Sci. Technol. 2021, 4, 108–124. [Google Scholar] [CrossRef]
- Visioli, F.; Franco, M.; Toledo, E.; Luchsinger, J.; Willett, W.C.; Hu, F.B.; Martinez-Gonzalez, M.A. Olive oil and prevention of chronic diseases: Summary of an international conference. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 649–656. [Google Scholar] [CrossRef]
- Rodrigues, N.; Casal, S.; Peres, A.M.; Baptista, P.; Pereira, J.A. Seeking for sensory differentiated olive oils? The urge to preserve old autochthonous olive cultivars. Food Res. Int. 2020, 128, 108759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lolis, A.; Badeka, A.V.; Kontominas, M.G. Quality retention of extra virgin olive oil, Koroneiki cv. packaged in bag-in-box containers under long term storage: A comparison to packaging in dark glass bottles. Food Packag. Shelf Life 2020, 26, 100549. [Google Scholar] [CrossRef]
- Sousa, A.; Casal, S.; Malheiro, R.; Lamas, H.; Bento, A.; Pereira, J.A. Aromatized olive oils: Influence of flavoring in quality, composition, stability, antioxidants, and antiradical potential. LWT 2015, 60, 22–28. [Google Scholar] [CrossRef]
- Ayadi, M.A.; Grati-KamouN, N.; Attia, H. Physico-chemical change and heat stability of extra virgin olive oils flavored by selected Tunisian aromatic plants. Food Chem. Toxicol. 2009, 47, 2613–2619. [Google Scholar] [CrossRef]
- Antoun, N.; Tsimidou, M. Gourmet olive oils: Stability and consumer acceptability studies. Food Res. Int. 1997, 30, 131–136. [Google Scholar] [CrossRef]
- Reboredo-Rodríguez, P.; Figueiredo-González, M.; González-Barreiro, C.; Simal-Gándara, J.; Salvador, M.D.; Cancho-Grande, B.; Fregapane, G. State of the art on functional virgin olive oils enriched with bioactive compounds and their properties. Int. J. Mol. Sci. 2017, 18, 668. [Google Scholar] [CrossRef] [Green Version]
- Caponio, F.; Durante, V.; Varva, G.; Silletti, R.; Previtali, M.A.; Viggiani, I.; Squeo, G.; Summo, C.; Pasqualone, A.; Gomes, T.; et al. Effect of infusion of spices into the oil vs. combined malaxation of olive paste and spices on quality of naturally flavored virgin olive oils. Food Chem. 2016, 202, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Bobiano, M.; Rodrigues, N.; Madureira, M.; Dias, L.G.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Unmasking sensory defects of olive oils flavored with basil and oregano using an electronic tongue-chemometric tool. J. Am. Oil Chem. Soc. 2018, 96, 751–760. [Google Scholar] [CrossRef] [Green Version]
- Wernig, F.; Buegger, F.; Pritsch, K.; Splivallo, R. Composition and authentication of commercial and home-made white truffle-flavored oils. Food Control. 2018, 87, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Campêlo, M.C.S.; Medeiros, J.M.S.; Silva, J.B.A. Natural products in food preservation. Int. Food Res. J. 2019, 26, 41–46. [Google Scholar]
- Mancianti, F.; Ebani, V.V. Biological activity of essential oils. Molecules 2020, 25, 678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peñalvo, G.C.; Robledo, V.R.; Callado, C.S.C.; Santander-Ortega, M.J.; Castro-Vázquez, L.; Victoria Lozano, M.; Arroyo-Jiménez, M.M. Improving green enrichment of virgin olive oil by oregano. Effects on antioxidants. Food Chem. 2016, 197, 509–515. [Google Scholar] [CrossRef]
- European Union Commission. Regulation CE 1989/2003. Amending Regulation EEC 2568/91. Off. J. Eur. Union 2003, L295, 57–77. [Google Scholar]
