Kinetics of Moisture Loss and Oil Absorption of Pork Rinds during Deep-Fat, Microwave-Assisted and Vacuum Frying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dried Pork Skin Preparation
2.2. Traditional, Microwave-Assisted and Vacuum Frying
2.3. Lipid, Moisture Content and Water Activity
2.4. Mathematical Modelling
2.5. Breaking Force of Fried Pork Rinds
2.6. Puffing Ratio of Fried Pork Rinds
2.7. Color
2.8. Scanning Electron Microscopy (SEM)
2.9. Statistical Analysis
3. Results
3.1. Oil Absorption, Moisture Content, Water Activity of Fried Pork Rinds and Kinetic Model of Oil Uptake and Water Loss
3.2. Breaking Force, Puffing Ratio and Color of Frying of Fried Pork Skin
3.3. Characteristics and Microstructure of Fried Pork Rinds
3.4. Correlations between Physical Properties of Fried Pork Rinds
4. Discussion
4.1. Oil Absorption, Moisture Content, Water Activity of Fried Pork Rinds and Kinetic Model of Oil Uptake and Water Loss
4.2. Breaking Force, Puffing Ratio and Color of Frying of Fried Pork Skin
4.3. Characteristics and Microstructure of Fried Pork Rinds
4.4. Correlations between Physical Properties of Fried Pork Rinds
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sayon-Orea, C.; Bes-Rastrollo, M.; Basterra-Gortari, F.J.; Beunza, J.J.; Guallar-Castillon, P.; De la Fuente-Arrillaga, C.; Martinez-Gonzalez, M.A. Consumption of fried foods and weight gain in a Mediterranean cohort: The SUN project. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 144–150. [Google Scholar] [CrossRef]
- Chang, C.; Wu, G.; Zhang, H.; Jin, Q.; Wang, X. Deep-fried flavor: Characteristics, formation, mechanisms, and influencing factors. Crit. Rev. Food Sci. Nutr. 2020, 60, 1496–1514. [Google Scholar] [CrossRef] [PubMed]
- Kitpot, T.; Sriwattana, S.; Angeli, S.; Thakeow, P. Evaluation of quality parameters and shelf life of Thai pork scratching “Kaeb Moo”. J. Food Qual. 2019, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Maugkul, M.; Kunakornbadin, S.; Maugkun, K.; Pingmaung, R.; Manowang, W.; Plasila, K.; Saechin, D. The development and technological transferring of pork cracker production in Chiang Rai province. Area Based Dev. Res. J. 2011, 3, 78–82. [Google Scholar]
- Cahill, L.E.; Pan, A.; Chiuve, S.E.; Sun, Q.; Willett, W.C.; Hu, F.B.; Rimm, E.B. Fried-food consumption and risk of type 2 diabetes and coronary artery disease: A prospective study in 2 cohorts of US women and men. Am. J. Clin. Nutr. 2014, 100, 667–675. [Google Scholar] [CrossRef]
