Blackcurrant (Ribes nigrum L.) and Kamchatka Honeysuckle (Lonicera caerulea var. Kamtschatica) Extract Effects on Technological Properties, Sensory Quality, and Lipid Oxidation of Raw-Cooked Meat Product (Frankfurters)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extract Preparation
2.2. Moisture
2.3. Determination of Total Antioxidant Capacity (TAC)
2.4. Determination of Total Polyphenols Content (TPC)
2.5. Determination of Total Anthocyanins (TA)
2.6. Frankfurter Preparation
2.7. pH Measurement
2.8. Color Determination
2.9. Texture Analysis
2.10. Microbiological Examination
- Psychrotrophic bacteria—PCA agar, 10 days, 6.5 ± 1 °C,
- Bacillus sp.—M-PA agar, 5 days, 25 °C ± 1 °C,
- Enterococcus sp.—M-PA agar, 3 days, 37 °C ± 1 °C,
- Lactobacillus sp.—MRS agar, 5 days, 37 °C ± 1 °C.
2.11. Sensory Evaluation
2.12. Determination of Oxidative Stability
2.13. Statistical Analysis
3. Results and Discussion
3.1. Extracts Examination
3.2. Frankfurters Examination
3.2.1. pH Measurement
3.2.2. Color Analysis
3.2.3. Textural Analysis
3.2.4. Microbial Examination
3.2.5. Sensory Evaluation
3.2.6. Oxidative Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Decker, E.A.; Park, Y. Healthier meat products as functional foods. Meat Sci. 2010, 86, 49–55. [Google Scholar] [CrossRef]
- Karre, L.; Lopez, K.; Getty KJ, K. Natural antioxidants in meat and poultry products. Meat Sci. 2013, 94, 220–227. [Google Scholar] [CrossRef]
- Schmidt, Š. Antioxidanty a Oxidačné Zmeny Tukov v Potravinách, 1st ed.; Nakladateľstvo STU: Bratislava, Slovakia, 2011. [Google Scholar]
- Hu, M.; Jacobsen, C.H. Oxidative Stability and Shelf Life of Foods Containing Oils and Fats, 1st ed.; AOCS Press: Urbana, IL, USA, 2016. [Google Scholar]
- Delgado-Pando, G.; Cofrades, S.; Ruiz-Capillas, C.; Jiménez-Colmenero, F. Healthier lipid combination as functional ingredient influencing sensory and technological properties of low-fat frankfurters. Eur. J. Lipid Sci. Technol. 2010, 112, 859–870. [Google Scholar] [CrossRef]
- Tobin, B.D.; O’Sullivan, M.G.; Hamill, R.M.; Kerry, J.P. Effect of varying salt and fat levels on the sensory and physiochemical quality of frankfurters. Meat Sci. 2012, 92, 659–666. [Google Scholar] [CrossRef]
- De Vogli, R.; Kouvonen, A.; Gimeno, D. The influence of market deregulation on fast food consumption and body mass index: A cross-national time series analysis. Bull. World Health Organ. 2014, 92, 99–107A. [Google Scholar] [CrossRef]
- Salcedo-Sandoval, L.; Cofrades, S.; Ruiz-Capillas Pérez, C.; Solas, M.T.; Jiménez-Colmenero, F. Healthier oils stabilized in konjac matrix as fat replacers in n−3 PUFA enriched frankfurters. Meat Sci. 2013, 93, 757–766. [Google Scholar] [CrossRef]