- Issaoui, M.; Flamini, G.; Souid, S.; Bendini, A.; Barbieri, S.; Gharbi, I.; Toschi, T.G.; Cioni, P.L.; Hammami, M. How the addition of spices and herbs to virgin olive oil to produce flavored oils affects consumer acceptance. Nat. Prod. Commun. 2016, 11, 775–780. [Google Scholar] [CrossRef] [Green Version]
- Baiano, A.; Gambacorta, G.; La Notte, E. Aromatization of olive oil. Transw. Res. Netw. 2010, 661, 1–29. [Google Scholar]
- Sinelli, N.; Cerretani, L.; Di Egidio, V.; Bendini, A.; Casiraghi, E. Application of near (NIR) infrared and mid (MIR) infrared spectroscopy as a rapid tool to classify extra virgin olive oil on the basis of fruity attribute intensity. Food Res. Int. 2010, 43, 369–375. [Google Scholar] [CrossRef]
- Berna, A. Metal oxide sensors for electronic noses and their application to food analysis. Sensors 2010, 10, 3882–3910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tena, N.; Lazzez, A.; Aparicio-Ruiz, R.; García-González, D.L. Volatile compounds characterizing Tunisian Chemlali and Chétoui virgin olive oils. J. Agric. Food Chem. 2007, 55, 7852–7858. [Google Scholar] [CrossRef]
- Esposto, S.; Montedoro, G.F.; Selvaggini, R.; Riccò, I.; Taticchi, A.; Stefania, U.; Maurizio, S. Monitoring of virgin olive oil volatile compounds evolution during olive malaxation by an array of metal oxide sensors. Food Chem. 2009, 113, 345–350. [Google Scholar]
- Lerma-García, M.J.; Cerretani, L.; Cevoli, C.; Simó-Alfonso, E.F.; Bendini, A.; Gallina Toschi, T. Use of electronic nose to determine defect percentage in oils. Comparison with sensory panel results. Sens. Actuators B Chem. 2010, 147, 283–289. [Google Scholar] [CrossRef]
- Xu, L.; Yu, X.; Liu, L.; Zhang, R. A novel method for qualitative analysis of edible oil oxidation using an electronic nose. Food Chem. 2016, 202, 229–235. [Google Scholar] [CrossRef]
- García-González, D.L.; Aparicio, R. Coupling MOS sensors and gas chromatography to interpret the sensor responses to complex food aroma: Application to virgin olive oil. Food Chem. 2010, 120, 572–579. [Google Scholar] [CrossRef]
- Teixeira, G.G.; Dias, L.G.; Rodrigues, N.; Marx, Í.M.G.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Application of a lab-made electronic nose for extra virgin olive oils commercial classification according to the perceived fruitiness intensity. Talanta 2021, 226, 122122. [Google Scholar] [CrossRef]
- Marchal, P.C.; Sanmartin, C.; Martínez, S.S.; Ortega, J.G.; Mencarelli, F.; García, J.G. Prediction of fruity aroma intensity and defect presence in virgin olive oil using an electronic nose. Sensors 2021, 21, 2298. [Google Scholar] [CrossRef]
- Pacioni, G.; Cerretani, L.; Procida, G.; Cichelli, A. Composition of commercial truffle flavored oils with GC–MS analysis and discrimination with an electronic nose. Food Chem. 2014, 146, 30–35. [Google Scholar] [CrossRef]
- Commission Delegated Regulation (EU) 2015/1830 of 8th July 2015: Amending Regulation (EEC) No. 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Union 2005, L266, 9–13.
- International Olive Council (IOC). Sensory Analysis of Olive Oil—Method for the Organoleptic Assessment of Virgin Olive Oil Applying to Use a Designation of Origin. COI/T.20/Doc. No. 22; November 2005; 29p, Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-T.20-Doc.-No-22-2005-Eng-1.pdf (accessed on 5 May 2021).