- Cai, L.; Wang, Z.; Ji, A.; Meyer, J.M.; van der Westhuyzen, D.R. Scavenger receptor CD36 expression contributes to adipose tissue inflammation and cell death in diet-induced obesity. PLoS ONE 2012, 7, 36785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, P.; Li, Y.; Campos, H. Fried food intake and risk of nonfatal acute myocardial infarction in the Costa Rica Heart Study. PLoS ONE 2018, 13, 0192960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parikh, A.; Takhar, P.S. Comparison of microwave and conventional frying on quality attributes and fat content if potatoes. J. Food Sci. 2016, 81, E2743–E2755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, R.G. Vacuum frying versus conventional frying-An overview. Eur. J. Lipid Sci. Technol. 2014, 116, 723–734. [Google Scholar] [CrossRef]
- Truong, K.T.-P.; Le, T.Q.; Songsermpong, S.; Le, T.T. Comparison between traditional deep-oil and microwave puffing for physical and eating qualities of puffed pork rind. Kasetsart J. (Nat. Sci.) 2014, 48, 799–814. [Google Scholar]
- Moyano, P.C.; Pedreschi, F. Kinetics of oil uptake during frying of potato slices: Effect of pre-treatments. LWT-Food Sci. Technol. 2006, 39, 285–291. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, M.; Zhang, W.; Adhikari, B.; Yang, Z. Application of novel microwave-assisted vacuum frying to reduce the oil uptake and improve the quality of potato chips. LWT-Food Sci. Technol. 2016, 73, 490–497. [Google Scholar] [CrossRef] [Green Version]
- Fang, M.C.; Huang, G.J.; Sung, W.C. Mass transfer and texture characteristics of fish skin during deep-fat frying, electrostatic frying, air frying and vacuum frying. LWT-Food Sci. Technol. 2021, 137, 110494. [Google Scholar] [CrossRef]
- Association of Analytical Communities. Official Methods of Analysis of the Association of Official Analytical Chemists, 14th ed.; Sidney, W., Ed.; Association of Analytical Communities: Washington, DC, USA, 1984. [Google Scholar]
- Mathlouthi, M. Water content, water activity, water structure and the stability of food stuffs. Food Control 2001, 12, 409–417. [Google Scholar] [CrossRef]
- Krokida, M.K.; Oreopoulou, V.; Maroulis, Z.B. Water loss and oil uptake as a function of frying time. J. Food Eng. 2000, 44, 39–46. [Google Scholar] [CrossRef]
- Chen, T.Y.; Luo, H.M.; Hsu, P.H.; Sung, W.C. Effects of calcium supplements on the quality and acrylamide content of puffed shrimp chips. J. Food Drug Anal. 2016, 24, 164–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, T.Q.; Songsermpong, S.; Rumpagaporn, P.; Suwanagul, A.; Wallapa, S. Microwave heating for accelerated aging of paddy and white rice. Aust. J. Crop Sci. 2014, 8, 1348–1358. [Google Scholar]
- Debnath, S.; Bhat, K.; Rastogi, N.K. Effect of pre-drying on kinetics of moisture loss and oil uptake during deep-fat frying of chickpea flour-based snack food. LWT-Food Sci. Technol. 2003, 36, 91–98. [Google Scholar] [CrossRef]
- Fan, L.P.; Zhang, M.; Mujumdar, A.S. Vacuum frying of carrot chips. Dry Technol. 2005, 23, 645–656. [Google Scholar] [CrossRef]