- López-López, I.; Cofrades, S.; Jiménez-Colmenero, F. Low-fat frankfurters enriched with n−3 PUFA and edible seaweed: Effects of olive oil and chilled storage on physicochemical, sensory and microbial characteristics. Meat Sci. 2009, 83, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Pintado, T.; Muñoz-González, I.; Salvador, M.; Ruiz-Capillas, C.; Herrero, A.M. Phenolic compounds in emulsion gel-based delivery systems applied as animal fat replacers in frankfurters: Physico-chemical, structural and microbiological approach. Food Chem. 2021, 340, 128095. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Santos MJ, M.C.; Silva LK, R.; Pereira LC, L.; Santos, I.A.; da Silva Lannes, S.C.; da Silva, M.V. Natural antioxidants used in meat products: A brief review. Meat Sci. 2019, 148, 181–188. [Google Scholar] [CrossRef]
- Coma, V. Bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci. 2008, 78, 90–103. [Google Scholar] [CrossRef]
- Lee, C.W.; Choi, H.M.; Kim, S.Y.; Lee, J.R.; Kim, H.J.; Jo, C.; Jung, S. Influence of Perilla frutescens var. acuta Water Extract on the Shelf Life and Physicochemical Qualities of Cooked Beef Patties. Korean J. Food Sci. Anim. Resour. 2015, 35, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Kortesniemi, M.; Ma, X.; Zheng, J.; Yang, B. Enzymatic acylation of blackcurrant (Ribes nigrum) anthocyanins and evaluation of lipophilic properties and antioxidant capacity of derivatives. Food Chem. 2019, 281, 189–196. [Google Scholar] [CrossRef]
- Karjalainen, R.; Anttonen, M.; Saviranta, N.; Stewart, D.; McDougall, G.J.; Hilz, H.; Mattila, P.; Törrönen, R. A review on bioactive compounds in black currants (Ribes nigrum L.) and their potential health-promoting properties. Acta Hortic. 2009, 839, 301–307. [Google Scholar] [CrossRef]
- Auzanneau, N.; Weber, P.; Kosińska-Cagnazzo, A.; Andlauer, W. Bioactive compounds and antioxidant capacity of Lonicera caerulea berries: Comparison of seven cultivars over three harvesting years. J. Food Compos. Anal. 2018, 66, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Zhao, Y.; Zhao, L.; Xin, X.; Lou, S.; Huo, J.; Qin, D.; Ma, W.; Liu, Y. Changes in the composition of aroma components in blue honeysuckle fruit at different developmental stages. Int. J. Fruit Sci. 2016, 33, 977–984. [Google Scholar]
- Garrido, M.D.; Auqui, M.; Martí, N.; Linares, M.B. Effect of two different red grape pomace extracts obtained under different extraction systems on meat quality of pork burgers. LWT Food Sci Technol. 2011, 44, 2238–2243. [Google Scholar] [CrossRef]
- Naveena, B.M.; Sen, A.R.; Vaithiyanathan, S.; Babji, Y.; Kondaiah, N. Comparative efficacy of pomegranate juice, pomegranate rind powder extract and BHT as antioxidants in cooked chicken patties. Meat Sci. 2008, 80, 1304–1308. [Google Scholar] [CrossRef]