- Pizarro, M.L.; Becerra, M.; Sayago, A.; Beltrán, M.; Beltrán, R. Comparison of different extraction methods to determine phenolic compounds in virgin olive oil. Food Anal. Methods 2013, 6, 123–132. [Google Scholar] [CrossRef]
- Gila, D.M.M.; García, J.G.; Bellincontro, A.; Mencarelli, F.; Ortega, J.G. Fast tool based on electronic nose to predict olive fruit quality after harvest. Postharvest Biol. Technol. 2020, 160, 111058. [Google Scholar] [CrossRef]
- Haddi, Z.; Alami, H.; Bari, N.E.; Tounsi, M.; Barhoumi, H.; Maaref, A.; Jaffrezic-Renault, N.; Bouchikhi, B. Electronic nose and tongue combination for improved classification of moroccan virgin olive oil profiles. Food Res. Int. 2013, 54, 1488–1498. [Google Scholar] [CrossRef]
- Cadima, J.; Cerdeira, J.O.; Minhoto, M. Computational aspects of algorithms for variable selection in the context of principal components. Comput Stat. Data Anal. 2004, 47, 225–236. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S (Statistics and Computing), 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Abenoza, M.; Sánchez-Gimeno, A.C. Increasing the stability of Empeltre olive oils by aromatization with rosemary (Rosmarinus officinalis) and garlic (Allium sativum). Int. J. Gastron. Food Sci. 2021, 24, 100333. [Google Scholar] [CrossRef]
- Gambacorta, G.; Faccia, M.; Pati, S.; Lamacchia, C.; Baiano, A.; La Notte, E. Changes in the chemical and sensorial profile of extra virgin olive oils flavored with herbs and spices during storage. J. Food Lipids 2007, 14, 202–215. [Google Scholar] [CrossRef]
- Sacchi, R.; Della Medaglia, D.; Paduano, A.; Caporaso, N.; Genovese, A. Characterisation of lemon-flavored olive oils. LWT 2017, 79, 326–332. [Google Scholar] [CrossRef]
- Baiano, A.; Terracone, C.; Gambacorta, G.; La Notte, E.L. Changes in quality indices, phenolic content and antioxidant activity of flavored olive oils during storage. J. Am. Oil Chem. Soc. 2009, 86, 1083–1092. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Dipalmo, T.; Crupi, P.; Durante, V.; Pesce, V.; Maiellaro, I.; Lovece, A.; Mercurio, A.; Laghezza, A.; Corbo, F.; et al. Comparison between different flavored olive oil production techniques: Healthy value and process efficiency. Plant. Foods Hum. Nutr. 2016, 71, 81–87. [Google Scholar] [CrossRef]
- Bhandari, M.P.; Carmona, E.N.; Abbatangelo, M.; Sberveglieri, V.; Duina, G.; Malla, R.; Comini, E.; Sberveglieri, G. Discrimination of quality and geographical origin of extra virgin olive oil by S3 device with metal oxides gas sensors. Proceedings 2018, 2, 1061. [Google Scholar] [CrossRef] [Green Version]
Parameters 1 | cv. Arbequina Olive Oils | p-Value 2 | |||
---|---|---|---|---|---|
Unflavored Oils (Control) | Flavored Oils | ||||
Cinnamon | Garlic | Rosemary | |||
FA (g oleic acid/100 g) | 0.22 ± 0.00 A | 0.23 ± 0.01 A | 0.22 ± 0.01 A | 0.23 ± 0.00 A | 0.2942 |
PV (mEq O2/kg oil) | 14.2 ± 0.8 A | 13.6 ± 0.4 A | 12.6 ± 0.3 B | 10.5 ± 0.4 C | <0.0001 |
K232 | 2.37 ± 0.12 A | 1.80 ± 0.07 C | 1.69 ± 0.08 C | 2.11 ± 0.15 B | <0.0001 |
K268 | 0.19 ± 0.01 B | 0.41 ± 0.02 A | 0.19 ± 0.02 B | 0.19 ± 0.01 B | <0.0001 |
OS (h) | 6.76 ± 0.38 B | 6.37 ± 0.14 B | 6.48 ± 0.18 B | 7.74 ± 0.57 A | <0.0001 |
TPC (mg GAE/kg oil) | 100 ± 3 C | 121 ± 14 B | 141 ± 5 A | 142 ± 7 A | <0.0001 |
Perceived Sensory Attributes | cv. Arbequina Olive Oils | p-Value 1 | ||||
---|---|---|---|---|---|---|
Unflavored Oils (Control) | Flavored Oils | |||||
Cinnamon | Garlic | Rosemary | ||||
Olfactory sensations | ||||||
Fruity | Greenly | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 3.8 ± 0.6 A | <0.0001 |