- Potter, N.N.; Hotchkiss, J.H. Food Science, 5th ed.; Chapman & Hall: New York, NY, USA, 1997; pp. 245–263. [Google Scholar]
- Troller, J.A. Water activity and food quality. In Water and Food Quality; Hardman, T.M., Ed.; Elsevier Applied Science: London, UK, 1989; pp. 1–32. [Google Scholar]
Ky | Oe | O0 | R2 | |
---|---|---|---|---|
Traditional deep frying | 1.13 ± 0.16 b | 0.35 ± 0.01 b | 0.13 ± 0.01 b | 0.9537 |
Microwave-assisted frying | 0.42 ± 0.07 a | 0.28 ± 0.01 a | 0.09 ± 0.00 a | 0.9715 |
Kx | Xe | X0 | R2 | |
---|---|---|---|---|
Traditional deep frying | 0.68 ± 0.27 b | 0.03 ± 0.02 | 0.23 ± 0.03 | 0.9613 |
Microwave-assisted frying | 1.14 ± 0.11 c | 0.03 ± 0.00 | 0.23 ± 0.00 | 0.9665 |
Vacuum frying | 0.13 ± 0.00 a | 0.05 ± 0.00 | 0.23 ± 0.02 | 0.9557 |
Puffing Ratio (%) | |||||||
---|---|---|---|---|---|---|---|
Frying method | 0.5 min | 1 min | 1.5 min | 2 min | 3 min | 4 min | 5 min |
Traditional deep frying | 216.3 ± 41.1 cd | 263.4 ± 18.0 e | 319.9 ± 9.6 f | 342.2 ± 14.1 fgh | 364.2 ± 12.8 ghi | 378.8 ± 12.0 hij | 400.8 ± 8.7 ij |
Microwave-assisted frying | 206.8 ± 3.2 de | 304.9 ± 16.6 fg | 339.6 ± 13.0 fgh | 365.6 ± 5.2 ghij | 400.2 ± 6.4 ij | 405.6 ± 1.7 ij | 407.8 ± 2.0 j |
Vacuum frying | — | — | — | — | — | 125.1 ± 6.1 a | — |
Puffing Ratio (%) | |||||||
6 min | 8 min | 10 min | 12 min | 16 min | 20 min | 24 min | |
Traditional deep frying | — | — | — | — | — | — | — |
Microwave-assisted frying | — | — | — | — | — | — | — |
Vacuum frying | — | 150.8 ± 10.4 ab | — | 177.7 ± 4.1 bc | 198.7 ± 2.6 cd | 224.0 ± 5.9 de | 226.3 ± 8.9 de |
Sample | Frying Time | L * | a * | b * | △E |
---|---|---|---|---|---|
Dried pork skin | — | 46.79 ± 2.87 a | −0.85 ± 1.10 h | 36.02 ± 2.27 a | — |
Traditional deep | 0.5 min | 60.33 ± 2.51 bc | −4.38 ± 0.33 efg | 39.09 ± 1.49 abc | 16.68 ± 3.32 b |
frying | 1 min | 66.92 ± 5.35 defgh | −6.45 ± 1.31 abc | 37.00 ± 1.66 a | 22.14 ± 5.31 cdef |
1.5 min | 67.09 ± 4.16 defgh | −6.50 ± 1.52 abc | 37.54 ± 1.84 ab | 22.40 ± 4.06 cdef | |
2 min | 69.73 ± 2.89 fghij | −6.56 ± 1.05 abc | 35.88 ± 4.56 a | 25.13 ± 2.67 efgh | |
3 min | 70.60 ± 0.93 ghij | −5.95 ± 0.66 bcde | 41.79 ± 2.62 bcdef | 26.54 ± 0.33 fghi | |
4 min | 71.61 ± 0.68 hijk | −7.65 ± 0.29 a | 38.76 ± 2.21 abc | 28.05 ± 0.99 ghij | |
5 min | 71.22 ± 1.66 hijk | −6.93 ± 1.57 ab | 39.15 ± 4.74 abc | 27.19 ± 1.27 fghij | |
Microwave-assisted | 0.5 min | 64.66 ± 2.25 de | −4.67 ± 0.81 defg | 45.06 ± 2.48 efg | 20.47 ± 2.69 bcde |
frying | 1 min | 68.03 ± 2.04 defghi | −5.21 ± 0.41 cdef | 43.05 ± 2.07 cdefg | 22.88 ± 1.51 def |
1.5 min | 68.87 ± 1.67 efghi | −4.64 ± 0.85 efg | 44.89 ± 0.70 efg | 24.11 ± 1.72 defg | |
2 min | 72.01 ± 0.99 ijkl | −5.24 ± 0.38 cdef | 44.42 ± 0.94 def | 26.96 ± 0.69 fghij | |