- Devatkal, S.K.; Kumboj, R.; Paul, D. Comparative antioxidant effect of BHT and water extracts of banana and sapodilla peels in raw poultry meat. LWT Food Sci Technol. 2014, 51, 387–391. [Google Scholar] [CrossRef] [Green Version]
- Munekata PE, S.; Fernandes RD, P.P.; de Melo, M.P.; Trindade, M.A.; Lorenzo, J.M. Influence of peanut skin extract on shelf-life of sheep patties. Asian Pac. J. Trop. Biomed. 2016, 6, 586–596. [Google Scholar] [CrossRef] [Green Version]
- DeJong, S.; Lanari, M.C. Extracts of olive polyphenols improve lipid stability in cooked beef and pork: Contribution of individual phenolics to the antioxidant activity of the extract. Food Chem. 2009, 116, 892–897. [Google Scholar] [CrossRef]
- Jia, N.; Kong, B.; Liu, Q.; Diao, X.; Xia, X. Antioxidant activity of black currant (Ribes nigrum L.) extract and its inhibitory effect on lipid and protein oxidation of pork patties during chilled storage. Meat Sci. 2012, 91, 533–539. [Google Scholar] [CrossRef]
- Shirahigue, L.D.; Plata-Oviedo, M.; De Alencar, S.M.; D’Arce MA, B.R.; De Souza Vieira TM, F.; Oldoni TL, C.; Contreras-Castillo, C.J. Wine industry residue as antioxidant in cooked chicken meat. Int. J. Food Sci. Technol. 2010, 45, 863–870. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.-T.; Xu, X.-R.; Gan, R.-Y.; Zhang, Y.; Xia, E.-Q.; Li, H.-B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Lapornik, B.; Prošek, M.; Golc Wondra, A. Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng. 2005, 71, 214–222. [Google Scholar] [CrossRef]
- Kumar, Y.; Kumar, V. Effects of double emulsion (W1/O/W2) containing encapsulated Murraya koenigii berries extract on quality characteristics of reduced-fat meat batter with high oxidative stability. LWT Food Sci. Technol. 2020, 127, 109365. [Google Scholar] [CrossRef]
- Tamkutė, L.; Vaicekauskaitė, R.; Melero, B.; Jaime, I.; Rovira, J.; Venskutonis, P.R. Effects of chokeberry extract isolated with pressurized ethanol from defatted pomace on oxidative stability, quality and sensory characteristics of pork meat products. LWT Food Sci. Technol. 2021, 150, 111943. [Google Scholar] [CrossRef]
- Jaberi, R.; Kaban, G.; Kaya, M. The effect of barberry (Berberis vulgaris L.) extract on the physicochemical properties, sensory characteristics, and volatile compounds of chicken frankfurters. J. Food Process. Preserv. 2020, 44, e14501. [Google Scholar] [CrossRef]
- Selani, M.M.; Contreras-Castillo, C.J.; Shirahigue, L.D.; Gallo, C.R.; Plata-Oviedo, M.; Montes-Villanueva, N.D. Wine industry residues extracts as natural antioxidants in raw and cooked chicken meat during frozen storage. Meat Sci. 2011, 88, 397–403. [Google Scholar] [CrossRef]
- Xia, X.; Kong, B.; Liu, Q.; Liu, J. Physicochemical change and protein oxidation in porcine longissimus dorsi as influenced by different freeze–thaw cycles. Meat Sci. 2009, 83, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Czyzowska, A.; Efenberger, M.; Krala, L. Polyphenolic extracts of cherry (Prunus cerasus L.) and blackcurrant (Ribes nigrum L.) leaves as natural preservatives in meat products. Food Microbiol. 2016, 59, 142–149. [Google Scholar] [CrossRef]