Ripely | 7.2 ± 0.3 AB | 7.5 ± 0.2 A | 7.0 ± 0.2 B | 0.0 ± 0.0 C | <0.0001 | |
Fruit sensations | Apple | 3.7 ± 0.5 A | 4.0 ± 0.5 A | 0.0 ± 0.0 B | 0.0 ± 0.0 B | <0.0001 |
Banana | 1.8 ± 0.2 A | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 0.0 ± 0.0 B | <0.0001 | |
Dry fruits | 1.4 ± 0.2 A | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 0.0 ± 0.0 B | <0.0001 | |
Herbaceous sensations | Dry herbs | 5.4 ± 0.6 A | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 0.0 ± 0.0 B | <0.0001 |
Harmony | 7.4 ± 0.4 C | 8.1 ± 0.6 AB | 7.7 ± 0.2 BC | 8.7 ± 0.4 A | 0.0003 | |
Gustatory sensations | ||||||
Fruity | Greenly | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 4.8 ± 0.5 A | <0.0001 |
Ripely | 6.8 ± 0.4 A | 7.0 ± 0.4 A | 7.1 ± 0.4 A | 0.0 ± 0.0 B | <0.0001 | |
Basic tastes | Bitter | 1.7 ± 0.2 C | 3.5 ± 0.3 A | 2.8 ± 0.5 B | 2.6 ± 0.2 B | <0.0001 |
Pungent | 0.9 ± 0.1 A | 1.0 ± 0.1 A | 0.9 ± 0.1 A | 0.8 ± 0.1 A | 0.5407 | |
Sweet | 5.4 ± 0.3 A | 5.1 ± 0.6 A | 3.7 ± 0.5 B | 4.2 ± 0.4 B | <0.0001 | |
Fruit sensations | Apple | 3.3 ± 0.4 A | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 0.0099 |
Banana | 2.1 ± 0.3 A | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 0.0 ± 0.0 B | <0.0001 | |
Dry fruits | 1.3 ± 0.2 A | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 0.0076 | |
Herbaceous sensations | Dry herbs | 6.5 ± 0.5 A | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 0.0 ± 0.0 B | <0.0001 |
Eucalyptus | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 2.2 ± 0.3 A | <0.0001 | |
Pine | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 4.1 ± 0.4 A | <0.0001 | |
Harmony | 7.5 ± 0.3 B | 7.7 ± 0.4 AB | 7.7 ± 0.4 AB | 8.2 ± 0.4 A | 0.0232 | |
Global sensations | ||||||
Complexity | 5.4 ± 0.2 A | 3.6 ± 0.3 B | 2.2 ± 0.2 D | 2.8 ± 0.4 C | <0.0001 | |
Persistence | 7.1 ± 0.2 A | 7.0 ± 0.6 A | 6.9 ± 0.9 A | 7.3 ± 0.6 A | 0.6301 |
Actual Group (cv. Arbequina Oils) | Predicted Group (cv. Arbequina Oils) | Total | Sensitivity (%) | |||
---|---|---|---|---|---|---|
Unflavored Oils | Cinnamon Flavored Oils | Garlic Flavored Oils | Rosemary Flavored Oils | |||
Unflavored oils | 8 (8) | 0 (0) | 0 (0) | 0 (0) | 8 (8) | 100 |
Cinnamon flavored oils | 0 (0) | 8 (6) | 0 (0) | 0 (2) | 8 (8) | 75 |
Garlic flavored oils | 0 (0) | 0 (0) | 8 (8) | 0 (0) | 8 (8) | 100 |
Rosemary flavored oils | 0 (0) | 0 (0) | 0 (0) | 8 (8) | 8 (8) | 100 |
Total | 8 (8) | 8 (6) | 8 (8) | 8 (10) | 32 (8) | 94 |
Specificity (%) | 100 (100) | 100 (100) | 100 (100) | 100 (80) | 100 (95) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, N.; Silva, K.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. The Use of Electronic Nose as Alternative Non-Destructive Technique to Discriminate Flavored and Unflavored Olive Oils. Foods 2021, 10, 2886. https://doi.org/10.3390/foods10112886
Rodrigues N, Silva K, Veloso ACA, Pereira JA, Peres AM. The Use of Electronic Nose as Alternative Non-Destructive Technique to Discriminate Flavored and Unflavored Olive Oils. Foods. 2021; 10(11):2886. https://doi.org/10.3390/foods10112886
Chicago/Turabian StyleRodrigues, Nuno, Kevin Silva, Ana C. A. Veloso, José Alberto Pereira, and António M. Peres. 2021. "The Use of Electronic Nose as Alternative Non-Destructive Technique to Discriminate Flavored and Unflavored Olive Oils" Foods 10, no. 11: 2886. https://doi.org/10.3390/foods10112886
APA StyleRodrigues, N., Silva, K., Veloso, A. C. A., Pereira, J. A., & Peres, A. M. (2021). The Use of Electronic Nose as Alternative Non-Destructive Technique to Discriminate Flavored and Unflavored Olive Oils. Foods, 10(11), 2886. https://doi.org/10.3390/foods10112886