3 min | 73.83 ± 1.83 jkl | −4.71 ± 1.70 defg | 46.41 ± 2.09 g | 29.32 ± 1.51 hij | |
4 min | 75.17 ± 1.02 kl | −5.40 ± 0.60 bcdef | 47.09 ± 1.89 g | 30.85 ± 0.88 ij | |
5 min | 76.15 ± 0.17 l | −6.28 ± 0.30 abcd | 46.15 ± 0.68 fg | 31.53 ± 0.38 j | |
Vacuum frying | 4 min | 57.94 ± 3.39 b | −3.28 ± 0.43 g | 37.71 ± 2.74 ab | 11.71 ± 3.60 a |
8 min | 63.63 ± 5.95 cd | −3.11 ± 0.67 g | 40.24 ± 2.64 abcd | 17.57 ± 4.45 bc | |
12 min | 66.46 ± 2.38 defg | −3.79 ± 0.39 fg | 41.47 ± 1.58 bcde | 20.65 ± 2.63 bcde | |
16 min | 68.35 ± 1.38 efghi | −3.97 ± 0.59 fg | 44.58 ± 1.07 defg | 23.43 ± 1.34 defg | |
20 min | 70.28 ± 1.84 ghij | −4.54 ± 0.92 efg | 44.73 ± 1.82 efg | 25.37 ± 1.94 efgh | |
24 min | 70.45 ± 1.54 ghij | −4.62 ± 1.12 efg | 44.30 ± 1.96 defg | 25.41 ± 1.79 efgh |
Frying Method | Frying Time | Breaking Force (N) | Moisture Content (g/100 g wb) | Water Activity | Oil Content (g/100 g db) | Puffing Ratio (%) |
---|---|---|---|---|---|---|
Traditional deep frying | 5 min | 54.09 ± 1.08 c | 3.08 ± 1.06 b | 0.33 ± 0.03 b | 35.63 ± 0.90 d | 400.8 ± 8.7 b |
Microwave-assisted frying | 3 min | 33.82 ± 4.04 a | 3.57 ± 0.14 b | 0.29 ± 0.03 b | 24.21 ± 0.73 c | 400.2 ± 6.4 b |
Vacuum frying | 20 min | 49.35 ± 1.86 c | 5.36 ± 0.44 c | 0.31 ± 0.02 b | 17.14 ± 0.44 b | 224.0 ± 5.9 a |
L* | a* | b* | △E | Puffing thickness (cm) | ||
Traditional deep frying | 5 min | 71.22 ± 1.66 ab | −6.93 ± 1.57 a | 39.15 ± 4.74 a | 27.19 ± 1.27 ab | 0.69 ± 0.04 b |
Microwave-assisted frying | 3 min | 73.83 ± 1.83 b | −4.71 ± 1.70 ab | 46.41 ± 2.09 b | 29.32 ± 1.51 b | 0.55 ± 0.08 a |
Vacuum frying | 20 min | 70.28 ± 1.84 ab | −4.54 ± 0.92 ab | 44.73 ± 1.82 ab | 25.37 ± 1.94 ab | 0.58 ± 0.06 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.-T.V.; Chan, D.-S.; Huang, Y.-H.; Sung, W.-C. Kinetics of Moisture Loss and Oil Absorption of Pork Rinds during Deep-Fat, Microwave-Assisted and Vacuum Frying. Foods 2021, 10, 3025. https://doi.org/10.3390/foods10123025
Lin H-TV, Chan D-S, Huang Y-H, Sung W-C. Kinetics of Moisture Loss and Oil Absorption of Pork Rinds during Deep-Fat, Microwave-Assisted and Vacuum Frying. Foods. 2021; 10(12):3025. https://doi.org/10.3390/foods10123025
Chicago/Turabian StyleLin, Hong-Ting Victor, Der-Sheng Chan, Yu-Hsiang Huang, and Wen-Chieh Sung. 2021. "Kinetics of Moisture Loss and Oil Absorption of Pork Rinds during Deep-Fat, Microwave-Assisted and Vacuum Frying" Foods 10, no. 12: 3025. https://doi.org/10.3390/foods10123025
APA StyleLin, H. -T. V., Chan, D. -S., Huang, Y. -H., & Sung, W. -C. (2021). Kinetics of Moisture Loss and Oil Absorption of Pork Rinds during Deep-Fat, Microwave-Assisted and Vacuum Frying. Foods, 10(12), 3025. https://doi.org/10.3390/foods10123025