- Chung, Y.K.; Choi, J.S.; Yu, S.B.; Choi, Y.I. Physicochemical and storage characteristics of Hanwoo Tteokgalbi treated with onion skin powder and blackcurrant powder. Korean J. Food Sci. Anim. Resour. 2018, 38, 737. [Google Scholar] [CrossRef] [PubMed]
- Puupponen-Pimiä, R.; Nohynek, L.; Meier, C.; Kähkönen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K.-M. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Nohynek, L.J.; Alakomi, H.-L.; Kähkönen, M.P.; Heinonen, M.; Helander, I.M.; Oksman-Caldentey, K.-M.; Puupponen-Pimiä, R. Berry Phenolics: Antimicrobial Properties and Mechanisms of Action Against Severe Human Pathogens. Nutr. Cancer 2006, 54, 18–32. [Google Scholar] [CrossRef]
- Stobnicka, A.; Gniewosz, M. Antimicrobial protection of minced pork meat with the use of Swamp Cranberry (Vaccinium oxycoccos L.) fruit and pomace extracts. J. Food Sci. Technol. 2017, 55, 62–71. [Google Scholar] [CrossRef]
- Banerjee, R.; Verma, A.K.; Siddiqui, M.W. Natural Antioxidants: Applications in Foods of Animal Origin, 1st ed.; Apple Academic Press: Palm Bay, FL, USA, 2017. [Google Scholar]
- Armenteros, M.; Morcuende, D.; Ventanas, S.; Estévez, M. Application of Natural Antioxidants from Strawberry Tree (Arbutus unedo L.) and Dog Rose (Rosa canina L.) to Frankfurters Subjected to Refrigerated Storage. J. Integr. Agric. 2013, 12, 1972–1981. [Google Scholar] [CrossRef]
- Ganhão, R.; Estévez, M.; Armenteros, M.; Morcuende, D. Mediterranean Berries as Inhibitors of Lipid Oxidation in Porcine Burger Patties Subjected to Cooking and Chilled Storage. J. Integr. Agric. 2013, 12, 1982–1992. [Google Scholar] [CrossRef]
- Püssa, T.; Anton, D.; Raudsepp, P. Nitrite as a potent and versatile antioxidant additive in minced pork. In Proceedings of the 64th International Congress of Meat Science and Technology (ICoMST), Melbourne, Australia, 12–17 August 2018. [Google Scholar]
- Anton, D.; Koskar, J.; Raudsepp, P.; Meremäe, K.; Kaart, T.; Püssa, T.; Roasto, M. Antimicrobial and antioxidative effects of plant powders in raw and cooked minced pork. Foods 2019, 8, 661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ingredient (g) | Con-0 | Con-C | BCE-1 | BCE-2 | KHE-1 | KHE-2 |
---|---|---|---|---|---|---|
Pork meat | 930 | 930 | 930 | 930 | 930 | 930 |
Water | 200 | 200 | 200 | 200 | 200 | 200 |
Black pepper | 2 | 2 | 2 | 2 | 2 | 2 |
Paprika (sweet) | 2 | 2 | 2 | 2 | 2 | 2 |
Paprika (spicy) | 2 | 2 | 2 | 2 | 2 | 2 |
Salting mixture | 2 | 2 | 2 | 2 | 2 | 2 |
Nutmeg | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Antioxidants | ||||||
Citric acid (g) | - | 0.5 | - | - | - | - |
Black currant extract (mL) | - | - | 3 (1.2 g) | 5 (2.0 g) | - | - |
Honeysuckle extract (mL) | - | - | - | - | 3 (1.2 g) | 5 (2.0 g) |
Dry Matter (%) | TAC (% of DPPH Inhibition) ± S.D. | TPC (g GAE. kg−1) ± S.D. | TA (mg·L−1) ± S.D. | |
---|---|---|---|---|
Blackcurrant | 78.37 | 75.95 ± 2.07 | 16.32 ± 0.85 | 2588.37 ± 21.90 |
Honeysuckle | 82.00 | 82.12 ± 5.17 | 38.67 ± 0.55 | 4809.43 ± 61.23 |
Group | Day 1 | Day 7 | Day 14 | Day 21 |
---|---|---|---|---|
Con-0 | 6.28 ± 0.08 a | 6.29 ± 0.07 a | 6.28 ± 0.07 a | 6.26 ± 0.06 a |
Con-C | 5.48 ± 0.07 b | 5.64 ± 0.03 b | 5.64 ± 0.03 b | 5.67 ± 0.04 b |
BCE-1 | 6.21 ± 0.03 a | 6.23 ± 0.04 a | 6.15 ± 0.07 a | 6.22 ± 0.09 a |
BCE-2 | 6.16 ± 0.05 a | 6.16 ± 0.09 a | 6.14 ± 0.09 a | 6.17 ± 0.08 a |
KHE-1 | 6.24 ± 0.02 a | 6.20 ± 0.05 a | 6.20 ± 0.03 a | 6.14 ± 0.11 a |
KHE-2 | 6.15 ± 0.06 a | 6.20 ± 0.05 a | 6.13 ± 0.12 a | 6.17 ± 0.14 a |
p-value | <0.001 | <0.001 | <0.001 | <0.001 |
Group | Day 1 | Day 21 | ||||||
---|---|---|---|---|---|---|---|---|
L* (D65) | a* (D65) | b* (D65) | Chroma | L* (D65) | a* (D65) | b* (D65) | Chroma | |
Con-0 | 71.27 ± 0.51 a | 11.73 ± 0.35 a | 21.14 ± 0.36 a | 24.18 ± 0.20 a | 71.08 ± 0.05b | 12.93 ± 0.34 b | 19.05 ± 0.20 d | 25.04 ± 0.07 e |
Con-C | 69.90 ± 1.80 ab | 12.25 ± 0.36 a | 20.57 ± 0.60 ab | 23.94 ± 0.68 a | 73.37 ± 0.97 a | 13.19 ± 0.26 a | 21.28 ± 0.20 a | 22.89 ± 0.31 a |
BCE-1 | 69.52 ± 0.06 ab | 12.34 ± 0.30 a | 20.24 ± 0.30 ab | 23,71 ± 0.40 a | 69.40 ± 0.03c | 12.95 ± 0.17 b | 20.68 ± 0.12 b | 24.40 ± 0.19 b |
BCE-2 | 69.39 ± 0.96 ab | 12.15 ± 0.29 a | 20.46 ± 0.32 ab | 23.80 ± 0.40 a | 70.56 ± 0.33 b | 12.95 ± 0.18 b | 20.25 ± 0.06 c | 23.37 ± 0.12 d |
KHE-1 | 69.84 ± 0.45 b | 12.13 ± 0.34 a | 20.43 ± 0.15 ab | 23.76 ± 0.30 a | 67.88 ± 0.27 d | 12.95 ± 0.19 b | 20.93 ± 0.14 b | 24.83 ± 0.30 b |
KHE-2 | 68.03 ± 0.43 b | 12.10 ± 0.26 a | 19.76 ± 0.45 b | 23.17 ± 0.42 a | 68.83 ± 0.23 c | 12.95 ± 0.20 b | 20.05 ± 0.30 c | 23.87 ± 0.07 c |
p-value | 0.008 | 0.304 | 0.013 | 0.155 | <0.001 | 0.039 | <0.001 | <0.001 |
Sample | Microorganisms | After 7th Day | After 14th Day | After 21st Day |
---|---|---|---|---|
Con-0 | Enterococcus sp. | 1.48 | 0.00 | 0.00 |
Lactobacillus sp. | 0.00 | 3.15 | 3.70 | |
Bacillus sp. | 1.48 | 3.49 | 3.08 | |
Psychrotrophic microorganisms | 2.58 | 0.00 | 1.30 | |
Con-C | Enterococcus sp. | 1.48 | 0.00 | 0.00 |
Lactobacillus sp. | 0.00 | 2.70 | 3.49 | |
Bacillus sp. | 1.90 | 3.04 | 3.08 | |
Psychrotrophic microorganisms | 1.48 | 1.48 | 0.00 | |
BCE-1 | Enterococcus sp. | 0.00 | 0.00 | 0.00 |
Lactobacillus sp. | 0.00 | 3.29 | 3.48 | |
Bacillus sp. | 2.04 | 2.30 | 2.95 | |
Psychrotrophic microorganisms | 0.00 | 0.00 | 0.00 | |
BCE-2 | Enterococcus sp. | 0.00 | 0.00 | 0.00 |
Lactobacillus sp. | 2.08 | 3.18 | 3.04 | |
Bacillus sp. | 0.00 | 3.00 | 3.48 | |
Psychrotrophic microorganisms | 0.00 | 0.00 | 2.08 | |
KHE-1 | Enterococcus sp. | 0.00 | 0.00 | 0.00 |
Lactobacillus sp. | 1.30 | 2.60 | 3.00 | |
Bacillus sp. | 0.00 | 2.70 | 3.08 | |
Psychrotrophic microorganisms | 0.00 | 0.00 | 2.30 | |
KHE-2 | Enterococcus sp. | 0.00 | 0.00 | 0.00 |
Lactobacillus sp. | 1.30 | 3.45 | 3.18 | |
Bacillus sp. | 0.00 | 2.85 | 3.11 | |
Psychrotrophic microorganisms | 0.00 | 0.00 | 2.00 |
Group | Day 1 | Day 7 | Day 14 | Day 21 |
---|---|---|---|---|
Con-0 | 0.151 ± 0.006 a | 0.167 ± 0.003 a | 0.202 ± 0.006 a | 0.373 ± 0.006 a |
Con-C | 0.133 ± 0.002 a | 0.149 ± 0.006 a | 0.167 ± 0.011 b | 0.208 ± 0.009 bc |
BCE-1 | 0.144 ± 0.005 a | 0.147 ± 0.007 a | 0.174 ± 0.005 b | 0.226 ± 0.005 b |
BCE-2 | 0.141 ± 0.009 a | 0.142 ± 0.011 a | 0.161 ± 0.005 b | 0.199 ± 0.004 bc |
KHE-1 | 0.142 ± 0.007 a | 0.143 ± 0.015 a | 0.170 ± 0.013 b | 0.220 ± 0.003 bc |
KHE-2 | 0.140 ± 0.004 a | 0.147 ± 0.002 a | 0.166 ± 0.007 b | 0.195 ± 0.016 c |
p-value | 0.127 | 0.140 | 0.004 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurčaga, L.; Bobko, M.; Kolesárová, A.; Bobková, A.; Demianová, A.; Haščík, P.; Belej, Ľ.; Mendelová, A.; Bučko, O.; Kročko, M.; et al. Blackcurrant (Ribes nigrum L.) and Kamchatka Honeysuckle (Lonicera caerulea var. Kamtschatica) Extract Effects on Technological Properties, Sensory Quality, and Lipid Oxidation of Raw-Cooked Meat Product (Frankfurters). Foods 2021, 10, 2957. https://doi.org/10.3390/foods10122957
Jurčaga L, Bobko M, Kolesárová A, Bobková A, Demianová A, Haščík P, Belej Ľ, Mendelová A, Bučko O, Kročko M, et al. Blackcurrant (Ribes nigrum L.) and Kamchatka Honeysuckle (Lonicera caerulea var. Kamtschatica) Extract Effects on Technological Properties, Sensory Quality, and Lipid Oxidation of Raw-Cooked Meat Product (Frankfurters). Foods. 2021; 10(12):2957. https://doi.org/10.3390/foods10122957
Chicago/Turabian StyleJurčaga, Lukáš, Marek Bobko, Adriana Kolesárová, Alica Bobková, Alžbeta Demianová, Peter Haščík, Ľubomír Belej, Andrea Mendelová, Ondřej Bučko, Miroslav Kročko, and et al. 2021. "Blackcurrant (Ribes nigrum L.) and Kamchatka Honeysuckle (Lonicera caerulea var. Kamtschatica) Extract Effects on Technological Properties, Sensory Quality, and Lipid Oxidation of Raw-Cooked Meat Product (Frankfurters)" Foods 10, no. 12: 2957. https://doi.org/10.3390/foods10122957
APA StyleJurčaga, L., Bobko, M., Kolesárová, A., Bobková, A., Demianová, A., Haščík, P., Belej, Ľ., Mendelová, A., Bučko, O., Kročko, M., & Čech, M. (2021). Blackcurrant (Ribes nigrum L.) and Kamchatka Honeysuckle (Lonicera caerulea var. Kamtschatica) Extract Effects on Technological Properties, Sensory Quality, and Lipid Oxidation of Raw-Cooked Meat Product (Frankfurters). Foods, 10(12), 2957. https://doi.org/10.3390/foods10122957